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Abstract 

The tyrosine kinase inhibitor sunitinib is an effective first‑line treatment for patients with advanced renal cell carci‑
noma (RCC). Hypothesizing that a functional read‑out by mass spectrometry‑based (phospho, p-)proteomics will 
identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. 
Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold‑
change > 2) was identified; 22 p‑sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 
in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent 
cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA 
was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p‑site‑centric 
signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and throm‑
bin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential 
p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted 
to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.
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Background
The treatment landscape in metastatic renal cell car-
cinoma (mRCC) has changed dramatically in the past 
15 years. Anti-angiogenic tyrosine kinase inhibitors 

(TKIs), such as sunitinib, sorafenib, axitinib, pazopanib 
and cabozantinib, are an effective treatment option 
for patients with mRCC. Since their introduction, the 
median overall survival (OS) has improved from 15–17 
months before 2004 [1–4] to 23–29 months with TKI 
monotherapy [5–7]. Combining TKI’s with immune 
checkpoint inhibitors (ICI) has further improved the 
12-month overall survival rate from 72% [8] to 90% [9, 
10]. With the vast expansion of therapeutic options, 
optimization of treatment selection strategies for indi-
vidual patients becomes more important. Sunitinib is 
an oral multi-targeted TKI targeting mainly the Vascu-
lar Endothelial Growth Factor Receptors (VEGFR 1 and 
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2), Platelet-Derived Growth Factor Receptors (PDGFR-
alpha and PDGFR-beta) and stem cell factor receptor 
(KIT), though many off-target effects are observed [11]. 
Patients receiving first-line treatment with sunitinib 
have a median progression free survival (PFS) of 8.4—
11 months, with an objective response rate of 25—47% 
[7, 12]. However, all patients eventually relapse due 
to acquired resistance, and 13–29% does not benefit 
from treatment at all [12–14]. Moreover, up to 53% of 
patients require dose interruptions and in 12% therapy 
is discontinued because of adverse events [12]. Suni-
tinib remains one of the preferred first-line treatment 
options for patients with favorable-risk clear cell RCC 
(ccRCC) and non-ccRCC [15–17]. To improve treat-
ment benefit from sunitinib, a predictive biomarker 
would be of significant clinical value.

Tissue-based baseline predictive biomarkers for suni-
tinib in RCC are lacking. Although a large number of 
candidate molecular biomarkers have been under inves-
tigation, none have been prospectively validated [18]. 
Thus far, most attempts have applied immunohisto-
chemistry, panel DNA or RNA sequencing and PCR for 
target detection [19]. However, due to multiple resist-
ance mechanisms in RCC, characteristically driven by a 
multitude of aberrantly activated kinase signaling path-
ways [20] instead of a single oncogenic driver mutation, 
genomics-based analysis alone is most likely not suffi-
cient to predict response to sunitinib [21]. A functional 
pathway analysis may be a more promising approach 
[22, 23].

Proteins are the driving force of cellular func-
tion, including intracellular signaling and immune 
responses. Post-translational modifications, such as 
phosphorylation, have a major role in regulation of pro-
tein function and activity. (Phospho)proteomics based 
on liquid chromatography coupled to tandem mass 
spectrometry (LC–MS/MS) offers insight in aberrantly 
activated kinase signaling pathways and potential drug 
targets through the global analysis of phosphorylated 
proteins. This method has high potential for patient 
stratification and prediction of therapy response [24–
28]. In particular, phosphotyrosine-(pTyr)-phosphopro-
teomics provides an opportunity for the identification 
of patient subgroups likely to benefit from TKI’s [29]. 
As only 1% of all protein phosphorylations occur on 
tyrosine residues [30], enrichment of tyrosine phospho-
rylated peptides is necessary prior to LC–MS/MS.

We here aimed to identify baseline tissue-based 
molecular biomarkers for prediction of (lack of ) treat-
ment benefit to sunitinib in patients with advanced 
RCC, using MS-based pTyr-phosphoproteomics and 
global expression proteomics.

Materials and methods
Patient selection
From the hospital pathology database, patients with 
RCC were selected who had undergone tumor nephrec-
tomy or metastasectomy between 2000 and 2013, and 
thereafter received palliative treatment with suni-
tinib in the Amsterdam University Medical Cent-
ers (Amsterdam UMC), location VUmc. Clinical data 
were collected retrospectively from the hospital case 
records. Patients were classified as “sensitive” if they 
had PFS ≥ 12 weeks and radiological stable disease or 
objective response, or “primary resistant” if they exhib-
ited radiological progressive disease at first evaluation 
(PFS < 12 weeks). Since archival tissue was used for the 
purpose of scientific research, and collected within 
the context of routine clinical practice procedures, the 
Dutch Medical Research Involving Human Subjects Act 
does not apply. Patients treated at Amsterdam UMC 
had the possibility to opt-out for the use of their data 
and tissue for research purposes.

Tumor tissue collection and sample processing for LC–MS/
MS
Frozen pre-treatment tumor resection specimens, 
acquired through standard care procedures and stored 
at −  80  °C, were collected from the hospital biobank. 
The tumor samples were cut (Leica CM1850) in 10-µm 
cryosections at –  20  °C, transferred to precooled 1.5-
ml Eppendorf vials and stored at –  80  °C. Lysis was 
performed using approximately 1  ml 9  M urea buffer 
per sample, followed by 1  min vortexing (maximum 
speed), sonication (18-μm amplitude) and centrifuga-
tion (15  min, maximum speed). The cleared lysate was 
aliquotted and stored at −  80  °C until further use. The 
BCA protein assay (ThermoPierce, Rockford, IL) was 
used to determine protein concentration. Cell lysates 
were reduced in 4 mMDTT for 20 min at 60  °C, cooled 
to room temperature, and subsequently alkylated in 
10mMiodoacetamide for 15 min in the dark. After dilu-
tion to 2 M urea using 20 mM HEPES buffer pH 8.0, the 
lysate was digested with 20 μg Sequencing Grade Modi-
fied trypsin/(Promega, Leiden, The Netherlands) per 
mg protein by overnight incubation at 22  °C. Digestion 
was then stopped by adding trifluoroacetic acid (TFA) 
to a final concentration of 1%. Samples were incubated 
for 15 min on ice, centrifuged for 5 min at 1800 × g, and 
transferred to a new tube. Tryptic digests were desalted 
using 1-ml Oasis HLB cartridges (Waters, Milford, MA). 
After pre-wetting with acetonitrile (ACN) and equilibra-
tion of the column with 0.1% TFA, peptides were loaded. 
The column was washed using 0.1% TFA before elution 
into glass vials with 40% ACN/0.1% TFA. Eluates were 
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lyophilized for 48  h and stored at −  80  °C until further 
use.

Control samples
As quality control samples, the colorectal cancer cell 
line HCT116 and a reference sample of tissue-mixture 
(containing pooled lysates of tumor samples of colorec-
tal cancer, melanoma, non-small cell lung cancer and 
hepatocellular carcinoma) were used. HCT116 cells 
were obtained from the American Type Culture Collec-
tion. Cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM), supplemented with 10% fetal bovine 
serum (FBS), 100 U/ml sodium penicillin and 100 µg/ml 
streptomycin, and maintained at 37 °C. Plated cells were 
washed twice with phosphate-buffered saline (PBS) and 
lysed using 9M urea buffer. Cells were scraped and the 
lysate was sonicated and centrifuged for 15 min at maxi-
mum speed. Aliquots of lysate were stored at −  80  °C. 
Further processing was done as described before.

Immunoprecipitation and protein identification
Tumor samples were processed in 3 batches, each con-
taining samples from patients with sensitive and resistant 
tumors. Immunoprecipitation (IP) of tyrosine phospho-
peptides was performed using the PTMScan kit (P-Tyr-
1000) from Cell Signaling Technology (Leiden, The 
Netherlands) as described elsewhere [32, 34]. Briefly, lyo-
philized phosphopeptides were dissolved in IAP buffer 
(20  mM Tris–HCl pH 7.2, 10  mM sodium phosphate 
and 50  mM  NaCl) and incubated with 2  μl P-Tyr-1000 
beads per mg protein at 4  °C for 2  h. After washing in 
cold IAP buffer and Milli-Q water, peptides were eluted 
from the beads in two steps in 0.15% TFA, desalted in 
20 μl Proxeon Stage Tips (Thermo Scientific) using 0.1% 
TFA, eluted with 80% ACN/0.1% TFA into LC autosa-
mpler vials, and stored at 4  °C until LC–MS/MS meas-
urement on the same day. Peptides were separated on a 
pepmap Acclaim column (75  μm ID × 500  mm, 1.9  μm 
C18) connected to a pepmap Acclaim trap column 
(75  μm ID × 10  mm 3  μm C18) and running at 300  nl/
min as described elsewhere [32, 33] on an Ultimate 3000 
nanoLC- (Dionex LC-Packings, Amsterdam, The Neth-
erlands) connected to a Q Exactive mass spectrometer 
(Thermo Fisher, Bremen, Germany) using a 2 h gradient 
(8–32% acetonitrile in 0.1% formic acid). Intact masses 
were measured at resolution 70,000 (at m/z 200) in the 
Orbitrap analyser using an AGC target value of 3E6 
charges. The top 10 peptide signals (charge-states 2 + and 
higher) were submitted to MS/MS in the HCD (higher-
energy collision) cell (1.4 u-amu isolation width, 25% nor-
malized collision energy). MS/MS spectra were acquired 
at resolution 17.500 (at m/z 200) in the Orbitrap using an 
AGC target value of 1E6 charges, MaxIT of 80 ms and an 

underfill ratio of 0.1%. Dynamic exclusion was applied 
with a repeat count of 1 and an exclusion time of 30 s.

LC–MS/MS spectra were searched against the Uniprot 
human reference proteome FASTA file (release August 
2015, 62447 entries, no fragments) using MaxQuant 
1.5.2.8 [35]. Enzyme specificity was set to trypsin and 
up to two missed cleavages were allowed. Cysteine car-
boxamidomethylation (Cys, + 57.021464 Da) was treated 
as fixed modification and serine, threonine and tyrosine 
phosphorylation (+ 79.966330 Da), methionine oxida-
tion (Met, + 15.994915 Da) and N-terminal acetylation 
(N-terminal, + 42.010565 Da) as variable modifications. 
Peptide precursor ions were searched with a maximum 
mass deviation of 4.5 ppm and fragment ions with a 
maximum mass deviation of 20 ppm. Peptide, protein 
and site identifications were filtered at a false discovery 
rate (FDR) of 1% using the decoy database strategy. The 
minimal peptide length was 7 amino acids and the mini-
mum Andromeda score for modified peptides was 40, 
with the corresponding minimum delta score set at 17 
[36]. Proteins that could not be differentiated based on 
MS/MS spectra alone were grouped into protein groups 
(default MaxQuant settings). (Phospho)peptide identifi-
cations were propagated across samples using the match-
between-runs option checked. Searches were performed 
with the label-free quantification option selected. A nor-
malization factor derived from the total count of matched 
protein lysates was applied to scale peptide intensities for 
each pTyr capture.

Protein expression profiling
Protein lysates (50  μg) were separated on precast 
4–12% gradient gels using the NuPAGE SDS‐PAGE 
system (Invitrogen, Carlsbad, CA). Following electro-
phoresis, gels were fixed in 50% ethanol/3% phosphoric 
acid solution and stained with Coomassie R‐250. Gel 
lanes were cut into five bands, and each band was 
cut into ~ 1  mm3 cubes. Gel cubes were washed with 
50  mM ammonium bicarbonate/50% acetonitrile and 
were transferred to a 1.5  ml microcentrifuge tube, 
vortexed in 400 μl 50 mM ammonium bicarbonate for 
10  min, and pelleted. The supernatant was removed, 
and the gel cubes were vortexed in 400  μl 50  mM 
ammonium bicarbonate/50% acetonitrile for 10  min. 
After pelleting and removal of the supernatant, this 
wash step was repeated. Subsequently, gel cubes were 
reduced in 50  mM ammonium bicarbonate supple-
mented with 10 mM DTT at 56 °C for 1 h. The super-
natant was removed, and gel cubes were alkylated in 
50  mM ammonium bicarbonate supplemented with 
50 mM iodoacetamide for 45 min at room temperature 
in the dark. Next, gel cubes were washed with 50 mM 
ammonium bicarbonate/50% acetonitrile dried in a 
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vacuum centrifuge at 50  °C for 10  min and covered 
with trypsin solution (6.25  ng/μl in 50  mM ammo-
nium bicarbonate). Following rehydration with trypsin 
solution and removing excess trypsin, gel cubes were 
covered with 50  mM ammonium bicarbonate and 
incubated overnight at 25  °C. Peptides were extracted 
from the gel cubes with 100 μl of 1% formic acid (once) 
and 100 μl of 5% formic acid/50% acetonitrile (twice). 
For each sample the three extracts were pooled and 
stored at – 20 °C until use. Before LC‐MS, the extracts 
were concentrated in a vacuum centrifuge at 50  °C, 
and volumes were adjusted to 50  μl by adding 0.05% 
formic acid, filtered through a 0.45 μm spin filter, and 
transferred to an LC autosampler vial.

Statistical analysis and biological pathway analysis
Cluster analysis of phosphopeptides and phosphosites 
was performed using hierarchical clustering. Phospho-
peptide intensities were normalized to zero mean and 
unit variance for each phosphopeptide. Normalization 
of phosphopeptide intensities and cluster analyses were 
performed in R version 3.5.1. For comparative analyses, 
only high confidence class 1 phosphosites were consid-
ered. Aiming to distinguish a phosphosite and protein 
signature predictive of treatment outcome of sunitinib, 
differential expression patterns were analyzed using 
the Linear Models for Microarray and RNA-Seq Data 
(limma) package version 3.36.5 for R [37, 38] (filters: 
p < 0.05, fold change (FC) > 2, ≥ 30% data presence, i.e. 
there must be a non-zero value in at least 30% of sam-
ples in the group with highest abundance). Differential 
expression of proteins was analyzed using the filters: 
p < 0.05, FC > 2 and ≥ 50% data presence; here, with a 
more complete data matrix, a stricter filter could be 
applied. No imputation of data was performed. Heat-
map visualization and hierarchical clustering was done 
with the R package ComplexHeatmap version 2.2.0 [39]. 
Differential proteins were imported into Cytoscape ver-
sion 3.5 [40], and gene ontology analysis was performed 
in Cytoscape with the BiNGO app version 3.0.3 [41], 
using ontology and organism annotation definitions 
downloaded on 8 July 2019 via http:// geneo ntolo gy. org.

Kinase activity analysis
Per sample, a ranking of most activated kinases was 
generated using the Integrative Inferred Kinase Activity 
(INKA) data analysis pipeline [24], taking both infor-
mation on phosphorylated kinases and their substrates 
into account. Differentially activated kinases were 
identified and level of significance was determined by 
Mann–Whitney U-test.

Post‑translational modifications signature enrichment 
analysis (PTM‑SEA)
PTM-SEA [42] was performed using the Phospho (STY).
txt Max Quant search result file after filtering out decoy 
and contaminant site entries, to identify site-specific sig-
natures of kinase activities and signaling pathways, over-
represented in each of the 2 groups. Phosphosites were 
ranked using −  10 * sign(logFC) * log10(P-Value) as a 
measure, where the P-value and logFC were calculated in 
a differential analysis by limma version 3.38.3. and used 
as inputs to run the PTM-SEA algorithm in GenePattern 
[43] (https:// cloud. genep attern. org). The PTM signature 
sets were those defined in PTMsigDB v1.9.0 (human, 
flanking sequence format, file ptm.sig.db.all.flanking.
human.v1.9.0.gmt) downloaded from https:// github. 
com/ broad insti tute/ ssGSE A2.0. Results were visualized 
in R. Significantly enriched signatures were reported 
(FDR < 0.25).

Exploration of (phospho)proteomics candidates 
in transcriptome data of an independent cohort
Publicly available transcriptomics data from an inde-
pendent cohort previously described by Beuselinck 
et  al [44] was used. CEL files containing Affymetrix 
array signals from 59 patients with ccRCC, treated with 
sunitinib, were obtained and processed in R (package 
“oligo”). Group comparison analysis was done in R (pack-
age “LIMMA”). All significantly (p < 0.05) differentially 
expressed transcripts were considered. Expression lev-
els of differentially expressed proteins from our prot-
eomics analysis (p < 0.05 & FC > 2 & ≥ 50% data points 
in the highest group) were compared to the expression 
of matching transcripts in the validation cohort at gene 
level, the percentage of overlapping proteins/transcripts 
was reported.

Data and materials availability
The mass spectrometry proteomics data have been 
deposited to the ProteomeXchange Consortium via the 
PRIDE [45] partner repository with the dataset identifier 
PXD043514.

Results
Clinicopathological characteristics
Twenty-six patients with mRCC were identified who 
underwent resection of a primary tumor (n = 23) or met-
astatic lesion (n = 3) and received sunitinib as first-line 
palliative therapy upon progression or relapse (Table  1, 
Additional file  6: Table  S1). The median time between 
surgery and start of sunitinib was six months (range 
1–63). Eighteen patients were sensitive to sunitinib, of 
whom six had an objective response. The median PFS 
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(mPFS) in this group was 8.8  months (range 5–62.3). 
Eight patients had progressive disease as best response 
(mPFS 2.3 months, range 1.5–2.8).

Tyrosine‑phosphoproteomics analysis
Twenty-three out of 26 tumor tissues (16 sensitive and 
seven primary resistant patients) were evaluable for 
tyrosine-phosphoproteomics, with a median protein 
input of 5 mg (range 2–5 mg) per sample. Three samples 
were considered not evaluable; two had a very low phos-
phopeptide yield and one had a low protein yield, hin-
dering lysate-based normalization. In total, 2656 unique 
class 1 phosphosites were identified in tumor and control 
samples. After eliminating all control sample-specific 
sites, 1596 unique class 1 phosphosites remained for fur-
ther comparative analysis between the two groups (86% 
tyrosine, 9% serine and 5% threonine, showing adequate 
enrichment for tyrosine phosphorylated peptides), with 
a median of 415 (range 266–713) phosphosites per sam-
ple. Identified and quantified phosphosites and phos-
phopeptides are presented in Additional file 7: Table S2 
and Additional file  8: Table  S3. The primary analysis, 
aiming to identify markers distinguishing sensitive from 
resistant patients, was performed on phosphosite data. 
Unsupervised cluster analysis of all identified phospho-
sites could not separate sensitive from resistant patients 
(Additional file 1: Fig. S1a). After data filtering (p < 0.05, 
FC > 2) (Fig.  1a), a signature of 78 differential phospho-
sites was identified, comprising 22 upregulated sites in 
resistant patients; 4 of these were uniquely identified in 

resistant patients (BCAR3, NOP58, EIF4A2 and GDI1, 
filtered for ≥ 30% data presence in the group with high-
est abundance). Fifty-six phosphosites of aforementioned 
signature were upregulated in sensitive patients; 35 of 
these were uniquely identified in this subgroup (Table 2). 
This selection of most differential phosphosites split by 
group is shown in Fig.  1b. Top-10 differential phospho-
sites in each group are shown in Fig. 1c. Phosphopeptide 
clustering data are available in Additional file 2: Fig. S2a, 
b.

The 22 phosphosites upregulated in resistant patients, 
4 of which were uniquely identified in this group, were 
linked to various immune processes by gene ontology 
analysis, such as response to interleukin-18, immune 
response and immune effector process. The 56 phos-
phosites upregulated in sensitive patients (of which 35 
uniquely identified) were linked to various cellular regu-
latory and signaling processes, such as enzyme linked 
receptor protein- and transmembrane receptor protein 
tyrosine kinase signaling pathways, peptidyl-tyrosine 
autophosphorylation, positive regulation of cell motil-
ity and VEGFR and Epidermal Growth Factor Receptor 
(EGFR) signaling pathways (Additional file  3: Fig. S3). 
Additional file 9: Table S4 lists the role of proteins corre-
sponding to the candidate phosphosite signature accord-
ing to available literature.

Since tyrosine kinase inhibitors such as sunitinib spe-
cifically target aberrant kinase signaling, a functional 
analysis of activated kinases is essential for a good under-
standing of sensitivity to sunitinib treatment. To this 

Table 1 Patient characteristics

1  Consists of more than one histological type: clear cell + papillary, clear cell + sarcomatoid, clear cell + eosinophilic variant. Time to sunitinib indicates interval 
between resection and initiation of sunitinib treatment; PFS, progression-free survival

Variable All patients (n = 26) Sensitive (n = 18) Primary 
resistant 
(n = 8)

Age (years), median (range) 60 (20–80) 61 (40–79) 58 (20–80)

Sex, n (%)

 Female 11 (42) 8 (44) 3 (38)

 Male 15 (58) 10 (56) 5 (62)

Histology, n (%)

 Clear cell carcinoma 17 (65) 13 (72) 4 (50)

 Papillary carcinoma 3 (12) 1 (6) 2 (25)

 Mixed  type1 6 (23) 4 (22) 2 (25)

Prior systemic therapy, n (%)

 0 17 (65) 10 (55) 7 (88)

 1 8 (31) 7 (39) 1 (12)

 2 1 (4) 1 (6) –

PFS (months), median (range) 8.8 (5–62.3) 2.3 (1.5–2.8)

Time to sunitinib (months), median (range) 6 (1–63) 6 (1–63) 6 (1–24)
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end, we performed INKA [24, 46–48] analysis to fur-
ther explore the differences in tumor biology between 
individual sensitive and resistant patients. Overall, 51 
unique tyrosine kinases were identified in 23 patients. 
For each patient, the top-20 most activated kinases were 
ranked (Additional file 4: Fig. S4). Mitogen-activated Pro-
tein Kinase (MAPK3) (p = 0.028) and EGFR (p = 0.045) 
showed significantly higher activity in sensitive patients 
compared to resistant patients. INSR/IGF1R was exclu-
sively activated in a substantial number of sensitive 
patients (Fig. 1d). To gain further insight in the biologi-
cal differences between the groups, a post-translational 
modifications (PTM) signature enrichment analysis 
(SEA) was performed. As opposed to gene set enrich-
ment analysis (GSEA), PTM-SEA takes into account the 
specific combinations of sites of phosphorylation, mak-
ing it more suitable for analyzing phosphoproteomics 
data. PTM-SEA showed that three phosphosite-centric 
signatures were significantly enriched (p < 0.05) in resist-
ant patients: “FGF1 and prolactine pathways” and “EPHA 
substrates”. Fifteen signatures were enriched in sensitive 
patients, among which “insulin, VEGF and FGF2 treat-
ment” and “KIT receptor pathway” (Fig. 1e).

Proteome analysis
Expression proteomics was successfully performed on 
lysate of 25 (17 sensitive and eight resistant) out of 26 
samples. In total, 6097 unique proteins were identified 
(Additional file 8: Table S3), of which 173 were differen-
tially expressed (p < 0.05 & FC > 2 & ≥ 50% data presence 
in group with highest abundance) (Fig.  2); 109 were 
upregulated in sensitive and 64 in resistant patients. Of 
these, FOSL2 was uniquely found in resistant tumors 

and seven proteins were unique in sensitive tumors 
(AGMAT, DMGDH, BHMT2, ABCC1, UGT2A3, 
MEM263 and RBP5). These 173 robust differential 
proteins are visualized in Fig. 2a, split by group. Gene 
ontology mining revealed that highly abundant proteins 
in resistant tumors were associated with vesicle medi-
ated transport and excretion from cell processes, while 
in sensitive tumors, proteins with highest abundance 
were associated with multiple metabolic processes, 
such as small molecule -, carboxylic acid -, oxoacid—
and glucoronate metabolic processes (Fig. 2c).

Exploration of phospho‑site and protein signature 
candidates in publicly available transcriptome data
To confirm our findings from this small cohort of 
patients, we searched the literature for a compa-
rable independent cohort describing ideally phos-
phoproteome- or proteome-based profiles or an 
upstream RNA analysis in relation to clinical out-
comes of patients treated with sunitinib. We were able 
to compare our findings to the results of a cohort by 
Beuselinck et  al. describing the transcriptome in rela-
tion to sunitinib response [44]. Comparing five primary 
resistant patients to 43 sensitive patients in this inde-
pendent cohort, 815 out of 17,561 transcripts were dif-
ferentially expressed (p < 0.05) between the two groups. 
Thirty-six of the 173 differentially upregulated proteins 
in our analysis were also differentially upregulated at 
the RNA level in the independent cohort (3 in resist-
ant (PLAUR, SLC2A3 and EIF4A1) and 33 in sensitive 
patients).

(See figure on next page.)
Fig. 1 Phosphoproteome analysis of patients with RCC sensitive or resistant to sunitinib. a Overview of the data filtering steps applied 
in phosphosite and phosphopeptide analysis, including the effect of each filter on the total number. b Heatmap of the differentially detected 
phosphosites (n = 78) in sensitive and primary resistant patients, split by group. The heatmap is a concatenation of 3 heatmaps created with R 
package ComplexHeatmap. The first and third heatmaps were created with log10‑transformed intensity values for phosphosites that were uniquely 
identified (“exclusive”) in the sensitive resp resistant patient group and had a data presence of at least 30%. The second heatmap was created 
with log10‑transformed intensity values for significantly differential phosphosites (“non‑exclusive”; p, 0.05, FC ≥ 2). This heatmap was clustered 
by columns but not by rows. Instead, rows were sorted by fold change and split by the sign of the fold change (down‑regulated phosphosites 
in the upper part, up‑regulated phosphosites in the lower part). Column splitting was at the first split of the column clustering dendrogram, 
and dendrogram plotting was set to FALSE. The column ordering in the resulting concatenated heatmap was determined by the middle 
heatmap. No imputation of data is performed. Euclidean distance and Ward’s linkage method were used. Black squares indicate non‑identified 
phosphosites in this subgroup. Histology = histological subtype as determined by pathologist review; PFS = progression free survival in months; 
NE = not evaluable. c Volcano plot of for statistical comparison of differential class 1 phosphosites between the Sensitive and Resistant groups were 
generated in R with the ggplot2 package. The top 10 significant phosphosites for each group are indicated by labeling. Labels are given for the 
phosphosite, not the specific type of phosphopeptide in which it was detected. d Boxplots of differentially activated kinases based on INKA 
analysis. P‑values by Mann–Whitney U‑test. X‑axis: 2 groups (primary resistant versus sensitive patients). Y‑axis: INKA score of the kinase, based 
on kinase‑ and substrate‑centric analyses. e PTM‑SEA identified site‑specific signatures of kinase activities and signaling pathways, overrepresented 
in each of the 2 groups. Phosphosites were ranked using the quantity ‑10 * sign(logFC) * log10(P‑Value), where the P‑value and logFC were 
calculated in a differential analysis by limma and used as inputs to the 20161013 version of ssGSEA2.0.R. The PTM‑sets were defined in ptm.sig.db.all.
flanking.human.v1.9.0.gmt. Significantly enriched signatures are presented in this figure (p < 0.05). X‑axis represents the enrichment score (negative 
score = enriched in sensitive patients, positive score = enriched in resistant patients)
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Fig. 1 (See legend on previous page.)
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Table 2 Candidate phosphosite signature (n = 78) for prediction of sunitinib treatment outcome in RCC 

Phosphosite p‑value FC

Phosphosites upregulated in primary resistant patients

 Uniquely upregulated in resistant tumors BCAR3_Y117 n/a n/a

EIF4A2_Y251 n/a n/a

NOP58_Y272 n/a n/a

GDI1_Y93 n/a n/a

 Differentially upregulated (not unique) ZNF618_T647 0.004 22.2

CD247_Y141 0.008 15.2

MYOF_Y416 0.009 22.0

CD247_Y110 0.013 12.2

APBB1IP_Y380 0.018 2.8

PTTG1IP_Y144 0.018 3.1

ATP5PD_Y126 0.020 7.3

NCS1_Y97 0.022 9.4

DOK3_Y342 0.023 6.3

CLDN1_Y210 0.025 6.0

STAT4_Y693 0.029 4.2

PRMT1_Y263 0.030 3.3

NPHP3_Y467 0.031 10.5

ALOX5_Y95 0.033 5.3

PKP2_Y10 0.034 11.0

SERINC5_Y345 0.038 9.8

ACTN4_Y265 0.045 4.4

SAMHD1_Y315 0.047 3.9

Phosphosites upregulated in sensitive patients

 Uniquely upregulated in sensitive tumors PEAK1_Y635 n/a n/a

EPHA2_Y575 n/a n/a

NCK2_Y110 n/a n/a

TLN1_Y26 n/a n/a

EGFR_Y1138 n/a n/a

CTNND1_Y174 n/a n/a

CDK2_S90 n/a n/a

NSFL1C_Y167 n/a n/a

FLNA_Y346 n/a n/a

MTMR10_Y708 n/a n/a

AKR1A1_Y50 n/a n/a

BCAR1_Y304 n/a n/a

GRASP_Y94 n/a n/a

TUBA1B_Y357 n/a n/a

TNS2_Y581 n/a n/a

ARAP1_Y747 n/a n/a

SHANK2_Y321 n/a n/a

GSTA1_Y132 n/a n/a

PYGL_Y170 n/a n/a

NIPSNAP1_Y148 n/a n/a

SDHA_Y523 n/a n/a

FBP2_Y216 n/a n/a

HINT2_Y146 n/a n/a

KIT_Y932 n/a n/a

LRRK2_Y2023 n/a n/a
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Discussion
To our knowledge, this is the first combined mass 
spectrometry-based tyrosine-phosphoproteomics and 
expression proteomics analysis on tumor tissue from 
patients with advanced RCC in order to identify candi-
date predictive molecular biomarkers for treatment ben-
efit of sunitinib. We report distinctive phosphosite and 
protein signatures and differential kinase and pathway 

activities that are associated with sensitive and resistant 
tumors.

Exploring the differences in biology between sensi-
tive and resistant tumors, we first focused on the char-
acteristics of primary resistant patients. In this group, 22 
phosphosites were differentially upregulated, of which 
4 phosphosites were uniquely identified in this group 
(BCAR3_Y117, EIF4A2_Y251, NOP58_Y272, GDI1_Y93) 

Table 2 (continued)

Phosphosite p‑value FC

CARS1_Y73 n/a n/a

ALB_Y164 n/a n/a

NPEPL_Y229 n/a n/a

CAV1_Y11 n/a n/a

NDUFB9_Y118 n/a n/a

SSBP1_Y119 n/a n/a

PDK1_Y136 n/a n/a

DNAJC13_Y1641 n/a n/a

F2R_Y420 n/a n/a

STAT5A_Y98 n/a n/a

 Differentially upregulated (not unique) HSPB1_S15 0.001 − 6.9

PPA2_Y241 0.004 − 4.8

CAVIN1_Y308 0.005 − 8.6

PTK2_Y879 0.007 − 3.1

MYL6_Y86 0.009 − 15.5

NAXD_Y85 0.012 − 4.5

MAPK1_Y187 0.015 − 3.8

GSK3A_Y279 0.023 − 2.3

TNK2_Y859 0.027 − 16.9

LPP_Y295 0.028 − 3.4

PXN_Y402 0.031 − 30.6

FGR_Y145 0.032 − 13.4

GSK3A_S282 0.036 − 2.2

RPS27_Y31 0.038 − 11.0

MAPRE2_Y167 0.040 − 5.3

MAPK1_Y187 0.041 − 5.6

MAPK1_T185 0.041 − 5.6

PAG1_Y317 0.042 − 5.3

PTPRK_Y871 0.042 − 5.3

PGAM1_Y92 0.042 − 3.6

CD84_Y165 0.044 − 5.4
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(Table 2). BCAR3 and GDI1 have a role in tumor devel-
opment and progression and are correlated with resist-
ance to systemic therapy in other tumor types, including 
breast cancer [28, 49–53]. EIF4A2 mutations are found 
in 0.7% of ccRCC [54], when found in other types of 
cancer, these mutations are associated with unfavorable 
prognosis and resistance to therapy [55, 56]. EIF4A2 is 
a highly homologous paralog of, and functionally indis-
tinguishable from EIF4A1 [57], which was also differen-
tially expressed in our cohort on the protein level and, in 
an independent study [44], on the RNA level. Interest-
ingly, comparing tumor and normal adjacent ccRCC tis-
sue samples, Li et al. report EIF4EBP1, another member 
of the translation initiation complex, as a downstream 
substrate of mTOR, and EIF4EBP1 phosphorylation was 
decreased in  vitro by mTOR inhibition [58]. These four 
in resistant patients uniquely identified phosphosites 
have not previously been implied in RCC prognosis or 
prediction of sunitinib treatment outcome. Other differ-
ential phosphosites, yet non-uniquely upregulated in one 
of the groups, included STAT4_Y693 which is regulated 
upstream by TYK2, and ALOX5_Y95 which has a role in 
inflammatory processes [59, 60].

Looking further into the biology of primary resistant 
tumors by analyzing enriched phosphosite-centric sig-
natures (PTM-SEA), we found that Fibroblast Growth 
Factor (FGF) 1 and PROLACTIN pathways and EPHA2 
substrates were significantly enriched signatures (Fig. 1e). 
FGF is known to play a critical role in driving VEGF-
independent tumor angiogenesis and FGFR signaling is 
an established resistance mechanism of VEGFR inhibi-
tion [61, 62]. Prolactin has been reported to be elevated 
in 45% of ccRCC patients [63], acting in a cytokine-like 
manner and as an important stimulatory regulator of the 
immune system. EPHA2 is overexpressed in renal cell 
carcinoma, associated with more advanced disease and 
angiogenesis [64] and has been implied as a mediator of 
sunitinib resistance in RCC [65].

On protein expression level, gene ontology min-
ing of primary resistant tumors revealed that processes 
related to vesicle mediated transport and excretion were 
enriched (Fig. 2c). One could hypothesize that this pos-
sibly reflects enhanced ability of these tumors for drug 
efflux, contributing to drug resistance [66, 67]. Alterna-
tively, this vesicle mediated transport may reflect activa-
tion of immune processes, for example degranulation of 
mast cells. This would corroborate our phosphoproteom-
ics data, with post-translational modification signatures 
indicative of enhanced immune processes in resistant 
patients (Fig.  1e), which is in line with previously pub-
lished work linking upregulation of cellular immune 
pathways and inflammatory markers to an unfavorable 
response to anti-VEGFR TKI’s in ccRCC [44, 68, 69].

Shifting our view towards the group of sensitive 
patients, we found a different biological profile. At 
the kinase level, INKA analysis showed significantly 
increased inferred kinase activity of MAPK3 and EGFR 
(Fig. 1d). EGFR is known for its activating effect on the 
MAPK signaling cascade [70]. Also the downstream sub-
strates MAP2K1 and MAP2K2 were enriched in sensi-
tive patients (Additional file 5: Fig. S5), pointing towards 
MAPK as a contributing signaling pathway in this group. 
In line with these findings, two MAPK1 sites (T185 and 
Y187) that are known to induce the activity of the MAPK 
pathway [71] were differentially phosphorylated in sensi-
tive patients, as well as a uniquely identified EGFR site 
(Y1138) that is a known regulator of this pathway [72]. 
Several phosphorylated sites on different peptides iden-
tified in sensitive patients are being directly regulated 
by EGFR (PEAK1, EPHA2, TNK2, RPS27 and CAVIN1) 
[72], supporting EGFR activation in sensitive patients. 
Based on these results, we propose that EGFR-driven 
MAPK signaling plays an important role in sensitivity to 
sunitinib in RCC, and may present an alternative target 
for (combination) treatment [73]. This corroborates the 
findings of Li et  al. who found their P3 phosphoprot-
eomic subtype to be associated with the EGFR pathway 
and other kinases including MAPK3, that plays a role 
in VEGF/angiogenesis signaling [58]. PTM signatures 
associated with sunitinib sensitivity showed enrichment 
of VEGF, KIT, Thrombin signaling, vanadate and FGF2 
treatment signatures (Fig. 1e), pointing towards the anti-
angiogenic effects of sunitinib [74, 75].

Acknowledging the limited sample size of the sensi-
tive (n = 16) and resistant (n = 7) tumors, our analyses 
may have been influenced by a number of other factors: 
(i) differences in pre-analytical handling of the frozen, 
archival specimen may have resulted in different cold 
ischemia times, potentially altering the phosphorylation 
profile [76, 77], (ii) the use of mostly primary tumor tis-
sue, whereas treatment benefit is evaluated based on 
response of metastases and (iii) the range of intervals 
(median 6  months) between resection and start of sys-
temic therapy may suggest indolent biology as a cause of 
longer PFS. However, we found no significant correlation 
between the time to start sunitinib and the PFS (Spear-
man’s rho -0.018). Also, the influence of longer storage 
time at − 80 °C of samples on the phosphorylation profile 
is unknown.

Our data are internally consistent based on repro-
ducibly identified phosphosites and –peptides (see 
Fig. 1b and Additional file 2: Fig. S2b) as well as identi-
fied kinase-substrate relations (e.g. for INSR/IGF1R and 
INSULIN treatment; Fig. 1c, d). Lacking an external data-
set, we have not been able to validate our 78-phosphosite 
candidate signature that may predict treatment outcome 
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of sunitinib. For most (uniquely identified) differential 
phosphosites no antibodies were available for (techni-
cal) Western blot validation of the phosphoproteomic 
data. An exploratory comparison of our findings from 
the (phospho)proteomics analysis to transcriptome data 
as a proxy for (phospho)protein expression, using a com-
parable (n = 53) RCC cohort [44] showed limited overlap 
(36 of 173) between the differentially regulated proteins 
and transcripts. In addition to sample size as contribut-
ing factor, it is known that transcriptomic and (phos-
pho)proteomic data provide different levels of biological 
information [23, 78, 79]. However, in resistant patients, 
three proteins/transcripts overlapped: PLAUR, SLC2A3 

and EIF4A1. Interestingly, EIF4A1, a regulator of ERK 
signaling [80], was differentially upregulated on protein 
and transcript level, while its nearly identical homolog 
EIF4A2 was exclusively phosphorylated in resistant 
patients and represented in the candidate signature, 
stressing its potential importance in sunitinib resistance. 
Several identified differential kinases and substrates in 
our analysis show overlap with previous findings [23, 58], 
while some, such as WEE1 and BAP1, did not surface in 
our study. Although these kinases/substrates are impor-
tant in RCC pathogenesis, they may not differ between 
sunitinib sensitive or resistant patients.

Fig. 2 Proteome analysis of patients with RCC sensitive or resistant to sunitinib. Supervised clustering analysis of the proteome. a Supervised cluster 
analysis of differentially expressed proteins (n = 173) in tumor tissue lysates of 25 patients (17 sensitive and 8 resistant to sunitinib) shows one cluster 
of 13 sensitive patients and a mixed cluster of 8 resistant plus 4 sensitive patients. Filters: p < 0.05, |FC|> 2, ≥ 50% data presence in the highest group. 
For clustering, Euclidean distance and Ward’s linkage method were used. Histology = histological subtype as determined by pathologist review; 
PFS = progression free survival in months; NE = not evaluable. b Overview of the data filtering steps applied in protein analysis, including the effect 
of each filter on the total number. c Protein interaction networks. Using STRING and visualization in Cytoscape, major functional protein clusters, 
corresponding to either sensitive or resistant patients, are shown. Nodes correspond to upregulated proteins and edges symbolize physical 
or functional associations. Green clusters represent proteins upregulated in lysate of tumors sensitive to sunitinib and purple clusters represent 
proteins upregulated in lysate of tumors primary resistant to sunitinib. Representative GO terms identified by BiNGO analysis in both sensitive 
and resistant samples are listed together with the number of proteins (nodes) per cluster. All proteins in this figure are filtered for p < 0.05 & FC > 2 
& ≥ 50% data presence in the group with highest abundance
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Conclusions
This MS-based analysis of the RCC (tyrosine-phospho)
proteome revealed disctinctive phosphosite and protein 
signatures and differential kinase and pathway activities 
that are associated with sunitinib sensitivity and resist-
ance. One protein (EIF4A1 and its homolog EIF4A2) was 
confirmed to be differentially expressed on phosphosite, 
protein and RNA level. These findings warrant validation 
in an independent cohort and the clinical utility for treat-
ment selection remains to be demonstrated. A targeted 
assay or immunohistochemistry analysis with a selection 
of differential phosphosites and/or proteins could facili-
tate the implementation of these signatures as a decision-
making tool for treatment selection in clinical practice. 
Such an assay would prevent toxicity and enable alter-
native (combination) treatment in patients upfront pre-
dicted to be resistant to sunitinib.
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Additional file 1: Figure S1. Unsupervised cluster analysis of all detected 
phosphosites. After removal of non‑human entries and phosphosites 
with only zero intensities measured, 1596 phosphosites in 23 samples 
were analyzed. Group based analysis using LIMMA statistics for differential 
phosphorylation. No imputation of data is performed. Euclidean distance 
and Ward’s linkage method were used. Histology = histological subtype 
as determined by pathologist review; PFS progression free survival in 
months, NE not evaluable.

Additional file 2: Figure S2. Phosphopeptide cluster analyses in sensitive 
and primary resistant patients. a Unsupervised cluster analysis of identified 
phosphopeptides. After removal of non‑human entries and phospho‑
peptides with only zero intensities measured, 1900 phosphopeptides 
were analyzed. b Supervised cluster analysis of the differentially detected 
phosphopeptides (n=73) in sensitive and primary resistant patients. Non‑
unique phosphopeptides (n=24) are filtered for p <0.05, |FC| >2 and ≥30% 
data presence in the highest group. Unique phosphopeptides (n=49) are 
filtered for ≥30% data presence. Clustering is determined by non‑unique 
phosphopeptides. No imputation of data is performed. Euclidean distance 
and Ward’s linkage method were used.

Additional file 3: Figure S3. Phosphosite interaction network of sensitive 
and resistant patients. Phosphosite (p‑site) interaction network. Using 
STRING and visualization in Cytoscape, a functional p‑site cluster is shown 
of differentially expressed and unique p‑sites in sensitive and resistant 
patients. Nodes correspond to upregulated p‑sites. Green nodes represent 
p‑sites differentially upregulated in tumors sensitive to sunitinib (n=21) 
and black nodes represent p‑sites uniquely identified in tumors sensitive 
to sunitinib (n=35). Pink nodes represent p‑sites differentially upregulated 
in tumors resistant to sunitinib (n=18) and purple nodes represent p‑sites 
uniquely identified in tumors resistant to sunitinib (n=4). The differential 
p‑sites in this figure are filtered for p < 0.05 & |FC| > 2. The unique p‑sites 
in this figure are filtered for ≥30% data presence in the group with highest 
abundance. The p‑site MAPK1_Y187 is identified twice: once through 
quantification of a mono‑phosphorylated peptide (FC = − 3.81) and once 
through quantification of a diphosphorylated peptide (FC = − 5.57).

Additional file 4: Figure S4. Ranking of most activated kinases per 
sample. Ranking of the top 20 active kinases (Y‑axis) in tumors from 16 
sensitive and 7 resistant patients. Bar graphs depict kinase ranking based 
on combined INKA scores of kinase‑ and substrate‑centric analysis of 
tyrosine phosphoproteomics24. X‑axis represents the INKA score for each 
kinase. Differentially activated kinases between the two groups (Figure 1c) 
are highlighted with dark (EGFR, MAPK3) and light (INSR/IGF1R) green 
coloring.

Additional file 5: Figure S5. Bar plots of activated kinase substrates in 
sensitive versus resistant patients. Activated kinase substrates that were 
enriched in sensitive patients (not significant), among which some of the 
known targets of sunitinib. X‑axis: each bar represents a single patient (red 
= primary resistant, blue = sensitive), y‑axis: INKA score of the kinase.

Additional file 6: Table S1. Clinicopathological data per individual 
patient.

Additional file 7: Table S2. All identified and quantified phosphosites.

Additional file 8: Table S3. All identified and quantified phosphopep‑
tides and proteins.

Additional file 9: Table S4. Role of proteins corresponding to candidate 
phosphosite signature (n = 78) in RCC.
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