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Abstract 

Background Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic β cells that progresses 
to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with develop‑
ment of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. 
Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies 
have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial can‑
didate identification, which needs to be further validated and have assays developed for clinical use. Here we curate 
these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes 
regulated during disease development.

Methods This systematic review was registered with Open Science Framework (https:// doi. org/ 10. 17605/ OSF. IO/ 
N8TSA). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed 
to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry‑based untargeted/
targeted proteomic analysis of human serum/plasma of control, pre‑seroconversion, post‑seroconversion, and/
or T1D‑diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently 
using the pre‑determined criteria.

Results A total of 13 studies met our inclusion criteria, resulting in the identification of 266 unique proteins, with 31 
(11.6%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched 
in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in dif‑
ferent phases of T1D development. We found 2 subsets: 17 proteins (C3, C1R, C8G, C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, 
APOE, TETN, C1S, C6A3, SAA4, ALS, SEPP1 and PI16) and 3 proteins (C3, CLUS and C4A) have consistent regulation 
in at least 2 independent studies at post‑seroconversion and post‑diagnosis compared to controls, respectively, mak‑
ing them strong candidates for clinical assay development.
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Conclusions Biomarkers analyzed in this systematic review highlight alterations in specific biological processes 
in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further 
use in the clinic as prognostic or diagnostic assays.

Keywords Type 1 diabetes, Biomarker, Plasma, Proteomics

Background
Our understanding of type 1 diabetes (T1D) pathophysi-
ology has advanced significantly in the last 100 years since 
discovering insulin as a T1D treatment, but additional 
biomarkers of its earliest stages could help determine its 
cause and develop more refined and targeted prevention 
approaches. The disease begins as an autoimmune insult 
on pancreatic β cells (seroconversion, marked by the 
detection of circulating autoantibodies) that progresses 
to elevated blood glucose and glycated hemoglobin A1c 
in the body—the current gold standard for T1D diagno-
sis. Current biomarkers to track this evolution are lim-
ited, with the development of autoantibodies to insulin, 
glutamic acid decarboxylase, insulinoma-associated anti-
gen-2, or zinc transporter 8 marking the onset of islet 
autoimmunity [1, 2]. Proteomics is a powerful tool to 
identify biomarkers, as it can detect and quantify thou-
sands of proteins. Several proteomics studies have been 
carried out to identify T1D biomarkers. However, the 
development of biomarkers is a long process that involves 
identification of candidates, validation, and clinical assay 
development [3]. Despite all the efforts of the field, our 
knowledge is still concentrated in the initial biomarker 
candidate identification step. A deep analysis of the pub-
lished reports can recognize reproducible protein expres-
sion patterns [4], leading to the identification of most 
promising candidates.

Here, we performed a systematic review of untar-
geted and targeted proteomics of serum or plasma from 
individuals in different stages of T1D development. We 
report several proteins that were differentially expressed 
in individuals at various stages of T1D development, and 
we also interpreted the findings to understand processes 
regulated in T1D development.

Methods
Study design and search strategy
We conducted this systematic review according to the 
PRISMA guidelines by searching the PubMed database 
with the terms “type 1 diabetes” and “proteomics” as of 
08 August 2022 [5]. Articles were manually curated with 
the following expressions:

((Type 1 Diabetes) AND (Proteomics)) NOT ((Review 
[Publication Type])) OR (Systematic Review [Publica-
tion Type])) OR (Meta-analysis [Publication Type]) OR 

(Commentary [Publication Type])) AND ((Serum) OR 
(Plasma)).

Eligibility Criteria
Studies comparing the serum/plasma proteome of 
humans developing or having T1D and that of controls 
were included in the analysis. Ethnicity, study popula-
tion size, sex, or disease time point were not included as 
exclusion criteria to minimize excluding informative bio-
markers. We excluded reports of individuals with T1D 
without matched controls and any studies that failed to 
report detailed proteomic analyses. Study design (case–
control, cohort, or longitudinal) was not an exclusion cri-
terion. We excluded articles without accessible abstracts 
or full text, articles that were reviews, commentaries, sys-
tematic reviews, or meta-analyses.

Study selection
The systematic review of the literature resulted in 356 
initial articles. All the studies that were excluded using 
the PubMed algorithm (see Eligibility Criteria) were 
manually verified that they did not meet the inclusion 
criteria. The remaining articles were manually screened 
to eliminate studies that did not use human serum/
plasma or mass spectrometry-based proteomic analy-
sis or were related to gestational diabetes and T1D-drug 
studies. Finally, the studies related to the mass spectrom-
etry technique without a control group or with missing 
proteomic data were excluded from the final list after the 
full text was read. In addition, we added two manuscripts 
(unpublished at the time) by our group that met the eli-
gibility criteria. Figure 1 outlines the study screening and 
selection process following the PRISMA guidelines.

Data analysis and visualization
The final 13 articles included were screened by three 
reviewers independently (SS, ECE, HRH) to verify they 
met the initial inclusion criteria. The additional metadata 
of sample type, population size, mass spectrometry anal-
ysis type, data analysis method, and statistical tests were 
also included as factors. All the authors discussed any 
conflicts and were added to the analysis upon unanimous 
agreement. Protein data were extracted from the articles 
manually using Adobe/Microsoft Excel as described in 
the Additional file  1: Table  S1. Proteins were reported 
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based on UniProt IDs. When accession numbers/UniProt 
IDs were not provided or outdated databases were used 
for protein matches, UniProt IDs were found based on 
the peptide sequences or gene name. Protein abundances 
were manually converted to binary “–1” or “1” represent-
ing down or up-regulation, respectively, with “0” denot-
ing not observed. In studies that reported abundance of 
multiple peptides for a protein, directional disagreement 
between them was reported as 1/-1. Studies were then 
grouped by the sampling time point (pre-seroconversion, 
post-seroconversion, and post-diagnosis). Functional-
enrichment analysis was performed with Database for 
Annotation, Visualization, and Integrated Discovery 
(DAVID) using the default parameters [6]. We used the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
output for further interpretations. Redundant pathways 
were consolidated by manual inspection and checking 
for overlap between pathways, being only the one with 

highest coverage kept for network analysis. Final network 
data were visualized with Cytoscape (v.3.9.1) and Graph-
pad prism software.

Results and discussion
Characteristics and description of eligible studies
The 13 articles described in our systematic review were 
performed across three disease developmental stages: 
pre-onset, further divided into (i) pre-seroconversion and 
(ii) post-seroconversion; and (iii) post-diagnosis. Pre/post 
seroconversion was defined based on the manifestation 
of the autoimmune response measured by the appear-
ance of autoantibodies while post-diagnosis was defined 
by onset of symptomatic hyperglycemia. Details of the 
studies and their temporal categorization are summa-
rized in Table 1 and the results are summarized in Addi-
tional file 1: Table S2.

Fig. 1 PRISMA flow chart of literature search strategy, screening, and exclusion criteria
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Pre‑onset proteomic profiles
Our literature search identified 6 papers that investi-
gated the temporal protein abundance changes in indi-
viduals with T1D. Studies by Moulder et al. [7], Fronhert 
et al. [8], Nakayasu et al. [9], and Webb-Robertson et al. 
[10] looked at protein abundance changes at both pre-
and post-seroconversion stages. In contrast, von Toerne 
et al. and Lui et al. examined the protein profile only after 
seroconversion [11, 12]. Moulder et al., von Toerne et al., 
Lui et al., and Nakayasu et al. used untargeted proteom-
ics and identified 65, 26, 12, and 72 proteins, respectively, 
that were significantly different in post-seroconversion 
vs controls. Nakayasu et  al., used targeted proteomics 
in plasma from individuals at -9, -6, and -3 months pre-
seroconversion and 2, 6, 9, 12, 15, and 18 months post-
seroconversion. Webb-Robertson et  al. used targeted 
proteomics, investigating the expression of 19 comple-
ment proteins in plasma from pre-seroconversion, and 
post-seroconversion subjects, which were further vali-
dated using ELISA assays. In addition, von Toerne et al., 
and Fronhert et al. used targeted proteomics as a valida-
tion method to look at 3 and 5 unique proteins, respec-
tively, whereas Liu et al. used ELISA as its validation step. 
In conclusion, these studies have identified many bio-
marker candidates, but with limited validation.

Post‑diagnosis proteomic profiles
One of the first plasma/serum proteomics studies of indi-
viduals with T1D was performed by Metz et al. in 2008 
[13]. They identified 5 differentially abundant proteins in 
recently diagnosed T1D patients compared to controls. 
Similarly, studies by Zhi et  al. and Chen et  al. utilized 
untargeted proteomics and identified 17 and 36 differen-
tially abundant proteins, respectively, in sera from indi-
viduals with T1D compared to controls [14, 15]. Zhang 
et al. and Oliveira et al. performed untargeted proteom-
ics of serum/plasma samples from individuals with T1D 
and identified 24, and 8 differentially abundant proteins, 
respectively [16, 17]. Zhang et al. tested the 24 proteins 
using targeted proteomics in 50 T1D vs. 100 controls, 
validating 16 proteins with high discriminating power. A 
subsequent blinded experiment in an independent cohort 
of 10 individuals with T1D and 10 controls identified the 
chemokine proplatelet basic factor (PPBP/CXCL7 –pro-
teins are listed based on their gene names) and C1 inhibi-
tor with 100% sensitivity and specificity to discriminate 
between the groups. Manjunatha et al. and Gourgari et al. 
performed untargeted proteomic analysis on high-den-
sity lipoproteins (HDL) and found a compositional but 
not level change of the HDL proteome in T1D individu-
als with a high risk of cardiovascular complications [18, 
19]. Overall, these studies showed proteomic changes in 

plasma profiles after T1D onset, which have the potential 
to be developed as diagnostic biomarkers.

Potential biological functions of biomarker candidates
To better understand the biological relevance of these 
proteins, we performed a functional enrichment analysis 
using DAVID [6]. The KEGG annotation from DAVID 
mapped 157 proteins out of 266 to 26 biological pathways 
(Additional file 1: Table S3). Out of these pathways, the 
complement and coagulation pathway (44 proteins) had 
the most significant number of proteins mapped to it, fol-
lowed by COVID-19 (23 proteins), Staphylococcus aureus 
infection (17 proteins), and systemic lupus erythemato-
sus (16 proteins). These pathways were further curated 
down by consolidating overlapping/redundant proteins 
into 6 pathways, i.e., complement and coagulation, met-
abolic protein, inflammatory signaling, cytoskeleton 
remodeling, extracellular matrix, and antigen presenta-
tion (Fig. 2). Here, we further discuss these pathways in 
the context of T1D risk and disease evolution over time.

Complement system
The complement system is a cascade of proteases mak-
ing up a humoral extension of the innate immune system. 
Dysregulation of the complement pathway is linked to 
chronic and autoimmune diseases. Complement defi-
ciencies are either inherited or acquired. Inherited defi-
ciencies of complement proteins C1-C4 are strongly 
associated with bacterial infection and systemic lupus 
erythematosus, while inherited deficiencies of C5-C9 
are associated with bacterial infection and sepsis [20]. 
Acquired deficiency or factor level changes arise when 
activation or inflammation-related acute phase responses 
exist, resulting in either up or downstream exhaustion of 
some factor [21]. They also interact with adaptive immu-
nity by forming complexes with antibodies, including 
islet autoantibodies [22]. A cytotoxic effect [23] of such 
complexes has been controversial, but this concept has 
gained a renewed interest with recent discovery of β-cell 
surface autoantibodies [24]. In individuals with T1D, 
complement components C3 and C4 are highly expressed 
in the pancreas, including the islets [25, 26]. Stud-
ies of pancreata obtained from cadaveric T1D donors 
have reported C4D immunostaining in blood vessel 
endothelium and exocrine ducts [25], a change typically 
associated with activation at that site, and significant 
upregulation of the complement cascade (C1QA, C1QB, 
C1QC, C1R, C1S, C3, C4B, C5, C5AR1, C6, C7, C8A, 
C8B, C8G, and especially C9) [27]. Their tissue compart-
ment localization was extrapolated from transcriptomic 
data but remains uncertain. This information may be of 
limited value for our project as the tissue or plasma sta-
tus of the complement system at the time of death in a 
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person with long-standing T1D may not resemble that at 
the time of the appearance of islet autoantibodies in an 
otherwise healthy young child.

Importantly for studies of pre-diagnosis T1D, a func-
tional relationship has been demonstrated between acti-
vation of components C3 and C5 and improved β-cell 
function in mice and humans [28], suggesting direct 
effects on β cells. The pro-inflammatory cytokines 
interleukin-1β and interferon-γ increase C3 expression 
in rodent and human β cells [29]. C3 silencing exacer-
bates β-cell apoptosis. On the other hand, upregulation 
of the complement system improves β-cell autophagic 
response—a protective homeostatic response to the 
β-cell stress [29] that is impaired in T1D development 
[30]. Exogenously added C3 protects against cytokine-
induced β-cell death via protein kinase B (AKT) acti-
vation and c-Jun N-terminal kinase inhibition. While 
locally produced C3 is an important survival mechanism 
in β-cells under a pro-inflammatory assault, it is not 
known if a C3-focused therapy could slow or abort the 
progression of diabetes in humans. In addition, a vari-
ant of C3 gene is associated with T1D [31], which may 
suggest that the response to such intervention could be 
genetically modified. In sum, although changes in the 

complement system are clearly linked to the risk of T1D 
development and its rapid progression, the direction of 
the effect and the therapeutic implications are uncertain. 
Thus, we need to determine whether the system should 
be activated or modulated, what components of the path-
way are most relevant to T1D development, and at what 
point in the evolution of the disease should a specific 
change in the pathway be introduced. Regarding comple-
ment therapeutics designed to block or modulate activa-
tion, there is a range of drugs that are either available or 
in clinical development. For example, these therapeutics 
will modulate the C3 and C5 convertases, thus dampen-
ing overall activation, or be more specific to target C5, 
C5a, C3a, or complement receptors for activation frag-
ments (reviewed in [32]). Conversely, activation of the 
pathways is being explored for the treatment of infectious 
diseases, cancer, and disorders of metabolism [33].

The 13 papers we examined reported some aspect of the 
complement system as dysregulated, with 44 out of the 
266 biomarker candidates identified from our KEGG anal-
ysis (Fig.  3  and Additional file  1: Table  S3). Upon closer 
inspection (Additional file  1: Table  S2),  C4 (combining 
C4A and C4B observations) was the most identified pro-
tein, followed by C3 in this systematic review, which was 

Fig. 2 Pathway analysis of the protein biomarkers. This network represents proteins linked to their respective consolidated pathways from KEGG. 
Pathways were consolidated based on their overlap and redundancy. The nodes are colored based on the number of studies that the proteins were 
shown to be significantly regulated
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reported to be primarily downregulated in post-serocon-
version and post-diagnosis compared to controls [11, 14, 
16, 19]. This was further corroborated by Webb-Robertson 
et al., where C3 and C4 levels were consistently low in pre- 
and post-seroconverted subjects [10]. Interestingly, further 
breakdown of the disease progression by Nakayasu et. al. 
shows C4 levels were up until 6  months before serocon-
version, with decreasing levels reported 3 months prior to 
autoantibody detection in patients [9]. A low abundance of 
C3 and C4 throughout the course of the disease was also 
reported by a longitudinal study conducted by Moulder 
et al. [34]. These results are consistent with observations of 
deficiencies in downstream complement components cou-
pled with increased abundance of the Membrane attack 
complex (MAC) inhibitor clusterin (Clus, also known as 
APOJ) pre-seroconversion. However, there are conflicting 
reports of abundance following seroconversion. Previous 
ex-vivo characterization of the T1D pancreas corrobo-
rated our identification of complement dysregulation but 
instead found an increased abundance of complement 
markers following diagnosis [25, 27, 35]. Pre-clinical mod-
els of C3 knockout or receptor blockage leading to reduc-
tion in T1D development and other findings also suggest a 
role for the complement system in the T1D development 
[36–38]. While at first, the serum and tissue complement 

abundances appear to be at odds with one another, the 
low complement levels pre-seroconversion may be due 
to consumption through C3, C4, and MAC depositing in 
the pancreas throughout T1D development. Low C3 and 
C4 have been seen in both COVID-19 and lipodystrophy 
cases, and low C3 with high C5-C9 are common in glo-
merulopathy [39]. Evidence of lifelong complement depos-
its in the pancreas matching the parallel findings of lifelong 
low C3 levels provides further evidence of complement 
deposition in the pancreas as the driving force behind low 
blood levels of complement and, therefore, progressive 
loss of β cells due to increased immune response.

In the context of T1D, the complement system may 
play a part in modulating adaptive immune response 
against islets, with human leukocyte antigens (HLA) 
class II genes being associated with T1D risk [40]. 
Activation of the complement cascade and deposition 
of complement factors into the pancreas have been 
reported during insulitis [22, 27]. In late-stage diabe-
tes, elevated complement levels in serum are linked to 
diabetic nephropathy [41]. Overall, the disruption of 
the complement pathway seems to be a characteristic 
trait of T1D, however, further studies are warranted to 
help navigate the path to consistent biomarker or drug 
development.

Fig. 3 Complement cascade. The diagram represents all the complement pathway proteins denoted by orange color identified in our 
systematic review. The Image was modified from “Complement cascade pathway” on the Reactome website (https:// react ome. org/ Pathw ayBro 
wser/#/R‑ HSA‑ 166658 with StableID: R‑HSA‑166658)

https://reactome.org/PathwayBrowser/#/R-HSA-166658
https://reactome.org/PathwayBrowser/#/R-HSA-166658
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Immune pathways
A recurrent theme among the T1D biomarker candi-
dates is the enrichment of proteins related to antigen 
processing and presentation. For instance, the comple-
ment pathway can opsonize pathogens and dead cells to 
be presented to the antigen-presenting cells. Other pro-
teins related to antigen opsonization are also regulated 
in T1D, such as antibodies and opsonization/scavenger 
receptors. Once the antigen is opsonized, it is phago-
cyted into phagosomes. In fact, β cells infected with cox-
sackievirus are efficiently phagocyted by dendritic cells, 
making coxsackievirus infection a potential trigger of the 
islet autoimmune response [42, 43]. The phagocytic pro-
cess requires an extensive cell cytoskeleton remodeling 
[44], which was another pathway enriched in our analy-
sis. The phagosome can be next fused to lysosomes to ini-
tially process the antigens, which are further processed in 
the proteasome and loaded into HLA for presenting to T 
cells [45]. HLA alleles represent the main risk factor of 

T1D development, further supporting that this pathway 
is involved in the autoimmune response [45].

Another process that occurs in parallel is the cytokine 
and chemokine signaling [46]. Among the biomarker 
candidates, the chemokine pro-platelet basic protein/ 
chemokine ligand 7 (PPBP/CXCL7) has been identified 
along with 3 other immunoregulatory molecules (Fig. 4). 
Despite all the cytokines/chemokines regulated in T1D, 
little is known about their mechanistic roles in disease 
development. Cytokine/chemokine and even phagocyto-
sis can trigger signaling cascades in the cells that further 
regulate these processes but also leads to the expres-
sion of other effector molecules. Among Inflammatory 
receptor and signaling proteins various phosphatases, 
phospho-binding and cytokine/growth factor proteins 
have been described (Fig.  4). In addition, the transcrip-
tion factor TNIP1 has also been shown to be regulated in 
T1D (Fig. 4). Regarding the effector molecules, oxidative 
stress proteins myeloperoxidase, glutathione peroxidase 

Fig. 4 Immune pathways. The diagram represents proteins identified in the systematic review belonging to immune pathways and functions: 
extracellular matrix, cytoskeleton/actin filament, oxidative stress, gene expression, inflammatory signaling, antigen presentation, cytokine/
chemokine, opsonization, antibodies, and other immune receptors/regulators. Proteins were annotated into different pathways with DAVID 
and by their function description in UniProt. Proteins are listed using their UniProt gene names
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3, peroxiredoxin-1, and sulfhydryl oxidase 1, were also 
shown to be regulated in T1D. Oxidative stress has been 
shown to induce β-cell dysfunction and death and has 
also been proposed as a potential therapeutic target [47].

A common feature in the plasma of individuals with 
T1D is the regulation of extracellular matrix proteins, 
of which 34 have been described to be regulated (Fig. 4). 
The extracellular matrix is an integral part of the immune 
response regulated by cytokines and chemokines [48, 49]. 
For instance, the extracellular matrix peri-islet basement 
membrane serves as a barrier, protecting islets from 
immune cell infiltration in insulitis in mouse models of 
T1D [50]. In addition, preservation of the extracellular 
matrix by administration of dextran sulfate, a mimic mol-
ecule of the extracellular matrix proteoglycans, has been 
shown to protect β cells and to be a potential treatment 
for T1D in mice [51].

Plasma lipoproteins
The DAVID analysis showed ~ 5% of the reported pro-
teins to be key players in lipid metabolism. Most circu-
lating plasma lipids are packaged into lipoproteins which 
are traditionally classified into four common subfrac-
tions based on particle density: chylomicrons (CM), very 
low-density lipoproteins  (VLDL), low-density lipopro-
teins (LDL), and high-density lipoproteins (HDL). Struc-
turally dynamic apolipoprotein scaffolds reside at the 
water–lipid interface of all subclasses where they modu-
late particle interactions with plasma enzymes, cofac-
tors, and cell surface receptors that continuously remodel 
the lipoproteins throughout their lifespan. Though tra-
ditionally defined based on their “cholesterol” content, 
proteomics studies over the last decade have revealed 
significant compositional heterogeneity exists within 
the lipoprotein subfractions which contain upwards of 
273 different proteins [52] with the HDL subfraction 
accounting for > 250 of these proteins. Thus, lipoproteins 
are thought to consist of a variety of compositionally dis-
tinct subspecies which have now been shown to modu-
late a diverse array of metabolic pathways [53, 54].

Though DAVID analysis implicated “cholesterol 
metabolism,” and by proxy lipoproteins, the analysis 
fails to capture the full lipoproteome due to the recency 
of lipoprotein molecular profiling studies in the litera-
ture. When compared to a lipoprotein-specific database 
[52], we found nearly half (119 proteins) of the pro-
tein biomarkers identified in individuals with T1D are 
associated with lipoproteins (Fig. 5A, Additional file 1: 
Table  S2—Common T1D/LP proteins column), out 
of which 73 were specifically associated to HDL func-
tions (Additional file  1: Table  S2—T1D proteins with 
known HDL function column). Approximately 68% of 

changes in protein levels were unique to post-serocon-
version and post-diagnosis indicating the most pro-
found changes in lipoprotein metabolism occur later 
in the disease process (Fig. 5B). A total of 38 members 
were altered pre-seroconversion with most overlap-
ping with previously discussed immune response and 
complement cascade (Fig. 5C). Outside of the immune 
and complement proteins, we noted a few well-studied 
apolipoprotein APOCs and clusterin were altered pre-
seroconversion (Fig.  5D), hinting some changes occur 
in the lipoproteome prior to the onset of dysglycemia 
or hyperglycemia.

Most of the lipoproteome members altered post-sero-
conversion and post-diagnosis have documented roles 
in triacylglycerol metabolism. Perhaps the most robust 
of these observations were associated with changes in 
plasma APOA4 and clusterin altered in 5 studies post-
seroconversion and post-diagnosis [7, 11, 14, 18, 19]. 
APOA4 is well-documented to modulate the triacylg-
lycerol packaging in the triacylglycerol-rich lipopro-
teins (CMs and VLDL). [55]. Additionally, APOA4 is 
reported to play key roles in satiety, gastric function, 
and glucose homeostasis [56, 57], all of which have been 
reported altered in individuals with T1D [57–61]. Clus-
terin is known to affect insulin signaling and inflam-
mation [62, 63]. High plasma levels of clusterin have 
been reported in pre and diabetic patients, regarded 
as a marker for diabetes [64]. Five post-seroconversion 
and post-diagnosis studies reported increased plasma 
APOA2; a well-known HDL scaffold protein. While 
HDL has little triacylglycerol, APOA2 has been shown 
to be implicated in triacylglycerol metabolism [65] 
through a mechanism that is still poorly understood. 
Several studies report changes in the APOCs and 
APOE [7, 11, 18] which are also thought to modulate 
triacylglycerol lipolysis in VLDLs [66, 67]. These obser-
vations are in-line with elevated triacylglycerol levels 
and inhibition of lipoprotein lipase associated with the 
innate immune response [68].

Most of the biomarker studies were performed on 
whole plasma. As most apolipoproteins are exchange-
able, more detailed lipoprotein speciation studies are 
required to determine the subclass on which these par-
ticles are located and how they are modulating parti-
cle function in the context of T1D. Though two studies 
attempted to speciate lipoproteins from individuals 
with T1D, both limited their analysis to HDLs (21, 22) 
thus missing most of the changes involved with the 
triacylglycerol-rich particles. Future studies that exam-
ine the temporal changes in the lipoproteome across all 
subclasses will better inform on the role of these pleio-
tropic particles and how they cross-communicate with 
the complement system and immune pathways in T1D.
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Overview of the most promising biomarker candidates 
for clinical use
For clinical use, biomarkers need to be highly sensi-
tive and specific. As T1D is a chronic disease in which 
each stage can take months to years, biomarkers with 
more stable changes in abundance are preferable to pro-
teins with transient regulation. In addition, they need 
to be reproducible. Therefore, proteins with consistent 
abundance profiles across different studies would make 
them stronger candidates to be developed into clinical 
assays. Our systematic review identified 266 proteins, 
80 (30%) were found across multiple papers, and 31 

(11.6%) were reported three or more times (Additional 
file 1: Table S2 & Fig. 6). The differential expression pat-
terns were more limited in the pre-seroconversion than 
post-seroconversion, with most differentially expressed 
proteins in the post-diagnosis group. We found 198 
proteins that were only present in post-seroconversion 
and post-diagnosis stages compared to pre-seroconver-
sion. From those, proteins such as BTD, ITIH2, ALS, 
IBP3, SAA4 were consistently upregulated in post-
seroconversion and APOA4 in post-diagnosis stages, 
observed in ≥ 2 articles. Similarly, proteins such as IBP2, 
APOE, C1S, C6A3, PI16, and TETN were consistently 

Fig. 5 Overlap of T1D‑relevant proteins with high‑ (HDL)/ low‑ (LDL) density lipoproteome. A Venn diagram showing common protein hits 
(grey) between the HDL/LDL proteome [52] (black) and those reported in our systematic review (white). B Venn diagram detailing the T1D stage 
as pre‑seroconversion (pre‑sero), post‑seroconversion (post‑sero) and post‑diagnosis of the 119 HDL/LDL/T1D shared proteins from A. C Gene 
Ontology of HDL lipoprotein‑known functions of pre‑seroconversion reported proteins. D Heatmap of apolipoproteins with altered levels reported 
in at least one stage of T1D development. Up (Red color) are upregulated proteins and down (Green color) are downregulated proteins. Proteins 
are named using their UniProt gene names. Panel C was modified from a published figure by Davidson et al. (copyright permission was obtained 
from the publisher, license number: 5433910818199) [52]
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downregulated in post-seroconversion and C4A in post-
diagnosis stages. Out of the remaining 68 proteins that 
were detected in the pre-seroconversion stage, 38 pro-
teins were reported as increased abundance (by < 2 arti-
cles) and 19 had decreased abundance (by < 2 articles), 

and 11 had conflicting data (by at least 2 articles). From 
the 38 proteins that were up in the pre-seroconversion 
group, only the C8G protein was found to be up in post-
seroconversion, whereas, SEPP1 and ITIH1 were found 
to be down in post-seroconversion along with CLUS in 

Fig. 6 Potential biomarkers list. It is a heatmap of all the protein biomarkers identified by multiple proteomic papers (3 or more times). Proteins 
that the studies have not reported are represented as blank. “T” denotes the targeted proteomic approach, whereas “U” denotes the untargeted 
proteomics. Proteins are listed based on their gene names. Down—significantly downregulated proteins, sero. seroconversion, Up—significantly 
upregulated proteins
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post-diagnosis stages (by ≥ 2 articles). Similarly, out of 
19 downregulated proteins in the pre-seroconversion 
group, C1R, and C4B were only downregulated in post-
seroconversion and C3 was found to be downregulated 
in the post-seroconversion and post-diagnosis stages 
by ≥ 2 articles. Due to the lack of studies looking at the 
preseroconversion stage in patients, none of the proteins 
in this stage were corroborated by multiple independent 
studies, however, there were 17 proteins (C3, C1R, C8G, 
C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, APOE, TETN, 
C1S, C6A3, SAA4, ALS, SEPP1 & PI16) in post-serocon-
version group and 3 proteins (C3, CLUS, and C4A) in the 
post-diagnosis group that had consistent regulation in 
at least 2 independent studies. Upon evaluating just the 
directionality (i.e., up and down) of the proteins across 
all three temporal groups (pre-seroconversion, post-
seroconversion, and post-diagnosis), C3 was found to be 
consistently downregulated, and C8G and ITIH3 were 
upregulated in cases compared to control (these proteins 
were observed by only one article in pre-seroconversion 
stage, but multiple articles in the other stages), making 
them and along with other proteins mentioned above as 
strong candidates for clinical assay development.

Limitations of the study
In this study, we compare data across different mass spec-
trometry-based proteomics approaches, which limits the 
ways that we can compare across datasets. For instance, 
isobaric labeling experiments, such as TMT and iTRAQ, 
have the issue of fold change compression [69]. There-
fore, we only compare the directionality of the protein 
regulation, which lacks the information on how strong 
the regulation is. However, a protein being detected as 
differentially abundant across different platforms can 
arguably be considered a better biomarker candidate 
because of the differences in measurement errors and 
possible biases across platforms. Another limitation is 
that studies often report only significantly changing pro-
teins. Therefore, important information that could clarify 
if a protein is not significant in a different study is lost. 
An inherited limitation/challenge is that clinical samples 
are not synchronized. Therefore, some of the ephemeral 
changes in the protein abundances would unlike to be 
cross-validated between studies. However, those pro-
teins might still bring invaluable information about the 
disease process, even though they are poor biomarker 
candidates.

Conclusions and perspectives
Our systematic analysis found 266 candidate protein bio-
markers of T1D, of which 80 (30%) were observed in mul-
tiple studies. This helps to prioritize the validation step of 

biomarker development. Despite some of the biomark-
ers being consistently regulated across different studies, 
they still need to go through an extensive validation pro-
cess before moving to clinical assay development. Ide-
ally, the biomarker candidates should be cross-validated 
in independent cohorts of samples and tested for sensi-
tivity and specificity. In general, fewer signatures were 
identified prior to the onset of the disease. This can be 
partly because T1D has an almost silent developmental 
phase, and it is not expected that significant biochemical 
changes would be observed in the blood of these individ-
uals. Alternatively, the pre-seroconversion phase may be 
convoluted by multiple factors, temporal regulations, and 
trajectories that lead to autoimmunity and hinder our 
ability to identify a consistent signature. In this context, 
machine learning can be an excellent approach to identi-
fying multivariate panels of proteins to serve as biomark-
ers of T1D development. This approach has been used to 
combine metabolic, genetic, and autoimmune signatures 
to predict the onset of disease and can be easily adapted 
to test peptide/protein panels [8, 70–72]. Another con-
cept that can further improve biomarkers’ robustness is 
using ratio between protein abundance changes rather 
than profiling individual proteins. Ratios between oppo-
sitely regulated proteins would have much bigger differ-
ences compared to them individually, providing higher 
discriminatory power between cases and controls. After 
selecting candidates, clinical-grade assays must be devel-
oped and tested for robustness, specificity, and sensitivity 
in the clinical setting. In addition to biomarkers, our sys-
tematic review of proteomics studies provided insights 
into the pathways regulated in T1D, such as complement 
system, plasma lipoproteins, and immune response [70, 
71]. Our systematic review also opens opportunities to 
study the functions of the biomarker candidates in T1D 
development and pathology. For instance, our group has 
found that PPBP/CXCL7 can reduce pro-inflammatory 
cytokine-mediated apoptosis in macrophage cell cultures 
while it enhances it in cultured β cells [73]. This may have 
a role in T1D development by potentiating macrophages 
and killing β cells in insulitis. Overall, this systematic 
review provides insights into processes regulated in T1D 
development and highlights some of the best candidates 
for developing clinical assays.
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