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Abstract 

Background  Non-invasive detection of blood-based markers is a critical clinical need. Plasma has become the main 
sample type for clinical proteomics research because it is easy to obtain and contains measurable protein biomarkers 
that can reveal disease-related physiological and pathological changes. Many efforts have been made to improve the 
depth of its identification, while there is an increasing need to improve the throughput and reproducibility of plasma 
proteomics analysis in order to adapt to the clinical large-scale sample analysis.

Methods  We have developed and optimized a robust plasma analysis workflow that combines an automated sam-
ple preparation platform with a micro-flow LC–MS-based detection method. The stability and reproducibility of the 
workflow were systematically evaluated and the workflow was applied to a proof-of-concept plasma proteome study 
of 30 colon cancer patients from three age groups.

Results  This workflow can analyze dozens of samples simultaneously with high reproducibility. Without protein 
depletion and prefractionation, more than 300 protein groups can be identified in a single analysis with micro-flow 
LC–MS system on a Orbitrap Exploris 240 mass spectrometer, including quantification of 35 FDA approved disease 
markers. The quantitative precision of the entire workflow was acceptable with median CV of 9%. The preliminary 
proteomic analysis of colon cancer plasma from different age groups could be well separated with identification of 
potential colon cancer-related biomarkers.

Conclusions  This workflow is suitable for the analysis of large-scale clinical plasma samples with its simple and time-
saving operation, and the results demonstrate the feasibility of discovering significantly changed plasma proteins and 
distinguishing different patient groups.
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Background
Plasma is the primary sample for clinical proteomics 
studies [1]. Although the tumor tissue provides the best 
opportunity for protein biomarker discovery of solid 
tumor, plasma also contains measurable protein bio-
markers that can well reveal disease-related physiologi-
cal and pathological changes [2]. Besides, plasma is easier 
to obtain than tissue samples, which gives an advantage 
for plasma-based biomarkers. Taking colon cancer, as 
an example, its examination and diagnosis often require 
invasive means such as puncture surgery for the purpose 
of obtaining solid tissue, which will cause damage to the 
patient. Although it has limited accuracy and sensitiv-
ity, the most commonly used non-invasive test in clinical 
practice is fecal occult blood test [3]. Based on the above 
considerations, current clinical diagnostic procedures are 
continually being improved, including blood tests such 
as the FDA-approved test for Septin 9 DNA methylation 
[4]. Several studies in recent years have successfully com-
bined different protein markers to identify colon cancer 
with better discriminative capabilities [5–7]. To develop 
diagnostic blood biomarkers is therefore a continuous 
direction of clinical testing.

Mass spectrometry (MS) has become the mainstay 
for high-throughput proteome profiling in various bio-
logical systems. Due to the complex protein composition 
and the high dynamic range of proteins in plasma [1, 8], 
it is common to increase the depth of identification by 
removing high-abundance proteins and fractionating 
proteins or peptides [9]. However, for large-scale clini-
cal samples, the complex sample preparation process is 
not only time-consuming, but even lead to technical bias 
[10]. Therefore, automation and integration of plasma 
proteomics sample preparation is a desirable approach 
to improve the throughput and reproducibility of clinical 
assays, as it can be easily standardized or scaled up. Cur-
rently, several large-scale proteomic analysis workflows 
for large-cohort plasma samples have been reported. 
Mann’s group developed the 96-well iST automated sam-
ple pretreatment platform [11] and applied it to large-
cohort plasma proteome analysis [12]. The platform has 
also been applied to plasma proteome analysis in a vari-
ety of diseases, including liver disease [13], COVID-19 
[14], etc. Recently, an automated and high-throughput 
solution (uHTPPP) was developed to enable large-scale 
plasma proteomic analysis, which automated the proto-
col of the Thermo Scientific EasyPep 96 MS Sample Prep 
Kit using a liquid handling robotic platform (Applica-
tion note 65,727). We developed integrated spintip-based 
proteomics sample preparation technology SISPROT 
for processing plasma samples with convenient opera-
tion and high reproducibility. Taking advantage of its 
integrated two-dimensional peptide fractionation, 862 

protein groups can be identified from 1  μL of plasma 
sample [15]. The SISPROT technology has been further 
improved for collecting, shipping, and processing both 
proteins and metabolites from dried single-drop plasma 
sample [16], and serum proteomic analysis of renal cell 
carcinoma patients [17].

In this study, we present a robust and reproduc-
ible high-throughput sample preparation workflow for 
micro-flow LC–MS/MS-based plasma proteome analy-
sis. Considering the detection requirements of clinical 
plasma samples, we carried out in-solution digestion of 
plasma proteins without additional protein depletion 
and prefractionation. The automatic pipetting platform 
integrated all the in-solution sample preparation steps 
and could be customized according to the various sam-
ple size. Specifically, this automated workflow can handle 
dozens of samples at the same time in one cycle or com-
plete the automation of large-scale samples through mul-
tiple cycles. In addition, the combination of micro-flow 
LC–MS/MS can achieve plasma proteome analysis with 
significantly improved throughput and stability. Lastly, 
the developed workflow was subsequently applied in a 
proof-of-concept plasma proteome study of colon cancer 
patients with different ages.

Methods
Sample collection
Plasma samples from 30 patients with stage III/IV colon 
cancer, and no other primary cancer diagnosis, including 
fifteen males and fifteen females (median age: 58  years, 
range: 30–80  years) were selected for this study from 
the Department of Oncology, Shenzhen People’s Hospi-
tal. Plasma samples were collected at the time of plasma 
biochemical examination. The clinical information of the 
colon cancer plasma samples has been listed (Additional 
file 2: Table S1). All procedures for plasma sample collec-
tion have been ethically approved by the Medical Ethics 
Committee of the Shenzhen People’s Hospital, Shenzhen, 
China. Peripheral blood samples were clotted at room 
temperature before collecting the upper sera and stored 
at − 80 ℃ until further use. For method optimization of 
automated samples preparation, a pooled plasma sample 
was prepared by mixing several plasma samples. BCA 
assay (Thermo Fisher Scientific) was used to measure the 
protein concentration of each sample.

Plasma samples were prepared using the in-solution 
digestion protocol [12], which combined LH-1808 fully 
automatic liquid handling platform (AMTK, China) with 
optimization for plasma. The AMTK system in this study 
is programmed to process 32 samples simultaneously 
including sample predilution, protein reduction and 
alkylation, and digestion of proteins. The automatic pro-
cess for plasma sample preparation is as follows: 5 μL of 
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plasma sample were transferred into a 96-well plate with 
a 1:20 dilution by adding 95  μL of reduction-alkylation 
buffer which consists of 10  mM Tris (2-carboxyethyl) 
phosphine hydrochloride (TCEP, Sigma, Germany), 
50  mM 2-Chloroacetamide (CAA, Sigma, Germany), 
and 50 mM Tris–HCl (pH 8, Sigma, Germany). The sam-
ples were pipetted 10 times up and down for a volume 
of 40  μL to mix thoroughly. A 20  μL of 20-fold diluted 
plasma was transferred into a new plate and heated at 
95 ℃ for 15 min to denature proteins. After cooling down 
to room temperature, the proteolytic enzymes LysC and 
trypsin were mixed in (1:100  µg of enzyme to micro-
grams of protein, 0.6 μg of each enzyme). Digestion plate 
was incubated at 37 ℃ for 3  h and then quenched the 
reaction by 50 µL of 0.1% (v/v) trifluoroacetic acid (TFA). 
The obtained digested peptide samples were desalted 
by using home-made C18 spintip packed with 10 layers 
of C18 plug (3 M Empore, USA) and 3 mg of C18 beads 
(10  μm, Dr. Maisch GmbH, Ammerbuch, Germany) in 
tandem [18]. Finally, the desalted peptides were lyophi-
lized to dryness for micro-flow LC–MS analysis.

Micro‑flow LC–MS/MS analysis
The plasma peptide samples were redissolved in 0.1% 
(v/v) formic acid (FA) and analyzed by using a reported 
micro-flow LC–MS/MS method [19]. This micro-flow 
LC–MS/MS system consisted of Orbitrap Exploris 240 
mass spectrometer (Thermo Fisher Scientific, USA) 
equipped with a Dionex UltiMate 3000 RSLCnano Sys-
tem (Thermo Fisher Scientific, USA). The LC separation 
was carried out on a commercial 15 cm Acclaim PepMap 
100 C18 column (1  mm i.d. × 150  mm, Thermo Fisher 
Scientific) at a flow rate of 50 μL/min. The buffer A used 
for separation was 0.1% (v/v) FA in water, the buffer B was 
0.1% (v/v) FA in 80% acetonitrile. Peptides were separated 
with a 66 min segmented gradient as follows: 0.5% buffer 
B for 2  min, 0.5–6% buffer B for 0.1  min, 6–35% buffer 
B for 60  min, 35–90% buffer B for 0.2  min, 90% buffer 
B for 2 min, 90–0.5% buffer B for 0.2 min, 0.5% buffer B 
for 1.5 min. Full MS scans were acquired from m/z 350 
to 1550 with a mass resolution of 60,000. MS/MS scans 
were performed in data-dependent top 12 mode. Tandem 
MS/MS was acquired at a resolution of 15,000 and using 
an isolation window of 1.3 Da. Higher energy collisional 
dissociation (HCD) fragmentation was set with a normal-
ized collision energy of 30%. The dynamic exclusion time 
was set as 25 s.

Data analysis
The raw data were processed using Sequest HT [20] inte-
grated within the Proteome Discoverer (PD) software 
(version 2.5, Thermo Fisher Scientific) and searched 
against the human Uniprot FASTA database (74,811 

entries, downloaded on March, 2020). The precursor 
and fragment mass tolerances were set to 10  ppm and 
0.02  Da, respectively. A maximum of two missed cleav-
ages was allowed. Methionine oxidation and N-terminal 
acetylation were set as dynamic modifications, while car-
bamidomethylation was applied as fixed modification. 
False discovery rate (FDR) of peptide spectrum matches 
(PSMs) and peptides were determined by searching the 
forward and reverse database and were validated by 
the Percolator algorithm at 1% based on q-values [21]. 
MaxLFQ algorithm integrated within MaxQuant (ver-
sion 1.6.17.0) was used for the label-free quantification 
(LFQ) analysis of all the raw data including colon cancer 
plasma samples with default parameters [22]. The same 
human database and the same criteria were set as in the 
PD search. FDR based on posterior error probability 
(PEP) was determined by searching a reverse database 
and was set to 0.01 for proteins and peptides. Statisti-
cal analysis and data visualization were performed using 
the Perseus software (version 1.5.5.3). Common con-
taminants, peptides only identified by side modification 
and reverse were excluded for further analysis. Proteins 
identified from colon cancer plasma samples with at least 
one ‘unique + razor peptide’ and three valid values in at 
least one group were kept for further analysis. Proteins 
were subjected to a gene ontology cellular component 
(GOCC) enrichment analysis performed by cluster Pro-
filer (version 3.14.3) package in R environment (version 
3.6.2).

Results
Development of automated plasma preparation workflow
Patient plasma specimens are one of the most commonly 
used and easily accessible resources for clinical patho-
logical investigation. Complicated sample preparation 
procedures and nano-flow LC–MS/MS-based proteomic 
analysis have been the mainstream methods for in-depth 
exploration of plasma proteomics. Conventional in-solu-
tion digestion is the most classical method can be used 
for protein digestion of various sample types. With the 
throughput requirements for clinical samples and bio-
marker discovery, the aim of this study is to develop and 
optimize the in-solution protein digestion protocol on 
an automated liquid handling system, achieving efficient 
preparation of plasma samples. The workflow of auto-
mated sample pretreatment combined with micro-flow 
LC–MS/MS system can be applied to the high-through-
put analysis of clinical samples. The advantages of this 
strategy are reflected in two aspects. Firstly, compared 
with traditional manual analysis of only one set of sam-
ples per experiment, the liquid handling platform can 
process dozens of samples simultaneously in an auto-
mated manner, saving time and labor costs. Secondly, 
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micro-flow LC–MS/MS system can significantly reduce 
the analysis time and improve the stability compared 
with nano-flow LC–MS/MS method [23].

In this study, we made full use of the remaining plasma 
samples after biochemical examination of cancer and 
performed all preparation steps in a 96-well plate of the 
AMTK-LH1808 liquid handling workstation. To evaluate 
the workflow, 12 of the 30 AMTK blocks in the system 
were selected, including functional modules such as the 
orbital shaker and the heating block. An overview of the 
deck setup is shown in Fig. 1. Mixed plasma was used as 
input for the protocol that we developed for automated 
sample preparation. The temperature adjustment range 
of the heating block is 4–110 ℃, and it can be set at 4 ℃ 
to store plasma, lysis buffer, and enzymes, temporar-
ily. The fully automated protocol design includes an on-
deck sample dilution process with a mixture of TCEP and 
CAA solutions to reduce and alkylate proteins. In-well 
trypsin and LysC digestion and termination reactions 
were also incorporated into the workflow, allowing high-
throughput processing of plasma samples in the same 
microplate. Since plasma is rich in protein (~ 60 μg/μL), 
there is no nanogram injection volume requirement for 
its analysis. An online micro-flow LC–MS/MS system 
with a flow rate of 50 μL/min and Orbitrap Exploris 240 
mass spectrometer were used to increase the analysis 
throughput while taking into account both identification 
and accurate quantification performance.

Optimization of the automated plasma preparation 
workflow
A total of two reactions occurred in the pretreatment 
process of plasma samples, namely reduction-alkylation 
reaction and protein digestion. The reaction conditions 
here are the main factors affecting automated sample 
preparation performance. Therefore, we investigated 
critical reaction conditions, including reaction time, tem-
perature, and the combination of proteases. As shown in 
Fig.  2A, one-step reduction and alkylation were carried 
out at 95 ℃ for 15 min brought better results than 60 ℃ 
for 15 min. The error bar of the former reaction condi-
tions was also significantly smaller than that of the latter 
in three repeated experiments, indicating the complete-
ness of the reaction. In addition, digestion with trypsin 
in combination with LysC improved digestion efficiency 
compared to digestion with trypsin alone under the same 
duration condition (Fig. 2B). Using optimized conditions, 
we were able to identify more than 300 protein groups 
and 2400 unique peptides on average from a single analy-
sis by using the Orbitrap Exploris 240 mass spectrometer 
with moderate sensitivity and scan speed.

Evaluation of reproducibility and quantification per-
formance of three replications in an automated opera-
tion is shown in Fig. 2C. Plasma samples from the same 
batch were processed with three adjacent wells on the 
plate, and 321, 318, and 319 protein groups were iden-
tified by single-shot LC–MS/MS analysis with 60  min 
gradient, respectively. Among them, 243 proteins were 
identified in all three replicates, which represents 59.4% 

Fig. 1  Schematic diagram of automated plasma sample preparation workflow and the application for clinical patients
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of all the identified proteins (Fig. 2C). To assess the preci-
sion at the protein level, coefficient of variation (CV) of 
protein intensity of three replicates were calculated and 
85.2% of proteins showing CVs of ≤ 20%, with the median 
CV% was 9.0% (Fig. 2D). Importantly, more than 91% of 
the PSMs have missed cleavage number of 0, indicating a 
good digestion efficiency (Fig.  2E). Figure  2F and Addi-
tional file  1: Fig. S1 showed the response correlation of 
each two replicates was 0.999, 0.998, and 0.998, suggest-
ing that our optimized workflow has a good identification 
and operation reproducibility (Additional file 1: Fig. S1).

Performance of the automated plasma proteome profiling 
procedure
To test the performance of our home-optimized auto-
mated workflow, it was compared with the automated 
uHTPPP workflow by analyzing the same plasma sam-
ple in four replicated wells. According to the official data 
provided by ThermoFisher in 2020, less than 200 proteins 
were identified (Application note 65,727). As illustrated 
in Fig.  3A, an average of 250 proteins were identified 
when buffers from the EasyPep reagent kit were applied 
to our own workflow, while our optimized workflow 
resulted in an average protein identification of 321. It 
is worth to mention that the official data of EasyPep 96 

MS Kit were analyzed using nano-flow LC coupled with 
Orbitrap HF-X mass spectrometer which should have 
better performance than Orbitrap Exploris 240 mass 
spectrometer. These results fully demonstrate the per-
formance of our automated plasma proteomic analysis 
pipeline.

To further assess the reproducibility of the automated 
workflow for large-scale clinical sample preparation, we 
examined both the well-to-well and day-to-day repro-
ducibility. The pipette head of AMTK LH-1808 used in 
this study has a maximum of 32 channels, hence, four 
of them were randomly selected for day-to-day repeat-
ability evaluation (Fig.  3B). Automated sample prepara-
tion of the same batch of plasma samples was performed 
on three days (day 1, 17, and 22) over a period of one 
month. All 12 samples (four per day) were measured by 
single-shot LC MS analysis with 60  min LC gradient in 
a single combined analysis sequence. The average value 
and standard deviations of identified protein groups and 
unique peptides at each random point were calculated 
to assess their qualitative stability. Figure  3C shows the 
average number of protein groups identified per day was 
321, 318, and 315. As shown in Fig. 3D, the Pearson cor-
relation coefficients of quantified proteins at one well in 
these three days were 0.996, 0.995, and 0.998, respectively 

Fig. 2  Optimization of the automated plasma sample preparation workflow. A Comparison of reduction and alkylation conditions for the number 
of identified protein groups and peptides. B Comparison of enzymes used in combination or alone. C Identification reproducibility of three batches 
of the same plasma sample processed at the same plate. D CVs of all quantified proteins were calculated for the 3 replicates. Proteins with CV < 20% 
are colored in blue and those with CV > 20% in gray. E Distribution of PSMs in each missed cleavages% levels. F Correlation of the protein intensities 
between replicate 1 and replicate 3. Correlation of protein intensities between the other replicates were appended in Figure S2
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(Data of other random points were shown in Additional 
file  1: Fig. S2). CVs of all quantified proteins’ intensity 
were calculated for the 4 replicates and the median %CV 
was 8.9%, with 86.1% of proteins showing CVs less than 
20% (Fig. 3E).

To evaluate the capability of our workflow in identify-
ing clinically interesting biomarkers, we evaluated the 4 
replicates to calculate the CVs and checked the Food and 
Drug Administration (FDA)-approved biomarkers [24] 
in our quantified protein list. Among 109 FDA-approved 
biomarkers, 35 proteins were detected, 31 of them had 
CVs of less than 20%, and 28 had CVs even less than 10% 
(Fig.  3F–G). Collectively, the above results indicate that 
the system has good identification and operation repeat-
ability across replicates of sequentially processed sample 
in the optimized automated sample preparation system. 
Its robust performance therefore lays the foundation for 
its application to high-throughput and long-time contin-
uous analysis of clinical samples.

Automated plasma proteome profiling of colon cancer
After optimizing the automated plasma proteome profil-
ing workflow, we applied it to the colon cancer plasma 
proteomic analysis as a proof-of-concept study. A total of 

30 colon cancer patient samples at stage III or IV were 
used for this analysis. According to the age distribution 
of patients in the sample database, they were divided 
into three different age groups, including 30–49  years 
old group, 50–69 years old group, and over 70 years old 
group, with 10 samples in each group. After processed 
with our automated plasma proteomics workflow, all 
30 samples were analyzed by the micro-flow LC–MS 
method. On average, 287 protein groups and 2 184 pep-
tides per sample were identified (Fig.  4A). Within the 
dataset, 68.6% of all proteins (188 protein groups) were 
identified in all of the 30 samples, 83.5% proteins (228 
protein groups) in more than 25 samples, only 3.7% pro-
teins were detected in less than one third of the sam-
ples and none of them uniquely detected in one sample 
(Fig.  4B). The result indicated the high reproducibility 
and stability of our automated workflow among the large 
set of plasma samples.

Gene Ontology analysis was performed to annotate 
the cellular component of plasma proteins (Fig.  4C). 
The enriched cellular components in the identified 
plasma proteins mostly involve in extracellular function 
of the circulatory system, such as blood microparticle, 

Fig. 3  Performance of the automated plasma proteome profiling procedure. A Comparison of identified proteins number of AMTK with “Optimized 
reagents” and “EasyPep reagent kit” (n = 4). B Four randomly selected samples from one plate were subjected to micro-flow LC–MS analysis. C 
Average number of protein groups and unique peptides identified of the same sample processed on three different days (day 1, day 17, and day 22) 
over a period of a month under optimized conditions and subjected to micro-flow LC–MS analysis. Error bars represent standard deviations from 
three technical replicates. D Correlations of the protein intensity between each of the two samples during the three days. E CVs of all quantified 
proteins were calculated for the 4 replicates. Proteins with CV < 20% are colored in blue and those with CV > 20% in gray. F The dynamic range of 
plasma proteome, FDA-approved biomarkers highlighted in red. G The CVs of 35 FDA-approved biomarkers from 4 replicates
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extracellular matrix, and plasma lipoprotein particle, 
which was consistent with the plasma proteomic reports 
[25–27].

Sparse partial least-squares discriminant analysis 
(sPLS-DA) and variable importance in projection (VIP) 
scores were computed to detect inherent trends within 
data of all the proteins using their LFQ intensities. As 
shown in Fig. 4D, the score plot of the sPLS-DA showed 
separation trends between the three groups, even though 
the three groups showed considerable overlap, indicat-
ing the proteomic differences in colon cancer patients 
with different ages. The top 34 proteins with the greatest 
influence on sPLS-DA analysis were showed by heat map 
(Additional file  1: Fig. S3). We further analyzed poten-
tial biomarkers between pairs in all three age groups. As 
a result, 19 proteins were found differentially expressed 
between age 30–49 and age 70 + patients (Fig.  4E). 
There were 11 proteins differentially expressed between 
age 50–69 and age 70 + patients. In detail, when age 
30–49 was compared with age 70 + , 12 proteins were 

up-regulated, while 7 proteins were down-regulated; 
when age 50–69 was compared with age 70 + , 4 pro-
teins were up-regulated, while 7 proteins were down-
regulated. And only 3 proteins were found up-regulated 
when age 30–49 was compared with age 50–69 in colon 
cancer cohort (Additional file 1: Fig. S4). Detailed infor-
mation of these differentially expressed proteins are pro-
vided in Additional file 3: Table S2–S4. Among all these 
28 differentially expressed proteins, 24 proteins were in 
the list of VIP value > 1 in sPLS-DA. The consistency of 
the results of the two data analysis methods proves that 
our automated workflow combined micro-flow LC–MS 
approach is feasible for processing large-scale clinical 
plasma samples.

Discussions
Herein, we developed an automated sample prepara-
tion and robust analysis platform for proteomic profiling 
of large-scale clinical plasma samples. Plasma proteins 
were treated by in solution digestion without protein 

Fig. 4  Automated plasma proteome profiling procedure of colon cancer patients. A Overview of the identified protein groups and peptides in 
each individual sample. B Percentage of detected proteins in all the 30 samples, in 25–29, in 16–24, in 2–15 samples. C Top 20 of Gene Ontology 
enrichments for cellular component. D sPLS-DA scores plots based on the colon cancer patients’ dataset (Red, patients aged 30–49; Green, patients 
aged 50–69; Blue, patients aged 70 +). E Volcano plot of statistical significance against log2-fold change between age 30–49 (n = 10) and age 
70 + (n = 10) in colon cancer cohort. Significance is controlled by p-value (independent two-sample t-test, two-sided) and minimum fold change 
(s0 parameter in Perseus) indicated by the cutoff curve
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immunodepletion and prefractionation. Considering 
the inherent pipetting error of the automated device for 
minute volumes, we started with 5 μL of plasma samples, 
which is a small amount for clinical testing, while our 
manual operation only used a starting amount of 1  μL 
[15]. Depending on the configuration of the automation 
platform, tens to hundreds of samples can be processed 
simultaneously in each working cycle. C18 spintip desalt-
ing was performed after automated processing, which 
is the only step that requires manual handling, but can 
also be multiplexed on standard centrifuge. As the next 
step, the automatic sample preparation platform could be 
combined with the automatic desalting module (which 
has been commercialized) to achieve full automatization.

From the perspective of data acquisition, the applica-
tion of micro-flow liquid chromatography in this study 
improved the analytical throughput and robustness 
of the plasma samples. Nevertheless, compared with 
the throughput of the automated pretreatment plat-
form, the throughput of LC–MS analysis still needs to 
be improved. Systematic studies have shown that the 
same 1 mm i.d. × 150 mm column could be used to ana-
lyze > 7 500 samples including specimens such as human 
cell lines, tissues, and body fluids and still with excellent 
reproducibility and protein quantification performance 
[19]. The results of intra-plate and inter-day repeatability 
showed that the automated pretreatment platform com-
bined with micro-flow LC–MS had good reproducibility 
for the analysis of plasma samples. The automated work-
flow allows quantitative analysis of ~ 300 protein groups 
in single plasma sample, covering 35 FDA-approved bio-
markers. Recently, Blume et  al. reported an automated 
approach for plasma proteomic profiling by using nano-
bio interaction properties of multiple engineered mag-
netic nanoparticles, which could identify more than 2000 
proteins from 1 mg of plasma sample [28]. It is therefore 
important for maintaining a balance between throughput 
and depth of analysis.

The automatic workflow was further applied to a proof-
of-concept plasma proteome study of colon cancer in 
different age groups. Interestingly, a series of proteins 
were identified to distinguish different colon cancer age 
groups, with the most significantly changed proteins 
found between the two groups with the largest age gap. 
Over the past several years, multiple studies about aging 
of the plasma proteome have been conducted. Among the 
differentially expressed proteins in the three age groups, 
there are proteins involved in healthy aging, such as 
IGFALS [29], and proteins that may predict healthy aging 
and longevity, such as LPA [30] and C9 [31]. In addition, 
15 differentially expressed proteins have been reported 
to have age-dependent changes in the plasma proteome 

[32, 33]. Surinova et  al. detected 88 candidate proteins 
in the study of non-invasive detection of colorectal can-
cer based on blood-based markers [34], of which 46 pro-
teins were in our detection list and 4 proteins were in 
our differentially expressed protein list. However, these 
significantly changed proteins cannot yet be considered 
as potential biomarkers for age or colon cancer without 
data support from non-colon cancer patients and larger 
cohorts. Because of the high variability of plasma sam-
ples between individuals and the influence of factors such 
as medical history and even mental status, it is necessary 
to develop generally accepted normalization methods, 
which will be carried out in our future large-scale sample 
studies. Nonetheless, the current study demonstrates that 
our automated workflow is feasible for clinical plasma 
proteome detection and biomarker analysis.

Conclusions
In this study, we develop an automated and robust 
plasma proteomics workflow that can be used for large-
scale clinical plasma proteomic analysis. The work-
flow combines efficient automated sample preparation 
techniques with micro-flow LC–MS-based methods. 
Compared with the manual workflow, this approach 
can analyze dozens of samples simultaneously with 
higher throughput and reproducibility. Without protein 
depletion and prefractionation, more than 300 protein 
groups can be identified in a single analysis, including 
the quantification of 35 FDA-approved markers from 
plasma. This workflow is particularly suitable for the 
detection and analysis of large-scale clinical plasma 
samples due to its simple and time-saving operation. 
The results of proof-of-concept study confirmed the 
feasibility of the workflow to discover potential bio-
markers from large clinical plasma sample cohorts.
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