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facilitate the detection of previous and current infections, 
evaluation of immune status, and disease prognosis. 
Serological tests date back to 1906 and the development 
of the Wassermann reaction, a complement fixation test 
to detect anti-cardiolipin antibodies and diagnose syphi-
lis [1]. Currently, serological tests provide complemen-
tary clinical information and allow for earlier and more 
accurate diagnosis of a variety of non-infectious diseases 
including autoimmune disorders, cancer, celiac disease, 
rheumatoid arthritis, and others [2–4].

The conventional serological tests are exclusively based 
on the concept of indirect Enzyme-Linked Immuno-
sorbent Assays (ELISA) or their modifications, such as 
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Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed 
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detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical 
needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging 
immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry 
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Lateral Flow Immunoassays (LFI) or Fluorophore Linked 
Immunosorbent Assays (FLISA). Indirect immunoassays, 
however, may suffer from non-specific binding and cross-
reactivity, which result in higher false positive rates and 
lower diagnostic specificity. Lower diagnostic specificity 
prohibits the use of serological tests to screen popula-
tions with low disease prevalence (early stages of a pan-
demic, rare diseases, asymptomatic general populations, 
etc.) [5]. Furthermore, the complete panel of human 
immunoglobulin isotypes (IgG, IgM, IgA, IgE, and IgD) 
and subclasses (IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2) 
is rarely evaluated; the majority of serological studies 
traditionally evaluate only the antigen-specific total IgG, 
total IgA, IgM, or their combinations [6]. Redesign of 
conventional serological tests to evaluate and minimize 
cross-reactivity, utilize universal reference standards, and 
measure disease-relevant subclasses and isotypes would 
facilitate the development of assays with higher diag-
nostic specificity, reliable implementation, and correct 
interpretation of serological tests for diagnosis of lower-
prevalence diseases, screening of asymptomatic popula-
tions, and earlier detection [7–10].

Innovative and comprehensive immunoassay detec-
tion technologies such as mass spectrometry and pro-
tein microarrays promise to resolve limitations of 
conventional indirect immunoassays and provide mul-
tiplex measurements of immunoglobulin isotypes and 
subclasses, allowing for a more detailed analysis of dis-
ease states and improving disease prognosis [10]. In this 
review, we discuss the current clinical needs for serologi-
cal diagnostics, overview the conventional and emerging 
immunoassay detection technologies, discuss in detail 
proteomics and mass spectrometry as a comprehen-
sive immunoassay detection technology, and explore the 
design of novel immunoaffinity-proteomic assays to eval-
uate cell-mediated immunity and advance sequencing of 
clinically-relevant immunoglobulins.

Main text
Clinical needs addressed with serological diagnostics
Diagnostics of infectious diseases
Serological testing remains an essential tool to aid PCR 
and RT-PCR diagnostics of infectious diseases and pro-
vide complimentary clinical information (Table  1). For 
example, prenatal screening for infectious diseases is 
aimed at preventing the transfer of infections from 
mother to child before birth thus identifying and decreas-
ing the risk of pregnancy complications [11]. Around 40% 
of pregnancies with syphilis infections result in the death 
of the fetus while surviving newborns could develop a 
wide array of physiological abnormalities [11]. Likewise, 
hepatitis B (HBV) infections can lead to serious compli-
cations, and 90% of infected infants develop chronic HBV 
infections [12]. Serological testing, such as the detection 

of anti-HBc IgM, can assist in the prognosis of infections, 
allowing for the appropriate preventative measures [12].

Blood transfusion is another area where serological 
testing for infectious diseases is critical. Blood transfu-
sions have revolutionized hematologic treatments, and 
there have been increases in safety measures over the 
last few decades to eliminate infections transmitted dur-
ing transfusion [13]. Transfusion complications are a 
relatively common phenomenon and remain a serious 
concern. Notably, arboviruses, bacteria, and parasites 
present the most common sources of transfusion-trans-
mitted infections [13]. For example, malaria infections 
through blood transfusion remain a concern in malaria-
endemic and non-endemic countries due to travel and 
lack of screening [13]. Babesiosis, a zoonotic disease 
caused by tick-borne piroplasmids, presents another risk 
to the recipient population [13].

Viral hepatitis and the associated inflammation of the 
liver is one of the leading causes of mortality worldwide 
[14]. Five different hepatitis viruses A to E, each of a dis-
tinct viral family and with numerous genotypes, lead to 
viral hepatitis [14]. Hepatitis A (HAV), B (HBV), and C 
(HCV) viruses include 7, 10, and 7 genotypes, respec-
tively [12, 14, 15]. Hepatitis D virus (HDV) has 8 geno-
types and relies on coinfection with HBV and its lipid 
envelope (HBsAg) for replication [14]. Hepatitis E virus 
(HEV) has 4 genotypes but a single serotype [14, 16]. 
Upon hepatitis infection, specific IgM immunoglobulins 
are produced and manifest an acute infection [14, 16]. 
HBV testing is a prominent example of detailed sero-
logical diagnostics which evaluates the presence of viral 
protein antigens and the corresponding IgG and IgM; dif-
ferent combinations of positive and negative outcomes 
for protein antigens and antibodies provide a detailed 
interpretation of HBV status, such as acute, chronic, past 
infections, etc. [17]. Elimination of inconsistencies with 
diagnostics sensitivity and specificity of serological test-
ing for hepatitis viruses and their distinct genotypes is a 
recognized need [16].

Travel-related infectious diseases represent another 
area where diagnosis and vaccination status rely on 
accurate and timely serological testing. Yellow fever, an 
arbovirus transmitted by mosquitos [18, 19], is currently 
one of the biggest concerns for travelers [18]. Yellow 
fever vaccinations provide long-term protection but are 
not required in non-endemic countries. Typhoid fever 
mediated by the gram-negative Salmonella bacteria also 
remains a large concern [20]. While vaccinations result 
in sustained serum IgG antibodies [20], typhoid fever 
serological tests require further validation to be used in 
clinics [21]. Influenza virus remains a concern due to its 
high mutation rates and adaptability, but its epidemics 
could be prevented through vaccinations and assessment 



Page 3 of 17Walter et al. Clinical Proteomics           (2023) 20:42 

of antibody protection in regions susceptible to the rapid 
evolution and adaptability of influenza [22].

Emerging infections in populations lacking prior 
immunity present global health concerns but also oppor-
tunities for the rapid implementation of innovative 
serological assays. Dengue fever, a re-emerging disease 
caused by the dengue virus, has 4 different serotypes of 
IgM and IgG [23]. Pre-existing antibodies often result 
in dengue hemorrhagic fever in patients with second-
ary dengue infection [24]. West Nile Virus, a mosquito-
transmitted disease, triggers the IgM and IgG response 
[25] and raises concerns due to high morbidity rates [25].

The novel SARS-CoV-2 coronavirus and the COVID-19 
pandemic have recently impacted the entire world. At the 
early stages of the COVID-19 pandemic novel serological 
tests were not thoroughly validated and reported diag-
nostic specificity as low as 95%, preventing the correct 
interpretation of test results [5]. To achieve positive pre-
dictive values > 90%, serological tests with 95% diagnos-
tic specificity could only be informative in populations 

with COVID-19 prevalence > 33%. At the early stages of 
the pandemic (~ 0.1% prevalence estimated by RT-PCR), 
the poorly validated serological assays resulted in highly 
over-estimated and vastly incorrect rates of asymptom-
atic disease and “herd immunity” [26, 27], potentially 
undermining the public trust in the evidence-based med-
icine. The lessons learned demonstrated the importance 
of the rational design and development of serological 
tests and the need for thorough and independent valida-
tion of their diagnostic performance [10]. It should also 
be mentioned that the humoral immune response to 
SARS-CoV-2 has been thoroughly evaluated mostly for 
IgM, IgG, and IgA isotypes [28, 29], while the evaluation 
of the dynamics and cooperation of IgG1-4 and IgA1-2 
subclasses could provide additional knowledge on the 
complexity of humoral and cellular immune responses 
[10].

Table 1 Clinical needs addressed with serological testing
Clinical Need Disease/Pathogen/Agent Isotypes (measured routinely) Major subclasses (not 

measured routinely)
Refer-
ences

Prenatal screening Rubella IgG, IgM IgG1, IgG3 [181]
Varicella IgG, IgM IgG1, IgG3 [182]
HIV IgG, IgM IgG1, IgG3 [183]
Syphilis IgG, IgM IgG1, IgG3 [184]
Chlamydia IgG, IgM IgG1, IgG3 [185]

Blood transfusion Babesiosis IgG, IgM, IgA [186]
Malaria IgG, IgM, IgA [187]

Viral hepatitis Hepatitis A, B, C, D, E IgG, IgM IgG1, IgG3 [14, 16]
Streptococcal Infections Streptococcus pneumoniae IgG, IgM IgG2 [188]
Travel-related Infections Yellow Fever IgG, IgM [19]

Typhoid Fever IgG [20]
Influenza Virus IgG IgG1, IgG3 [22]

Emerging infections COVID-19 IgG, IgM, IgA IgG1, IgG3 [10, 28]
Dengue IgG, IgM [24]
West Nile Virus IgG, IgM [25]

Autoimmune diseases Rheumatoid arthritis IgG, IgM IgG1, IgG4 [2, 189]
Crohn’s disease IgA, IgG IgG1, IgG2 [33, 190]
Ulcerative colitis IgA, IgG IgG1, IgG2 [34, 190]
Autoimmune gastritis IgG, IgM [191]
Celiac disease IgA, IgG IgG1, IgG3 [3]
Multiple sclerosis IgG, IgM IgG1, IgG2 [41]
Systemic lupus erythematosus IgA, IgG, IgM IgG1, IgG4 [44, 45]
IgG4-related diseases IgG IgG4 [192]

Amyloidosis Amyloid fibrils IgA, IgG, IgM IgG1 [193]
Cancer General IgA, IgE, IgG, IgM IgG1 [8, 55]

Cancer/testis antigens IgG [194]
Mutated proteins IgA, IgG, IgM [195, 196]
Gene fusion proteins unknown; CD4+ and CD8+ T 

lymphocytes
[197, 198]

Infertility Spermatozoa proteins IgA, IgG, IgM IgG1, IgG3 [51]
Allergy Numerous allergens IgE, IgG IgG4 [199]
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Autoimmune diseases
Rheumatoid arthritis is the most common inflammatory 
autoimmune disease of the joints with a prevalence of 
0.5-1% [30]. Serological testing for anti-rheumatoid fac-
tor IgM and anti-citrullinated protein IgG antibodies is 
useful to assist with the diagnosis and provide early inter-
ventions, to mitigate symptoms [2]. However, 30–50% 
of individuals with confirmed rheumatoid arthritis test 
negative [2]. Improved serological testing for a variety of 
antigens and distinct IgG subclasses could improve early 
diagnosis of asymptomatic rheumatoid arthritis [7].

The development of specific serological tests will 
greatly benefit the diagnosis and treatment of inflamma-
tory bowel diseases, such as Crohn’s disease and ulcer-
ative colitis, which significantly affect the quality of life, 
increase the risk of death, and are currently incurable [31, 
32]. Multiple antibodies have been tested for diagnosis 
of the specific types of inflammatory bowel diseases, pri-
marily anti-Saccharomyces cerevisiae IgG and IgA anti-
bodies and anti-neutrophil cytoplasmic antibodies [33, 
34]. The serological testing could distinguish between 
Crohn’s disease and ulcerative colitis but suffered from 
low diagnostic sensitivity [33, 34]. Detailed investigation 
of the levels of antibody isotypes and subclasses against a 
variety of antigens could aid in earlier and more specific 
diagnosis of inflammatory bowel diseases [35].

Autoimmune gastritis, an inflammatory autoimmune 
disorder, may lead to chronic atrophic gastritis followed 
by pernicious anemia [36, 37]. Autoimmune gastritis is 
typically asymptomatic until pernicious anemia develops 
and is then diagnosed by endoscopic biopsy [36]. Sero-
logical tests for antibodies targeting parietal cells and 
intrinsic Castle’s factor are informative for initial assess-
ment but their diagnostic specificity and sensitivity are 
not sufficient to replace diagnostic biopsies [36, 37].

Celiac disease is another chronic autoimmune disor-
der characterized by inflammation of the small intes-
tine in response to gluten [38]. It is associated with an 
increased risk of death and decreased quality of life due 
to a variety of complications including gastrointestinal 
distress, malabsorption, and anemia [38]. Diagnosis is 
based on the detection of anti-tissue transglutaminase 
and anti-endomysial IgA antibodies followed by an endo-
scopic duodenal biopsy. In some populations, such as 
symptomatic children, a diagnosis can be made based on 
serology alone [3]. However, nearly 10% of patients with 
confirmed celiac disease on biopsy tested negative for the 
established serological markers [39]. Testing the levels of 
specific antibody subclasses in celiac disease may facili-
tate more accurate diagnosis and potentially reduce the 
need for biopsies.

Multiple sclerosis is a major contributor to neurolog-
ical-derived disability in young adults [40]. Diagnosis of 
multiple sclerosis is based on symptoms, imaging, and 

analysis of cerebrospinal fluid for IgG and IgM [41]. Early 
diagnosis and treatment help improve outcomes of mul-
tiple sclerosis [42].

Systemic lupus erythematosus (SLE), a chronic auto-
immune disorder, could be manifested either through 
only minor symptoms, such as skin rashes, or a variety 
of severe symptoms such as organ failures [43]. SLE diag-
nosis is complex and is based on several criteria or biopsy 
confirmations [44]. The presence of antinuclear IgG or 
IgM autoantibodies targeting DNA, phospholipids, and 
nuclear antigens is included in the diagnostic criteria [44, 
45].

Infertility
Globally, nearly 15% of couples are infertile, and around 
half of those cases are due to male factor infertility [46–
50]. Antisperm antibodies (ASA), primarily of IgA and 
IgG isotypes, were detected in nearly 16% of infertile men 
and were associated with male immune infertility [51]. 
ASA were detected either directly, as bound to sperm cell 
surface, or indirectly, as soluble antibodies [51]. While 
the identity of the ASA antigens was not studied in detail, 
the cell-surface testis-specific proteins could be poten-
tial candidates [52]. It should be noted that about 2% of 
fertile men test positive for ASA, so the presence of ASA 
alone is not sufficient to diagnose immune infertility [51]. 
Analysis of data on ASA prevalence and their impact on 
fertility was complicated by the variability of tests, sam-
ple types, and thresholds used to report a positive result 
[51, 53].

Cancer
Detection of autoantibodies generated against specific 
tumor-associated antigens (TAAs), such as cancer/tes-
tis antigens, may facilitate early cancer diagnosis and 
prognosis [8, 9, 54]. Autoantibodies could potentially be 
detected in serum before cancer becomes clinically sig-
nificant [8, 55]. Serological diagnostics of cancers, how-
ever, have not been well established. Common challenges 
of cancer autoantibody testing include insufficient under-
standing of the identity of cancer-specific antigens, high 
analytical sensitivity of assays to detect extremely low 
levels of antigens secreted by small tumors and transient 
levels of the corresponding autoantibodies, lack of tools 
for the independent evaluation of diagnostic specificity of 
serological tests, and lack of standards [9].

Over the past decades, autoantibodies were identified 
in serum of patients with breast, lung, ovarian, and pros-
tate cancers [8, 55]. For example, CA125 in combination 
with the human epididymis protein 4 antigen-autoanti-
body complexes increased sensitivity from 63 to 81% to 
detect early-stage ovarian cancer [4]. Several autoanti-
body panels including Videssa Breast [56], EarlyCDT-
Lung [57], and MitogenDx [58] are now available as 
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Laboratory Developed Tests and justify the use of auto-
antibodies as cancer biomarkers. MitogenDx cancer test 
to diagnose the paraneoplastic syndrome, often the first 
manifestation of neoplasms [59], measures autoantibod-
ies against several testis- and brain-specific proteins in 
lung, breast, ovarian, and other major cancers [60]. There 
was also a strong association found between paraneo-
plastic syndrome, IgG4-related disease, and cancer [61, 
62]. Previous studies detected IgG, IgA, and IgE autoanti-
bodies [8, 55, 63] but rarely evaluated autoantibody sub-
classes. Few studies revealed IgG1 and IgG3 as the most 
abundant cancer autoantibodies [64, 65]. Interestingly, 
IgG4, a “blocking” antibody subclass often generated 
after long-term exposure to antigens in non-infectious 
settings [66], was found associated with immune evasion, 
immunotherapy inefficiency, and poor survival in cancer 
[67–69]. Innovative high-specificity assays for serological 
testing may revolutionize cancer autoantibody studies, 
validate cancer/testis antigen hypothesis, discover novel 
immunotherapy targets, and enable precision approaches 
to immunotherapy.

Serological diagnostics utilizing conventional 
immunoassay detection techniques
Since measurements of pathogen-specific antibodies cir-
culating in serum rely on highly specific antigen-antibody 
interactions and affinity enrichments, serological assays 
could be generalized as immunoassays. The only excep-
tion of serological testing implemented without the 
requirement for antigen-antibody affinity interactions 
would be a detection of ‘M-proteins’ in monoclonal gam-
mopathy or multiple myeloma [70]. ‘M-proteins’ can be 
directly measured by LC-MS or other techniques due to 
the extremely high levels in patient serum (up to 30 mg/
mL) and monoclonal sequences [71, 72]. In this review, 
we discuss immunoassays with either conventional 
detection techniques, such as enzyme-linked absorbance 
measurements, or the emerging detection technologies, 
such as mass spectrometry. Other differences between 
serological assays include direct or indirect detection 
of antibody constant heavy chains, label-based or label-
free approaches, multiplexing capabilities, affordability, 
analytical sensitivity and specificity, reproducibility, and 
throughput. In this section, we will overview immunoas-
says with conventional detection techniques.

Indirect ELISA
Enzyme-linked immunosorbent assay (ELISA) is a well-
established technique in research and clinical labora-
tories [6]. Indirect ELISA (Fig.  1A) relies on affinity 
enrichment of antigen-specific polyclonal antibodies fol-
lowed by their detection using the secondary anti-human 
antibodies conjugated to an enzyme (horseradish peroxi-
dase, alkaline phosphatase, or beta-galactosidase). In the 

case of horseradish peroxidase, the signal amplification 
is provided through the enzyme-catalyzed conversion of 
3,3′,5,5′-tetramethylbenzidine substrate into its oxidized 
form which has a specific absorbance at 450 nm [73, 74]. 
In a fluorophore-linked immunosorbent assay (FLISA), 
secondary antibodies are conjugated to a fluorescent 
molecule. While indirect ELISA is a highly sensitive 
assay, it suffers from non-specific binding (such as non-
specific adsorption of analytes and reagents to the micro-
plate surface), cross-reactivity (such as cross-reactivity 
of secondary antibodies), and challenges with assay stan-
dardization [6]. Due to the lack of established standards 
of antigen-specific human polyclonal antibodies, indirect 
ELISA measurements typically report relative units, such 
as signal intensities, binding antibody units (BAU)/mL, 
or antibody ‘titers’ (the highest sample dilution factors 
which result in positive signals), but not absolute concen-
trations (µg/mL). Relative measurements are considered 
one of the major limitations which restrict inter-hospital 
and international standardization of serological testing 
[75]. The conventional immunoassays could hardly be 
multiplexed for the complete panel of human antibody 
isotypes and subclasses due to the cross-reactivity of the 
secondary antibodies, lack of the multiple spectrally-
resolved fluorescent labels, and the limited dynamic 
range resulting in the need to measure multiple dilutions 
of the same sample [76, 77].

Lateral Flow Immunoassay
Lateral Flow Immunoassay (LFI; Fig.  1B) is a variant of 
indirect immunoassay intended for rapid, straightfor-
ward, instrument-free, and point-of-care detection of 
pathogen-specific antibodies in a variety of clinical sam-
ples [78]. A paper-based LFI device is composed of sev-
eral compartments, including a sample pad, conjugation 
pad, test line (immobilized anti-human IgG antibody), 
control line (immobilized anti-rabbit IgG antibody), and 
an absorbent pad [78]. LFI limitations include those of 
indirect ELISA (cross-reactivity and challenges with stan-
dardization), as well as semi-quantitative measurements, 
lower sensitivity and reproducibility, and batch-to-batch 
variability [79].

Multiplexed particle-based flow cytometry
Particle-based flow cytometry immunoassays were devel-
oped to enable multiplexed measurements. The most 
common platforms, such as Luminex assays (Fig.  1C), 
comprised highly multiplexed bead-based immunoas-
says in which dozens of different analytes were measured 
in a single sample [80]. Particle-based flow cytometry 
immunoassays are robust, reproducible, require minimal 
expertise, and are widely used in clinical and research 
laboratories.
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Serological diagnostics utilizing the emerging 
immunoassay detection technologies
Recent infectious disease epidemics and pandemics have 
accelerated the development of innovative approaches 
for serological testing (Fig. 2).

Surface plasmon resonance (SPR) biosensors
Surface plasmon resonance (SPR) biosensors present 
an emerging approach for serological diagnostics with 
direct label-free quantification [81]. Its major limitations 
include relatively poor analytical sensitivity, low spatial 
resolution, expensive equipment, and extensive train-
ing of personnel [82, 83]. Rapid detection of protein bio-
markers, human antibodies, and monoclonal antibody 
therapeutics is a promising application of SPR biosensors 
[84, 85].

Biolayer interferometry
Similar to surface plasmon resonance, biolayer inter-
ferometry (BLI) provides fast, label-free, and real-time 
detection of antigen-antibody interactions and pro-
vides information about interaction affinity and kinetics 

[86–88]. Some examples of BLI assays include and label-
free measurements of monoclonal antibody therapeutics 
(LOQs 2–10  µg/mL in serum) and detection of anti-
COVID-19 antibodies [89–92].

Electrochemical biosensors
Electrochemical biosensors are becoming an increasingly 
useful diagnostic tool and can rapidly detect proteins in 
biological fluids [93, 94]. Some recent examples include 
the detection of tau protein and its interactions [95] and 
measurements of COVID-19 mRNA, proteins, and sero-
logical antibodies [96].

Protein microarrays
Protein microarrays facilitate simultaneous analysis 
of thousands of human proteins and their functional 
interactions [97–99]. Ultra-high-density ‘human pro-
teome’ microarrays (HuProt, ProtoArray, NAPPA, etc.) 
enable serological profiling of hundreds of patient sam-
ples across > 20,000 full-length human protein antigens 
[100–102]. Limitations of protein microarrays include 

Fig. 1 Serological immunoassays with conventional detection techniques. (A) Colorimetric indirect ELISA: antigens of interest are immobilized 
on the microplate surface and incubated with diluted blood serum samples. Specific human antibodies (blue) are captured, and non-specific antibodies 
and proteins are removed with microplate washing. Enzyme-conjugated secondary anti-human antibodies (green) oxidize the substrate (yellow), and the 
absorbance of the product is measured by a spectrophotometer. Relative antibody titers are determined by the highest dilution of a positive blood serum 
sample that provided a positive result. (B) Lateral flow immunoassay: Specific antibodies in patient samples bind to an antigen immobilized on colloidal 
gold nanoparticles on a sample pad (S). Capillary flow transfers complexes to the conjugation pad, where the complexes interact with the immobilized 
anti-human secondary antibodies, aggregate, and precipitate at the test line (T). Precipitation of gold nanoparticles results in color change (red stripe). As 
a control for test completion, rabbit antibodies conjugated to gold nanoparticles travel along through the T region, interact with the goat-anti-rabbit an-
tibodies at the control line C, precipitate, and result in color change. (C) Multiplex particle-based flow cytometry: Each antigen is conjugated to a bead 
of a unique “color” which is predetermined by a unique combination of ten infrared dyes at different concentrations. Beads are mixed and incubated with 
serum, and the antigens capture corresponding human antibodies. Secondary anti-human IgG antibodies are conjugated to a fluorescent dye (green) 
used for quantification. Particle-based flow cytometry utilizes two different lasers to detect the bead identity (red laser) and signal intensity (green) of a 
single bead passing through the detection region. To map antibody isotypes and subclasses across multiple antigens, the analysis is repeated with the 
secondary antibodies specific for human IgM, IgA, or IgG1-4
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Fig. 2 Emerging immunoassay detection technologies for serological diagnostics. (A) Surface plasmon resonance assays detect antibodies 
through their binding to antigens immobilized on gold surfaces. Specific binding results in plasmon resonance and changes in the refractive index. (B) 
A biolayer interferometry immunosorbent assay detects the shift in the wavelength of the reflected light upon antigen-specific antibody binding to the 
surface of a fiber optic sensor. (C) Electrochemical biosensors are transistors that detect antibody-antigen binding onto a gate electrode and measure 
changes in voltage across the source and drain electrodes. (D) Protein microarrays consist of numerous antigens that are printed onto the surface, enrich 
specific antibodies, and facilitate their relative quantification using fluorophore-labeled secondary antibodies. (E) Following affinity enrichment and tryp-
sin digestion, MS facilitates highly specific quantification of peptides representing human immunoglobulin isotypes and subclasses
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challenges with standardization, high costs, and lack of 
clinical translation.

Immunoaffinity – mass spectrometry for serological 
diagnostics
Overview of mass spectrometry technologies for proteomics
Mass spectrometry (MS) technologies, with their numer-
ous approaches to measuring the variety of analytes rang-
ing from small molecules to large proteins and intact 
viral particles, are rapidly reshaping clinical laboratories. 
Protein analysis is currently dominated by the bottom-up 
proteomic approaches, in which unique enzyme-derived 
peptides are used as proxies for the identification and 
quantification of the corresponding proteins [103, 104]. 
While trypsin is still the most common enzyme, alterna-
tive proteases (Lys-C, Glu-C, chymotrypsin, etc.) have 
been actively investigated to complement trypsin [105]. 
Common LC-MS proteomic workflows include LC sepa-
ration of peptides, peptide ionization, separation of ions 
by their mass-over-charge (m/z) ratios, and measure-
ments of the intensity of each molecular ion [106]. Ion-
ization of thermally labile biological molecules, such 
as proteins, is typically achieved with soft ionization 
techniques including electrospray ionization (ESI) and 
matrix-assisted laser desorption/ionization (MALDI). A 
variety of mass analyzers are utilized to separate molec-
ular ions in the gas phase based on separation in time 
(time-of-flight mass analyzers, TOF), filtering (quadru-
pole analyzers), trapping (ion trap mass analyzers), as 
well as trapping with comprehensive signal processing 
(Fourier-transform ion cyclotron resonance (FT-ICR) 
and Orbitrap mass analyzers) [107, 108]. To facilitate 
deep analysis of complex biological samples, common 
proteomic approaches often utilize hybrid mass analyzers 
(quadrupole-TOF, ion trap-Orbitrap, etc.) and tandem 
mass spectrometry (MS/MS) approaches: separation of 
the molecular ions by their m/z in the first mass analyzer, 
fragmentation of ions with a variety of mechanisms, sep-
aration of the fragment ions by their m/z in another ana-
lyzer, and measurement of ion intensity of the molecular 
ions and their fragments [109]. The variety of peptide 
fragmentation mechanisms (collision-induced dissocia-
tion, CID; electron-transfer dissociation, ETD; electron 
capture dissociation, ECD; ultraviolet photodissociation, 
UVPD, and others) provide complimentary structural 
information on peptide sequences and post-translational 
modifications [110].

Commonly used analytical modes of MS include 
global proteome-wide approaches for protein identifi-
cation (‘shotgun’ MS) and targeted approaches for pro-
tein quantification (parallel reaction monitoring, PRM; 
multiple reaction monitoring, MRM; and selected reac-
tion monitoring, SRM, with the terms MRM and SRM 
often used interchangeably). Combinations of liquid 

chromatography (LC) separations with targeted MS mea-
surements allow for the multiplexing of several hundred 
analytes and their measurements in dozens of biological 
and clinical samples [111–122]. MS has been an invalu-
able tool to identify the human proteome and reveal its 
complexity, post-translational modifications, and pro-
tein-protein interactions [123]. Targeted proteomics 
empowered with high-quality standards facilitated quan-
titative analysis of multiple proteins across disease and 
healthy states [124–132]. The high analytical specificity 
of MS facilitated measurements of monoclonal antibod-
ies for their structural information, post-translational 
modifications, purity, and therapeutic levels in blood 
plasma [133]. Likewise, LC-MS has previously been used 
to quantify the levels of total IgG subclasses in serum 
[134]. However, the relatively slow progress of MS for 
serological diagnostics could be explained by insufficient 
MS sensitivity, the complexity of polyclonal antibodies 
(numerous isotypes, subclasses, allotypes, and variable 
regions), the lack of standards, and inability to predict 
sequences of hypervariable regions from the germline 
genomic sequences. While mass analyzers, analytical 
modes, sample preparation, and data analysis are contin-
uously improving, conventional sandwich immunoassays 
are still 2–3 orders more sensitive than state-of-the-art 
LC-MS assays [135–137].

Mass spectrometry as a comprehensive detection technology 
for serological immunoassays
MS can be viewed as an emerging immunoassay detec-
tion technology, with the potential for proteome-wide 
identification and quantification of human proteins. 
Combinations of immunoaffinity enrichments with MS 
detection of proteins and peptides are known by a vari-
ety of terms including Mass Spectrometry Immunoassays 
[138], Stable Isotope Standards and Capture by Anti-Pep-
tide Antibodies (SISCAPA) [139], Immuno-Precipitation 
Mass Spectrometry (IP-MS) [140], Immuno-MALDI 
[141], and others. Immunoaffinity-targeted proteomic 
assays (Fig.  3) provide a sensitivity of ~ 100 pg/mL in 
serum, approaching the sensitivity of common sand-
wich immunoassays (~ 10 pg/mL) [142, 143]. It should be 
emphasized that the readout of immunoassays with some 
conventional detection techniques (e.g. absorbance at 
450 nm) is relatively simple and two-dimensional (wave-
length and signal intensity). On the contrary, MS output 
is complex and multi-dimensional (LC retention time, 
precursor m/z, precursor intensity, fragment m/z, frag-
ment intensity) and thus results in very high analytical 
specificity. Thus, the suggested IA-MS assays may well 
resolve the potential false positives and facilitate inde-
pendent evaluation of diagnostic specificity of serological 
tests.
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Recently, immunoaffinity proteomics was demon-
strated as a conceptually novel platform for serological 
diagnostics [10, 144, 145]. Simple assay design and tar-
geted proteomics measurements provided high sensi-
tivity (1 ng/mL), high reproducibility (CV < 10%), and 
relatively high throughput (~ 100 samples/day) [10]. 
IA-SRM assays for testing new antigens can be rapidly 
developed and enable rapid response to epidemics and 
pandemics [10]. Advantages of IA-SRM assays in com-
parison to the conventional indirect immunoassays 
include (i) multiplex quantification of the complete panel 
of human immunoglobulin isotypes (IgG, IgM, IgA, IgE, 

IgD) and subclasses (IgG1-4, IgA1-2) in clinical samples; 
(ii) absolute quantification (ng/mL); (iii) high analytical 
specificity of MS which provided high diagnostic speci-
ficity (fewer false-positives); (iv) standardization using 
short synthetic stable isotope-labeled peptide reference 
standards which can be synthesized in large amounts 
and distributed across numerous clinical laboratories; 
(v) ~ 10-fold higher dynamic range (70–70,000 ng/mL 
for IgG1 in serum) which enabled measurements with-
out multiple dilutions of clinical samples [10]. IA-SRM 
analysis of negative or positive convalescent COVID-19 
plasma confirmed the true positive immune response 

Fig. 3 Serological diagnostics with immunoaffinity-targeted proteomics. (A) Specific antibodies are affinity enriched from the patient serum, de-
natured, and digested with trypsin, and the peptides are analyzed by targeted MS assays. (B) Following electrospray ionization (ESI), targeted MS assays, 
such as Selected Reaction Monitoring, enable the isolation of peptide ions of interest with the first quadrupole (Q1), their fragmentation in Q2, isolation 
of fragments of interest in Q3, and measurement of fragment ion intensities. (C) Peak areas of the “light” endogenous peptides and the corresponding 
spiked-in “heavy” isotope-labeled internal standards are used to calculate peptide ratios and absolute concentrations of the complete panel of the human 
immunoglobulin isotypes and subclasses
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with IgG1/IgG3/IgA1 pairing and provided a 385 ng/mL 
cut-off for anti-RBD IgG1 to detect COVID-19 convales-
cent plasma with nearly 100% sensitivity and specificity 
[10].

In the future, serological testing by IA-SRM may find 
its unique niche in clinical laboratories. There are ongo-
ing initiatives to standardize protein measurements by 
mass spectrometry, such as the three-tier system using a 
fit-for-purpose approach for the discovery of protein bio-
markers [146], and the Clinical and Laboratory Standards 
Institute (CLSI) C64 guideline “Quantitative Measure-
ment of Proteins and Peptides by Mass Spectrometry” 
which provides a framework for the design, develop-
ment, and validation of quantitative clinical protein and 
peptide assays [147]. While the throughput of IA-SRM 
is currently insufficient for large-scale population test-
ing, IA-SRM may emerge as “gold standard” assays for 
independent validation and standardization of serologi-
cal tests using stable, quantifiable, and affordable refer-
ence standards [10]. The relatively low throughput of 
IA-SRM assays could be improved through automation 
of IA and proteomic sample preparation, rapid digestion, 
fast microflow separations using short LC columns and 
sub-2 μm particles, multichannel turbulent flow LC, and 
scheduling for parallel analysis [10]. Rapid LC-indepen-
dent approaches may include MALDI-TOF [148] and 
paper spray ion mobility MS [149] and may revolution-
ize serological diagnostics to the same extent as MALDI-
TOF revolutionized clinical microbiology [150].

Advancing immunoaffinity-proteomics for antibody 
sequencing
The challenge of antibody sequencing
Monoclonal antibodies are a rapidly growing class of 
innovative therapies with a recognized impact in oncol-
ogy, autoimmune disorders, and chronic inflamma-
tion [151]. Sequencing of pathogen-specific antibodies 
enriched directly from patient samples may facilitate the 
rapid development of therapeutic antibodies. However, 
the immense diversity of antibody clones makes de novo 
sequencing a formidable challenge [152].

Variable heavy domains (VH) of human antibodies are 
assembled through the rearrangement of IGHV, IGHD, 
and IGHJ genes (V-D-J recombination) and subsequent 
affinity maturation, while the set of IGHC genes encodes 
the constant heavy (CH) domains and defines immuno-
globulin isotypes and subclasses. Likewise, variable light 
domains (VL) are assembled through the rearrangement 
of IGKV, IGLV, IGKJ, and IGLJ genes (V-J recombina-
tion), while IGKC and IGLC genes define the constant 
light (CL) domains. VH and VL chains provide unique 
paratope conformations for the antigen binding with high 
affinity (Kd 0.01-10 nM), while the CH domains mediate 
protein-protein interactions with numerous Fc receptors 

and complement component 1 (C1) complexes to enable 
diverse immunological functions, such as complement-
dependent cytotoxicity and antibody-dependent cellular 
cytotoxicity.

An antibody clonotype is defined as a group of 
sequences derived from a common progenitor B cell and 
sharing one of the variable (V), diversity (D), joining (J), 
and constant (C) genes [153, 154]. Recent studies on B 
cell receptor repertoire sequencing reported that the clo-
notype sharing between patients was much higher than 
expected by chance [155–158]. Inspection of immuno-
globulin sequence diversity reveals semi-variable frame-
work regions (FR1-4) and hypervariable CDRs, with 
CDR-H3 being the most diverse domain (Fig.  4). The 
framework regions are encoded by the germline V- and 
J-genes, are minimally affected by affinity maturation, 
and include some well-conserved sequences (YYCAR, 
etc.) suitable as sequence tags for the hybrid de novo 
sequencing approaches.

Numerous molecular biology, mass spectrometry, and 
bioinformatic approaches were developed to attempt 
antibody de novo sequencing [159]. MS sequencing of 
circulating antibodies was demonstrated using patient-
specific proteomic databases generated through the sin-
gle B cell receptor mRNA sequencing [159, 160]. Neural 
networks and deep learning approaches were developed 
to resolve complex and ambiguous antibody mass spectra 
and enable MS de novo sequencing without the patient-
specific B cell receptor databases [161, 162].

Antibody sequencing with immunoaffinity-proteomics
IA-MS has the potential to advance de novo sequenc-
ing of high-affinity antibodies enriched from patient 
samples. Epitope-directed enrichments using short lin-
ear epitope antigens, increasing stringency (salts, pH, or 
temperature), and high-efficiency separation approaches 
may facilitate the enrichment of high-affinity, high-abun-
dance, and low-diversity clonotype pools, as we previ-
ously demonstrated for aptamers and small molecules 
[163–169]. Our recent MS sequencing results for SARS-
CoV-2 antibodies (unpublished), as well as other studies 
[157, 170], revealed that some pools of anti-RBD poly-
clonal antibodies included low numbers of clonotypes. 
While some of those high-abundance IGHV/IGKV clo-
notypes matched published B cell RNAseq data [171], 
additional high-abundance clonotypes potentially missed 
by the B cell RNAseq were identified. Intriguingly, even a 
single patient sample with a major and high-abundance 
antibody clonotype could be sufficient to sequence 
the most abundant clone, as demonstrated for a single 
patient with circulating sepsis-specific IgG1 [156]. Mass 
spectrometry sequencing of the mature high-affinity 
and high-abundance antibodies enriched directly from 
the patient’s samples will enable novel approaches to 



Page 11 of 17Walter et al. Clinical Proteomics           (2023) 20:42 

generate or refine therapeutic antibodies, extend the use 
of monoclonal antibody therapies, and advance precision 
immunology [172].

Detecting T cell immunity with immunoaffinity-proteomics
Cell-mediated immunity
In addition to the humoral immunity mediated by B 
cell-derived antibodies, the adaptive immune system 
induces cellular immunity mediated by T cells. Briefly, 
CD8 + killer T cells or CD4 + helper T cells engage the 
specific T-cell receptors (TCRs) on their surface to 
search for human cells that display unique peptide anti-
gens bound to the cell-surface Major Histocompatibil-
ity Complex (MHC) proteins. Recognition of a specific 
peptide-MHC complex by TCR triggers T cell activa-
tion and proliferation to facilitate either the direct cyto-
toxic activity and lysis of the infected cells (mediated by 
CD8 + cytotoxic T lymphocytes), or secretion of cyto-
kines to induce proliferation of antibody-producing B 
cells (CD4 + helper T lymphocytes). The complexity of 
immune response emerges from the diversity of MHC 
proteins (three human MHC class I and three MHC II 
gene products with two alleles), diversity of T-cell recep-
tor repertoires (VDJ recombination), and the numerous 
displayed peptides per each antigen (8–10 aa peptides for 
MHC Class I and 13–25 aa peptides for MHC Class II). 
Only the specific combination of peptide antigen, MHC 
allele and TCR results in pMHC-TCR interaction and T 
cell activation.

T-cell immunity has traditionally been evaluated with 
Enzyme-linked Immunospot (ELISpot) assays [173]. Such 
assays identify the specific peptide antigens that can acti-
vate patient-derived T cells. A sandwich immunoassay to 
detect interferon-γ secreted from activated T cells is used 

as a reporter system. While being very sensitive, ELISpot 
assays are tedious and low-throughput, require viable T 
cells, and reveal poor reproducibility across laboratories 
[174]. More robust and high throughput approaches to 
evaluate cellular immunity are urgently needed.

The prospects of T cell-mediated immunity evaluation with 
immunoaffinity proteomics
Recent proteomic approaches enabled the identification 
and de novo sequencing of MHC class I (8–10 aa) or class 
II (13–25 aa) peptides, epitope mapping, and identifica-
tion of protein-protein interactions orchestrating the 
immune response [175]. Immunoaffinity proteomics may 
enable direct and in vitro evaluation of T cell-mediated 
immunity (Fig. 5). For instance, peptide-MHC complexes 
(pMHC) can be generated using the recombinant MHC 
I or MHC II proteins and matched synthetic MHC I or 
MHC II peptides, while the patient-specific soluble TCR 
pools can be generated with lysis of CD8+ (MHC I) or 
CD4+ (MHC II) T lymphocytes. Synthetic pMHC com-
plexes will enable affinity enrichment of peptide-specific 
TCRs (with the optional chemical cross-linking to retain 
low-affinity interactions). The subsequent trypsin diges-
tion and LC-SRM quantification of the unique peptides 
of α, β1 and β2 TCR constant chains will measure cir-
culating levels of specific CD8 + or CD4 + T lymphocytes 
(Fig. 5).

The major challenges of evaluating T cell-mediated 
immunity with immunoaffinity proteomics will include 
(i) the immense diversity of HLA alleles (numerous poly-
morphic variants of the recombinant MHC monomers 
need to be multiplexed on a microplate); (ii) relatively 
low pMHC-TCR affinities (Kd ~1-100 µM [176]); (iii) 
inability to differentiate between viable and nonviable T 

Fig. 4 Challenges of characterization and sequencing of polyclonal antibodies by MS. Variable heavy (VH) and light (VL) chains of human im-
munoglobulins include semi-variable framework regions (FR1-4) and hypervariable CDRs, with CDR-H3 being the most diverse domain. Sequence logos 
present the experimental diversity of the matched heavy and light variable chains of 199 B-cell clones secreting anti-spike SARS-CoV-2 antibodies, based 
on reanalysis of data for a single convalescent donor [158]. The framework regions are encoded by the germline V- and J-genes, are minimally affected by 
affinity maturation, and include some well-conserved sequences (YYCAR, etc.) suitable as sequence tags for the hybrid de novo sequencing approaches
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cells. Development of proof-of-concept approaches for 
TCR identification, quantification, and sequencing may 
utilize some well-established immunotherapy constructs, 
such as affinity-matured TCRs binding with high affinity 
(Kd~13 pM) to the recombinant pMHC complexes (such 
as melanoma-derived gp100 peptide displayed on HLA-
A∗02:01) [177].

TCR sequencing
TCR sequencing, similar to BCR and antibody sequenc-
ing, presents a formidable challenge. The TCR repertoire 
is highly diverse and is generated through recombina-
tion, addition, and deletion of the various segments of 
the alpha and beta chains [178]. TCRs, however, do not 
undergo somatic hypermutation and affinity matura-
tion. Interestingly, TCR diversity is greatly reduced in 
patients with some infections or myelomas [179]. In the 
future, highly multiplex immunoproteomic approaches 
may enable the identification of the dominant epitope-
specific MHCs, assembly of the synthetic peptide-MHC 

complexes, and their use as baits to enrich specific TCRs 
for their de novo sequencing. TCR sequencing may revo-
lutionize the development of efficient immunotherapies 
including CAR-T and autologous cellular immunothera-
pies [180].

Conclusions
Serological assays were traditionally implemented as 
indirect immunoassays and their design has not changed 
for decades. The straightforward setup, speed of manu-
facturing, and affordability of indirect immunoassays 
were leveraged by their qualitative or semi-quantitative 
measurements, non-specific binding, cross-reactivity, 
lack of reference standards, and challenges with multi-
plexed measurements of isotypes and subclasses. Immu-
noaffinity proteomics provides an innovative platform for 
serological diagnostics to complement conventional indi-
rect immunoassays and resolve their limitations. Clini-
cal needs discussed in this review represent the areas for 
potential immediate improvement of serological testing. 

Fig. 5 The proposed IA-MS workflow for in vitro measurements of pMHC-specific TCRs. (A) Immunopeptidome workflows facilitate the identifica-
tion of MHC-specific peptides through the isolation of antigen-presenting cells, affinity enrichment of peptide-MHC (pMHC) complexes, dissociation of 
class I (9–10 aa) or class II (13–25 aa) MHC peptides, and de novo sequencing of MHC peptides by LC-MS. (B) Recombinant MHC I or MHC II proteins repre-
senting the patient-specific Human Leukocyte Antigen (HLA) variants are conjugated to magnetic particle-bound streptavidin tetramers and incubated 
with the synthetic MHC I or MHC II peptides previously identified with immunopeptidome workflows. Numerous pMHC complexes need to be prepared. 
(C) CD8 + cytotoxic T lymphocytes (MHC I) and CD4 + helper T lymphocytes (MHC II) are isolated from the patient’s blood and lysed to release soluble 
TCRs (α-β1 or α-β2). (D) T lymphocyte lysates are incubated with the individual pMHC complexes, and endogenous pMHC-specific TCRs are enriched 
and covalently cross-linked to pMHCs to retain low-affinity interactions. Following trypsin digestion, unique peptides of α constant (TRAC_HUMAN), β1 
constant (TRBC1_HUMAN), and β2 constant (TRBC2_HUMAN) chains are quantified by LC-SRM. Corresponding heavy isotope labeled peptide internal 
standards (IS) facilitate accurate relative or absolute quantification
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Even small improvements in diagnostic sensitivity and 
specificity of these assays may provide significant diag-
nostic benefits due to the large number of serological 
tests performed in clinical labs. The proposed immuno-
affinity proteomic approaches may evolve into a routine 
serological testing platform and revolutionize serologi-
cal diagnostics to the same extent as MALDI-TOF revo-
lutionized clinical microbiology testing. Finally, novel 
approaches for fast and accurate de novo sequencing 
of human antibodies and TCRs isolated directly from 
patient samples may facilitate rapid and cost-effective 
development of high-affinity therapeutic antibodies 
and cellular immunotherapies, saving millions of lives 
worldwide.
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