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Abstract
Background The use of mass spectrometry to investigate
disease-associated proteins among thousands of candidates
simultaneously creates challenges with the evaluation of
operational and biological variation. Traditional statistical
methods, which evaluate reproducibility of a single
feature, are likely to provide an inadequate assessment of
reproducibility. This paper proposes a systematic approach
for the evaluation of the global reproducibility of multidi-
mensional mass spectral data at the post-identification
stage.
Methods The proposed systematic approach combines
dimensional reduction and permutation to test and summa-
rize the reproducibility. First, principal component analysis
is applied to the mean quantities from identified features of
paired replicated samples. An eigenvalue test is used to

identify the number of significant principal components
which reflect the underlying correlation pattern of the
multiple features. Second, a simulation-based permutation
test is applied to the derived paired principal components.
Third, a modified form of Bland Altman or MA plot is
produced to visualize agreement between the replicates.
Last, a discordance index is used to summarize the
agreement.
Results Application of this method to data from both a
cardiac liquid chromatography tandem mass spectrometry
experiment with iTRAQ labeling and simulation experi-
ments derived from an ovarian cancer SELDI-MS experi-
ment demonstrate that the proposed global reproducibility
test is sensitive to the simulated systematic bias when the
sample size is above 15. The two proposed test statistics
(max t statistics and a sign score statistic) for the
permutation tests are shown to be reliable.
Conclusion The methodology presented in this paper
provides a systematic approach for the global measurement
of reproducibility in clinical proteomic studies.
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Mass spectrometry and liquid chromatography are
standard tools used to profile and quantify thousands
of proteins simultaneously in clinical proteome research.
To obtain reliable results, a high level of reproducibility
in both protein identification and quantification is
needed [1, 2]. Possible sources of variation may be
technical or biological in origin. Technical sources of
variation can alter the quantification of measured proteins
due to small differences from sample preparation, chro-
matography, the condition of the ion source, and the
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overall performance of the mass spectrometer. Biological
sources of variation include differences between individuals
within a population and physiological variation in individuals
from one time to another. It is therefore important when
evaluating clinical proteomic data to include an assessment of
technical and clinical reproducibility.

Standard statistical methods used for evaluating reproduc-
ibility include the Bland Altman coefficient of reproducibility,
the limit of agreement, the correlation coefficient, and linear
regression. However, these assessments are generally limited
to single measurements. In proteomic studies, reproducibility
assessments are usually performed for a randomly selected
sample of peaks or for candidate peaks of interest. The
coefficient of variation, the correlation coefficient, or the limit
of agreement is determined for one peptide or protein at a
time. Few studies have evaluated reproducibility of mass
spectral data at a multivariate level.

Some proteomic studies have borrowed statistical meth-
ods from those developed for genomic studies because of
similarities in the properties of the data. In microarray
reproducibility studies [3–5], correlation coefficients and
autocorrelations have been used to assess the association
between replicates of microarray data. The percentage of
overlapping genes is used to assess the proportion of
common identification between replications [5]. McShane
et al. [6] introduced two global measures of reproducibility
in the high-dimensional space of microarray data. They
employed a robustness index (R index) and a discrepancy
index (D index) to assess the reproducibility of components
of interest formed by cluster analysis in replicates. The R
index estimates the proportion of pair specimens in
replicates that form the same cluster as the original data.
The D index estimates the number of discrepancies between
the original clusters and the best-matched cluster from the
replicates.

Statistical methods applied to assess the reproducibility
of mass spectral data have shown similarity to those used in
microarray studies. In an early study [7], inter-laboratory
reproducibility was assessed by four measures: (1) coeffi-
cient of variation, (2) resolution, (3) signal to noise ratio,
and (4) normalized intensity for three chosen diagnostic
peaks. They also assessed the classification agreement
across laboratories by applying boosted logistic regression
and boosted decision trees. The preprocessing of the data
was standardized by a robotic system. The m/z values of
peaks were controlled to within ±0.2%. The coefficient of
variation (CV) for the intensity of the three peaks used in
the assessment was 15–36%. Four out of the six labs
obtained perfect agreement in the classification of patients
and controls. The study was well designed with standard-
ization and blind controls.

A study by Pelikan and Bigbee [8] introduced methods
to assess the multivariate reproducibility of proteomic

studies. This study simulated the sequential features of
clinical proteomic data frommultiple time intervals (sessions).
The authors assessed the reproducibility of signal, discrimi-
native features, and multivariate classification models be-
tween replicates from different sessions. They suggested a
signal difference score to assess the reproducibility of profile
signals. This signal difference score measures the average
Euclidean distance, dE, between all pairs of spectra, with
smaller values indicating more similarity. Both the real signal
(peak) and the noise were included in the measurement of
similarity between spectra. Another reproducibility score
used was the differential expression score, which assesses the
reproducibility of discriminative features. The score quanti-
fies the difference observed in a single profile feature
between the case and control groups. It is similar to the
Fisher-like score mþ�m�

sþþs�

���
���, where µ and σ represent the mean

and variance of the sample, while + and − represent patients
and controls, respectively.

Chong et al. [9] conducted a reproducibility study of liquid
chromatography tandem mass spectrometry (LC-MS/MS)
iTRAQ data. In this study, the authors used three different
model organisms as well as a double database search
strategy, which aimed to minimize the false positive rate.
They also employed multiple LC-MS/MS analyses to
achieve better reproducibility. The CV was the only
measure used to quantify precision. The iTRAQ quantifi-
cation was highly reproducible with an average CV of 0.09
(range 0.04–0.14).

Of these proteomic reproducibility studies, only Pelikan’s
group introduced a global measure to assess reproducibility in
mass spectral signal data. They tried to minimize the
information loss by using the whole range of spectrum, but
at the cost of increased noise. It is therefore difficult to
distinguish poor reproducibility (real changes in the quantities
of peaks) from noise. This paper proposes a permutation
method to assess the global reproducibility of multiple
features (proteins or peaks) in the dimension-reduced princi-
pal component space simultaneously and a discordance index
based on cluster analysis methodology to summarize the bias
between replicated samples.

Methods

Types of Data and Preprocessing of the Data

The format of feature quantification from different types
of MS experiments can be the actual or relative intensity
such as the area of peaks or other derived quantities.
Most of the peak identification algorithms include
baseline subtraction and normalization for preprocessing
raw MS data. Normalization reduces the variation among
identified proteins.
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Global Reproducibility Testing

A global permutation reproducibility test based on all
identified features (proteins or peaks) is proposed. This
reproducibility assessment tests the hypothesis that there is
no significant difference in the paired quantities of multiple
features. First, the averages of all paired quantities are
projected into p dimensional principal component (PC)
space where p equals the number of features minus 1.
Second, an eigenvalue test is used to verify how many of
these p PC dimensions explain significant amounts of
variance of the quantification data. The resultant m
significant PC dimensions form the PC space for further
analysis. Two global test statistics, the maximum t statistics
and the sign score statistics, are proposed for a global
permutation test in the principal component space. The
empirical distributions of these two test statistics are
simulated for comparison with the observed sample test
statistics. This post hoc assessment can identify systematic
bias between paired quantifications. Each step is described
in more detail below.

Step I Principal component analysis and limit of agree-
ment in the first principal component subspace

To begin, common features (proteins or peaks) from all
individual spectra are identified for principal component
analysis (PCA). A high proportion of common features
identified from each run indicates good reproducibility in
the identification process. Once the quantification format of
data for analysis is determined, PCA is applied to the
average quantities [10] of paired samples from all common
features to create the orthogonal principal unit projection
vectors for p PC dimensions. The resultant PCA unit
projection vectors are used to project the individual runs
separately back onto the PC space.

In principal component analysis, the first principal
component explains the highest percentage of the variance
from the data and has the highest eigenvalue. An
assessment of the agreement in the first principle compo-
nent provides an initial estimate of overall agreement. This
can be visualized by the first principal component (FPC)
plot modified from the Bland Altman plot [10]. The first
principal component plot also has features similar to those
of the MA plot in a microarray study. The SAS macro %
FPC used for creating the FPC plot is available from the
corresponding author on request.

Step II Eigenvalue testing

The proteomic profile of each sample contains proteins
that are correlated and may belong to the same functional
group. Principal component analysis projects these corre-
lated data into independent PC dimensions to identify
groups of proteins. While the collected data are a sample

from the population of interest, the PC space formed by the
principal component vectors may vary from sample to sample.
In principal component analysis, a positive eigenvalue of the
principal component vector reflects how much variance is
explained by this component. The first principal component
vector with the largest eigenvalue explains the largest
percentage of the data variance, while a small positive
eigenvalue could result from random noise. The eigenvalue
test provides evidence of how many of the observed positive
eigenvalues from the sample are not due to chance.

The eigenvalues from principal component analyses
are random variables with their own distribution [11].
In a matrix with n < p, where n is the number of
observations and p is the number of dimensions, the
number of positive eigenvalues is n − 1. Based on random
matrix theory, eigenvalue testing evaluates how many
statistically significant components exist. Onatski [12]
proved that the asymptotic distribution of test statistics
MAXK0< i< Kmax li � liþ1ð Þ= liþ1 � liþ2ð Þ, where li is the
ith largest eigenvalue of the sample covariance matrix,
equals the distribution of MAX0< i< kmax�k0 mi � miþ1

� �
=

miþ1 � miþ2

� �
, where µ1,…ukmax−k0 have the joint (kmax–k0)-

dimensional Tracy–Widom distribution. Using this test
statistic, eigenvalues are assessed from the largest to the
smallest until a non-significant positive eigenvalue is
identified. The m identified significant eigenvectors, l1 to
lm, are used to derive the n × m dimension principal
components for permutation. An alternative subjective
approach to determine the number of significant dimension
is to use scree plots [13].

Step III Permutation to test global reproducibility

The permutation method has been widely used to
simulate the empirical distributions of test statistics for
comparing quantities between two groups [14–16]. In the
context of a proteomic reproducibility study, we propose
the permutation method to test whether there are significant
differences in the paired multiple-feature quantities in m
significant PC dimensions. Permutation provides the em-
pirical distributions of the global test statistics. The
observed global test statistics are compared with these
empirical distributions to derive the permutation p values.

We propose both a parametric and a non-parametric
test statistic. The parametric statistic is the maximum t
statistics (Max 1 < i < m Ti) of the m paired PC differences.
Set Ti ¼ mi � 0ð Þ=stdi, where µi is the mean difference and
stdi is the standard deviation of the difference in the ith
PC. The non-parametric statistic is a two-dimensional sign
score, log(P+/P−), where P+ is the total number of positive

differences in m PCs of n samples, that is, Pþ ¼ Pn

j¼1

Pm

i¼1
gij,

where gij=1 when the difference between the two
replicates is positive and 0 otherwise, and P− is the total
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number of negative differences in m PCs of n samples,

P� ¼ Pn

j¼1

Pm

i¼1
fij, where fij=1 when the difference between

the two replicates is negative and 0 otherwise.
Let Zm,n represent the data matrix of paired differences

of m PCs by n samples. In each Monte Carlo permutation
[14], the sign of each element of the Zm,n matrix is
independently switched with probability 0.5. Equivalently,
for each i and j (1≤ i≤m, 1≤ j≤n), the original and
replication values are independently permuted. One thou-
sand Monte Carlo permutations provide the empirical
distributions of the two proposed global test statistics
[14]. The permutation p value is the proportion of
permutations in which the absolute observed test statistics
is greater than the absolute permutation test statistic.

Summary Statistics for Agreement with Multiple Features

In addition to detecting bias in the reproducibility, a global
index of reproducibility is found by applying cluster
analysis to the data, fixing the number of clusters at the
sample size. Ideally, each sample should cluster with its
replicate. The discordance index measures the proportion of
samples that fail to cluster with their replicates.

Results

Two different types of quantification data (SELDI-MS and
LC-MS/MS with iTRAQ labeling) were used to demon-
strate the proposed method. In the SELDI-MS experiment,
common peaks were identified with the PROcess algorithm
(Li, Xiaochun http://bioconductor.org/packages/2.4/bioc/
html/PROcess.html) where the local maxima of intensities
in each identified peak region were used as the analyzed
quantity. In the LC-MS/MS labeling experiment, peptides
identified by ProteinPilot™ with “used” indicator = 1 were
filtered by confidence score and aligned across different
runs. For the purpose of this reproducibility analysis, the
weighted average of reporter ion peak areas was calculated
for peptides that have more than one observation in a single
protein summary. The resultant peptide areas are summed
for each protein that they belonged to. Within each run,
median normalization was applied to the summed areas
across labels on the natural log scale. After preprocessing, a
relative protein quantity was derived for each sample. This
preprocessing reduces the variance across different proteins
and corrects for labeling effects.

Case Study

Coronary plasma blood samples of eight ischemic patients
before and after an angioplastic procedure were collected

from the Green Lane Cardiovascular Service of Auckland
City Hospital and analyzed by LC-MS/MS with iTRAQ
labeling at the Centre for Genomics and Proteomics,
University of Auckland. Prior to the LC-MS/MS analysis,
a depletion process was used to exclude the twelve most
highly abundant proteins. For the purposes of this replica-
tion study, it is hypothesized that there are no changes in
the proteomic expression before and after the angioplasty
procedure, so the post-procedure samples are treated as
the replications of the baseline sample to demonstrate the
reproducibility assessment. Peptide profiles from four
different runs of ProteinPilot™ were aligned, and the
areas under the peaks were log-transformed and normal-
ized by the median within each run. Two hundred
common peptides from the four different runs were used
to construct the relative intensity of proteins for the
reproducibility assessment. Principal component analysis
was performed on the quantities of the 28 proteins found
in all four runs.

The eigenvalue test and scree plot (results not shown)
indicated that the first two eigenvalues was significant, and
the corresponding eigenvectors explained 95% of the total
variance, with 82% explained by the first principal
component. The FPC plot (Fig. 1a) shows a significant
difference in the relative protein quantities between the
post- and pre-angioplasty samples; the PC of post-
procedure samples tends to be lower than the pre-
angioplasty samples overall. This trend is consistent with
the pattern in the second plot where the difference in
relative quantity between the pre- and post-procedure for all
proteins is plotted. Details of the post-angioplasty expres-
sion change will be reported separately.

Simulation Experiments

A simulation experiment was used to investigate the
sensitivity of the proposed method. Different types of
noise, with different distributions and parameters, were
added to the relative peak quantities of 30 ovarian cancer
patients to simulate different replicates from MS experi-
ment. The mass spectral intensity data are a random sample
from a large ovarian proteomic experiment, downloaded
from the proteomic databank of Center for Cancer Research
(http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.
asp). Sixty-one common peaks were identified from these
30 subsamples using the PROcess bioconductor package;
preprocessing procedures including baseline subtraction by
Loess and normalization were applied. A relative quantity
was derived for each identified peak.

Twelve distributions, with different parameters simu-
lating systematic bias (parameterized by the mean, μ)
and noise (parameterized by the standard deviation, σ),
were generated and added into the relative quantity
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data. The distributions were normal distributions m ¼ðf
0=2=4; s ¼ 2=4Þ; m ¼ 0=2=4; s ¼ 2=4ð Þg, exponential dis-
tributions m ¼ s ¼ 0:5ð Þ; m ¼ s ¼ 1ð Þf g, and bimodal
distributions (mixture of two normal distributions with
different means and standard deviations at different
sections of m/z values). The FPC plots from two
simulations are shown in Fig. 2. In the FPC plot of the
normally distributed differences with (µ=0, σ=4), the
differences in the first principal component scores between
the sample and its simulated replicate are randomly
scattered above or below 0. In the FPC plot of the
exponentially distributed differences with μ = σ=0.5, the
differences in the first principal component scores tend to
be significantly below 0.

The eigenvalues of the sample matrices were tested
before the permutation test proceeded. In the principal
component analysis, quantities were automatically normal-
ized. The permutation tests were applied to differing sizes

of samples (8, 15, and 30 samples) and to different
distributions with different parameters in the simulated
replicates. The comparison results are shown in Table 1.

Results of Global Permutation Reproducibility Testing

Sample Size and Sensitivity of the Test When the sample size
was equal to eight, the permutation tests using maximum t
statistics failed to detect the simulated bias; the permutation
tests using the sign score statistics successfully identified
bias for the normal distribution (µ=2, σ=2) and exponential
distribution (μ = σ=1 and μ = σ=0.5), but failed for the
other simulated distributions (Table 1).

When the sample size was equal to 15, the
permutation tests using maximum t statistics successfully
detected the bias with the normal distribution (µ=2, σ=2),
the exponential distribution with l ¼ 1 m ¼ s ¼ 1ð Þ
and l ¼ 2 m ¼ s ¼ 0:5ð Þ, and the bimodal distribution
m ¼ 1; s ¼ 1 m=z < 1; 000ð Þm ¼ 2; s ¼ 2 m=z > 1; 000ð Þð Þ.
However, it failed to detect the bias with the normal
distribution (µ=2, σ=4), the bimodal distribution
m ¼ 1; s ¼ 2 m=z < 1; 000ð Þm ¼ 2; s ¼ 4 m=z > 1; 000ð Þð Þ,

Fig. 2 a, b FPC plots of two different simulated systematic biases

Fig. 1 a PC plot of first dimension (FPC plot) from cardiac LC-MS/
MS iTRAQ data. b Difference in log(area) between replicates from all
proteins vs. average of all log(area) from cardiac patient’s LC-MS/MS
iTRAQ data. A unique symbol is used for each patient
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and the bimodal distribution m ¼ 2; s ¼ 4 m=z < 1; 000ð Þm ¼ 4;ð
s ¼ 8 m=z > 1; 000ð ÞÞ. The tests using the sign score
statistics successfully detected all of the simulated bias.

When the sample size was equal to 30, both test statistics
successfully identified all the simulated bias. The sensitivity
of the reproducibility is affected by the sample size.

Variance and Sensitivity When the variation of the sample
increased, the sensitivities of both test statistics were
weakened. In the simulations, when the coefficient of
variation of a normally distributed difference was greater
than 1, the permutation test using maximum t statistics was
not sensitive with sample sizes <30.

Discordance Index and Median Percentage Change In the
bias assessment, all 30 samples, including both replicates,
were entered in a cluster analysis, and 30 clusters were formed
by the Ward method [13]. Table 2 summarizes sample details
and grouping of replicates in the same cluster.

A high discordance index can be caused by a high
degree of bias with high variation. The simulation results
show that the discordance index is not sensitive to bias with
small magnitude and large variation. However, the discor-
dance index is an interesting way to summarize the data and
provides extra information about outlying samples.

Discussion

This paper proposes a method of assessing the global
reproducibility of mass spectral data rather than focusing
on the reproducibility of single selected candidate proteins
or peptides. A multivariate reproducibility assessment is
useful to assess overall performance and identify prob-

lematic candidate proteins or peaks. Using principal
component analysis, high dimensional correlated spectral
data are reduced to lower dimensions and projected into
orthogonal space. Random matrix theory provides a basis
for testing the underlying correlation pattern of proteins to
eliminate non-significant principal components from fur-
ther analysis. A permutation reproducibility test can be
used to identify systematic bias and adjust for multiple
testing. If bias is identified, further analysis of the
principal components can identify problematic proteins
or peaks using maximum t test statistics or sign score
statistics. The strategy of combining dimension reduction
with permutation testing utilizes all the information
effectively.

From the simulation experiments, it was found that a
sample size of 30 will have greater statistical power to
detect simulated bias than a sample size of 15 or 8. The size
and variation of samples have significant impacts on the
sensitivity of the assessment.

A large-scale reproducibility study using LC-MS/MS that
assesses the real day-to-day operation and patient variation is
needed. This study would be important before applying the
proteomic technology in daily clinical laboratory practice. The
reproducibility assessment in a clinical proteomic experiment
is complex. It involves early phase assessment for reproduc-
ibility of laboratory technique and the late clinical phase
assessment for reproducibility of patients’ day-to-day physi-
ological conditions. For the examples used in this study, the
reproducibility of quantification post-protein identification
was assessed. However, the proposed method can be applied
to specific sources of variation including intra/inter-run
reproducibility and day-to-day variability.

A limitation of the current study is that the sensitivity of
eigenvalue testing is affected by the sample size. When the
sample size is small, the eigenvalue test combined with the

Table 2 Summary of discordance index and median percent change from simulated bias

Distribution of bias with different parameter Number of samples–
replicates grouped
in the same cluster

Discordance index
(% of samples–replicates
that failed to group in
the same cluster)

Median % change
across all features

Normal (n=30)

µ=0 σ=4 27 0.10 0.4% [−24%, 21%]

µ=2 σ=2 27 0.10 67% [16%,288%]

µ=2 σ=4 23 0.23 78.2% [17.1%, 313.2%]

Exponential (n=30)

l ¼ 1 m ¼ s ¼ 1ð Þ 30 0.0 43% [8.6%, 137%]

l ¼ 2 m ¼ s ¼ 0:5ð Þ 30 0.0 21% [4.3%, 68%]

Bimodal (n=30)

m ¼ 1; s ¼ 2 m=z � 1; 000ð Þm ¼ 2; s ¼ 4 m=z > 1; 000ð Þ 26 0.13 65%[8.8%,191%]

m ¼ 2; s ¼ 4 m=z � 1; 000ð Þm ¼ 4; s ¼ 8 m=z > 1; 000ð Þ 10 0.67 130% [18%, 381%]
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traditional scree plot may be a better way to identify the
main pattern of protein profiles.

In conclusion, this paper suggests extensions of repro-
ducibility methods from the single-dimension assessment to
a higher dimension assessment and demonstrates that this
systematic approach to reproducibility is useful and
workable.
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