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Abstract

Background: Arthritis refers to inflammation of joints and includes common disorders such as rheumatoid arthritis
(RA) and spondyloarthropathies (SpAs). These diseases differ mainly in terms of their clinical manifestations and the
underlying pathogenesis. Glycoproteins in synovial fluid might reflect the disease activity status in the joints
affected by arthritis; yet they have not been systematically studied previously. Although markers have been
described for assisting in the diagnosis of RA, there are currently no known biomarkers for SpA.

Materials and methods: We sought to determine the relative abundance of glycoproteins in RA and SpA by lectin
affinity chromatography coupled to iTRAQ labeling and LC-MS/MS analysis. We also used ELISA to validate the
overexpression of VCAM-1, one of the candidate proteins identified in this study, in synovial fluid from RA patients.

Results and discussion: We identified proteins that were previously reported to be overexpressed in RA including
metalloproteinase inhibitor 1 (TIMP1), myeloperoxidase (MPO) and several S100 proteins. In addition, we discovered
several novel candidates that were overexpressed in SpA including Apolipoproteins C-II and C-III and the SUN
domain-containing protein 3 (SUN3). Novel molecules found overexpressed in RA included extracellular matrix
protein 1 (ECM1) and lumican (LUM). We validated one of the candidate biomarkers, vascular cell adhesion
molecule 1 (VCAM1), in 20 RA and SpA samples using ELISA and confirmed its overexpression in RA (p-value <0.01).
Our quantitative glycoproteomic approach to study arthritic disorders should open up new avenues for additional
proteomics-based discovery studies in rheumatological disorders.
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Background
Bone is a specialized form of connective tissue which
undergoes continuous remodelling throughout an individ-
ual’s life span [1]. This involves osteoclast-based removal
of mineralized bone which is balanced by osteoblast-based
bone mineralization [1]. The entire process of bone re-
modeling is regulated by several factors including immune
mediators [1,2]. In rheumatologic disorders, aberrant
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presence of these regulators may either lead to progressive
and irreversible bone erosion or abnormal bone formation
[1,2]. Rheumatoid arthritis (RA) and spondyloarthropathies
(SpA) are two chronic multi-system and complex auto-
immune inflammatory disorders which are considerably
affected by an abnormal bone remodelling cycle [2,3].
RA is characterized by excessive bone degradation with
relatively low bone formation targeting the small joints
of the body in a symmetrical pattern [2,4]. SpA, on the
other hand, encompasses a number of disease subtypes
including ankylosing spondylitis, reactive arthritis, arthritis
associated with inflammatory bowel disease, psoriatic
arthropathy and undifferentiated spondyloarthropathy
[5]. Essentially, the major pathological changes in SpA are
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characterized by an aberrant bone formation that predom-
inantly affects the spine and large joints asymmetrically
[6,7]. The diseases are associated with high morbidity
due to pain and of restriction of joint movements
resulting in depreciation of quality of life. In addition,
these inflammatory autoimmune disorders are associated
with increased mortality and reduced life span of almost
10–12 years resulting from cardiovascular and renal com-
plications [8-11]. In light of the significant morbidity and
mortality of rheumatological disorders, research into dis-
covering biomarkers for early detection, differential diagno-
sis, prognosis and response to therapy is critical [12].
Despite the availability of multiple markers for the diagnosis
of RA, their performance leaves room for discovering add-
itional biomarkers with better sensitivity and specificity
[13]. There are no molecular markers available for the diag-
nosis of SpA although expression of HLA-B27 has been
shown to be associated with development of SpA [14].
Thus, the diagnosis of both of these disorders is largely
made based on clinical criteria with serological and radio-
logical markers providing supportive evidence [14,15].
Generally, disease marker proteins secreted into the

bloodstream by affected tissues or cells are expected to
be present in relatively low concentration [16-18]. In
contrast, proximal fluid obtained from the affected tissue/
organ serve as the local environment where the disease
manifests and are preferable for discovering disease marker
proteins as they are likely to be more abundant [16-18]. In
the field of rheumatology, the ideal proximal fluid is the
synovial fluid collected by aspiration of affected joints
[12]. The hyaluronic acid rich fluid produced by synovial
membrane is an ultrafiltrate of blood released from the
dense networks of capillaries present in the synovium
[19,20]. This fluid is a lubricant and provides nutrients to
cells and tissues of the joints [21]. In the site of pathogen-
esis, mostly the knee joint, fluid accumulation increases
with the severity of the disease [21].
Identification and validation of protein markers in

synovial fluid using mass spectrometry is challenging
and the major constraint is perhaps the dynamic and
complex nature of this fluid, which increases with inflam-
mation of the synovium [19,22-24]. Previous reports have
indicated an increased permeability of synovial membrane
for selected plasma proteins during disease states, the
majority of which are glycoproteins [25]. Glycoproteins
are vital in many biological processes and have been
considered critical for biomarker discovery to monitor
disease progression and treatment [26]. Disease activity
status of a patient could be monitored through the detec-
tion of specific glycoproteins released from affected tissues
or cells into the proximal fluid [27]. Glycoproteins in
particular, have been found to be overexpressed in
serum and synovial fluid of RA patients compared to
healthy individuals and have been considered critical for
rheumatic diseases [28,29]. Considering the functional
importance and applications in biomarker discovery, we
sought to determine the relative abundance of glycopro-
teins across RA and SpA. Essentially, differential expression
patterns of proteins can be determined with iTRAQ, ICAT,
SILAC or 18O labeling methods, among others [30-33].
To this end, we carried out multilectin affinity-based
glycoprotein enrichment from synovial fluid followed by
studying protein abundance patterns across RA and SpA
by using an iTRAQ-based quantitative proteomics strategy.
To our knowledge, this is the first quantitative glycoprotein
profiling study of synovial fluid samples. A similar approach
of comparative glycoprotein profiling by 18O labeling in
hepatocellular cancer tissues and plasma samples by our
group has already been reported [32].
In this study, we observed several previously reported

marker proteins in addition to a number of novel proteins
which could potentially accelerate biomarker discovery in
rheumatologic diseases. Additionally, using ELISA, we
validated the overexpression of the glycoprotein, VCAM-1,
in RA. The use of comparative glycoproteomics for discov-
ering biomarkers and therapeutic targets represents a novel
approach that could be generally applied to a spectrum of
autoimmune disorders.

Results and discussion
This study was conducted to identify differentially regulated
glycoproteins between the two chronic diseases, RA and
SpA. Because aspiration of synovial fluid samples from
healthy individuals is not permitted for ethical reasons
[34] and because molecular markers are required to
distinguish different types of arthritis from each other
and not from unaffected cases, we chose to compare RA
with SpA. The strategy employed in this study is shown in
Figure 1. Through this approach, we identified a total of
210 proteins out of which 164 proteins were quantified
(35 proteins were identified from single peptide hits with
more than one peptide-spectrum match (PSM) while the
rest were with two or more peptide hits). From the list,
70 showed a ≥1.5-fold difference between the two groups
(combined protein and peptide lists are provided in
Additional file 1: Table S1). Gene Ontology-based molecu-
lar class and subcellular localization of the identified
proteins are shown in Figures 2(A) and (B), respectively,
and details provided in Additional file 2: Table S2.

Enrichment of glycoproteins
A combination of multiple lectins with different glycan
specificities improves the repertoire of proteins containing
both N- and O- linked glycoproteins [32]. Thus, we com-
bined three types of lectins, Concanavalin A, Wheat germ
agglutinin and Jacalin, to enhance the coverage of glyco-
proteins captured from the synovial fluid of RA and SpA
patients. Of the 210 proteins identified, 131 (62%) were
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Figure 1 Outline of the strategy implemented in the study. Synovial fluid samples from RA and SpA patients were subjected to multilectin
affinity enrichment. Three lectins - Concanavlin A (C), Wheat Germ Agglutinin (W) and Jacalin (J) were pooled together and used for glycoprotein
enrichment from synovial fluid samples of RA and SpA. The enriched proteins were trypsin digested followed by iTRAQ labeling (RA with 116 and
SpA with 117). The labeled tryptic peptides were pooled and fractionated by SCX chromatography. The samples were then analyzed on an
LTQ-Orbitrap Velos mass spectrometer coupled to a nano-HPLC unit. Data obtained were searched using SEQUEST and Mascot. Finally, an ELISA
assay was carried out to validate the upregulation of sVCAM-1 in RA as compared to SpA.

A

Others (6 %)
Nucleus (4%)

No localization 
data (11%)

   Plasma
 membrane

(13%)

Cytoplasm
(10%)

Extracellular
(56%)

Others
 (15%)

Transport/
cargo protein 

(12%)

Unclassified 
(11%)

Complement protein
(9%) Other enzyme

(8%)

Protease inhibitor 
(7%)

Secreted polypeptide

Extracellular matrix 
protein (5%)

Cell surface receptor (5%)

Cytoskeletal protein (4%)

Coagulation factor (4%)

Calcium binding protein (3%)
Adhesion molecule (3%)

Structural protein
Serine protease (3%)

Metalloprotease (2%)

B

C

(3%)

(6%)

   N- linked and O-linked
glycoproteins (13%)

  O-linked glycoproteins
(3%)

 Non-glycoproteins 
            (38%)       

    N-linked
glycoproteins
       (84%)

Glycoproteins 
       (62%)       
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already reported to be glycosylated. The distribution is as
illustrated in Figure 2 (C) and Additional file 2: Table S2.

Differentially expressed proteins identified in this study
The number of upregulated proteins in RA as compared to
SpA was 44 while 26 proteins were more highly expressed
in SpA. Partial lists of these upregulated proteins are
provided in Tables 1 and 2, respectively. A brief description
of the biological role of the different classes of proteins
identified in our study is provided below.

Extracellular matrix proteins
Lumican (LUM) is a major proteoglycan component that
binds to collagens in bones and its secretion reflects bone
repair [35]. It has been implicated as an atherosclerotic
marker that induces collagen fibrillogenesis in coronary
atherosclerosis [36]. It was found to be 2-fold upregulated
in RA (see Additional file 3: Figure S1A for a representative
MS/MS spectrum) and has not previously been linked
to this disease. Extracellular matrix protein1 (ECM1),
which was >1.5-fold upregulated in RA may be considered
as a novel matrix marker protein in RA. It is involved in
regulation of endochondral bone formation and activation
of the endothelial cell proliferation, thus inducing angio-
genesis [37]. This family of extracellular matrix proteins is
already reported to be widely studied in atherosclerosis
[36,38]. Further, upregulation of Keratin Type I cytoskel-
etal protein 14 (KRT14) by 2-fold in RA is in keeping with
the already known overexpression of cytokeratins in
synovial membranes of RA patients [39].

S100 protein family
We identified both S100A8 and S100A9 proteins as > 4-fold
upregulated in RA. They are acidic proteins released
by neutrophils and macrophages [40]. In RA, formation of
the S100A8/S100A9 complex, also referred to as calpro-
tectin, has been observed to significantly increase with the
severity of the disease [41,42]. It has been implicated in
the conversion of normal synovium to a pseudotumoral
one called pannus through activation of the Receptor for
Advanced Glycation End products (RAGE) protein local-
ized on synoviocytes, which is a receptor for S100 proteins
[42]. An MS/MS spectrum of one of the representative
peptides of protein S100A8 is shown in Additional file 3:
Figure S1(B).
Table 1 A partial list of proteins upregulated in RA as compa

Gene symbol Protein Fold-change
(RA/SpA)

Mole
class

MPO Myeloperoxidase 3.15 Oxid

LUM Lumican 2.13 Extra

TIMP1 Metalloproteinase inhibitor 1 1.74 Extra

S100A9 Protein S100-A9 4.73 Calci
Inflammatory mediators
Among the complement proteins, the notable component
identified was complement protein C3. This protein was
identified to be 5-fold upregulated in SpA. C3 protein
from synovial fluid of SpAs has been already observed to
be higher than in RA [43]. It is also known to be elevated
in ankylosing spondylitis and decreased in RA compared
to unaffected joints [44,45]. C3 is a central protein involved
in the classical pathway of complement activation [46].
Complement component proteins have been considered
as potential diagnostic markers for SpAs, which is in
keeping with our findings [43]. CD44, commonly known
as hyaluronic acid receptor, is an inflammatory marker that
has been studied in RA was found to be 2-fold upregulated
in RA [47]. It is also referred as osteocyte differentiation
marker and plays a significant role in the inhibition of
osteoclast differentiation [48]. Myeloperoxidase (MPO)
was found to be 3-fold upregulated in RA and has been
implicated in tissue damage caused by the release of oxida-
tive radicals usually from neutrophils in RA patients [49].
Complement C5, the fifth component of the comple-

ment family of proteins, was observed to be upregulated
by 4-fold in SpA (see a representative MS/MS spectrum
in Additional file 3: Figure S1(C). In association with other
complement proteins, C6, C7 and C8, its proteolytic
fragment C5b forms a membrane attack complex to carry
out cell lysis of pathogens [50]. It has not been previously
associated with SpAs.
Vascular adhesion molecules
Vascular cell adhesion molecule 1 (VCAM1), was found
to be 2-fold overexpressed in RA. Its expression, both at
the mRNA level in synovial tissues and at the protein
level in various sites including synovial membrane, synovial
fluid and serum of RA cases, has already been reported
[51-53]. In addition to its role in inflammation, VCAM-1
has also been implicated in angiogenesis [54] and in
atherosclerosis [55]. We also identified the atherosclerotic
marker, vascular endothelial-cadherin designated as cadhe-
rin 5 (CDH5), to be >1.5-fold upregulated in RA, providing
further evidence for the association of atherosclerosis
with RA [56]. In a previous study, TNF α stimulation
was reported to induce the release of secretory form of this
cadherin in RA patients [56].
red to SpA

cular Number of
unique peptides

Whether already
known glycoprotein

oreductase 2 Yes; N-linked

cellular matrix protein 8 Yes; N-linked

cellular matrix protein 1 Yes; N-linked

um ion binding protein 4 No



Table 2 A partial list of proteins upregulated in SpA as compared to RA

Gene symbol Protein Fold-change
(SpA/RA)

Molecular
class

Number of
unique peptides

Whether already
known glycoprotein

APCS Serum amyloid P-component 3.44 Secreted polypeptide 4 Yes; N-linked

C5 Complement C5 4.16 Complement protein 10 Yes; N-linked

LGALS3BP Galectin-3-binding protein 4.16 Extracellular matrix protein 2 Yes; N-linked

SAA1 Serum amyloid A protein 2.77 Transport/cargo protein 2 No
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Collagenases
Matrix metalloproteinase 9 (MMP9), or gelatinase, was >2-
fold upregulated in SpA. This enzyme is a known disease
activity marker for arthritis and its level increases with a
corresponding increase in degradation of extracellular
matrix. It has already been identified in RA and SpA cases
[57,58]. However, to the best of our knowledge, there
are no reports on its relative expression across RA and
SpA. Metalloproteinase inhibitor 1 (TIMP1) was found to
be >1.5-fold upregulated in RA. Increased levels of TIMP-1
have been observed in synovial fluid samples of RA as
compared to psoriatic arthritis and are thus in agreement
with our data [59].

Membrane proteins
SUN domain-containing protein 3 (SUN3), is a nuclear
membrane protein with transmembrane and C terminal
SUN domains [60]. This protein binds to Klarsicht/ANC-
1/Syne homologue domains thereby forming bridges
between outer and inner membranes of a nucleus [60].
It was observed to be 3-fold upregulated in SpA and has
not been previously associated with any form of arthritis.

Apolipoproteins
The proteins from serum amyloid protein family identified
in this study include serum amyloid P component (APCS;
4-fold higher in SpA) and serum amyloid A (SAA1; 3-fold
elevated in SpA). Amyloid deposits in organ systems lead
to amyloidosis [61], which is a life-threatening complica-
tion in rheumatic diseases and has a prevalence of >5% in
rheumatic diseases [61]. These proteins have already been
reported in SpAs [62,63].
Additionally, we identified apolipoprotein C-III, C-II

and D proteins. A 2-fold upregulation of apolipoprotein D
in RA was identified and it was not reported earlier.
Apolipoproteins, C-II and C-III types were each found
to be 3-fold downregulated in RA and were never identified
in SpA. These proteins are critical in cholesterol metabol-
ism and their increased levels in synovial fluid suggest a
higher rate of triglyceride and cholesterol transport which
increases the risk of atherosclerosis [64].

Other secretory proteins
Tetranectin (CLEC3B), a secretory glycoprotein of un-
known function, was found to be 2-fold upregulated in
RA. Its overexpression in serum and synovial fluid of RA
as compared to osteoarthritis and SpA have been reported
earlier [65]. Vitamin D binding protein (GC), a glycopro-
tein, was found to be >1.5-fold upregulated in RA and has
been reported earlier in synovial fluid and serum samples
of RA [66,67]. These proteins are carrier proteins for
25-hydroxyvitamin D3, and are involved in regulation of
bone mineral density [68]. Galectin-3 binding protein,
(LGALS3BP), an N-linked glycoprotein, was found to be
overexpressed 4-fold in SpA (Additional file 3: Figure S1D).
This protein has already been identified in RA [69]
although not described earlier in the context of SpA. It is
considered as a disease activity marker and possibly plays
vital role in the activation of synovial fibroblasts [69].

Validation by ELISA
VCAM-1 has been considered critical for T cell infiltration
[70] and is an endothelial dysfunction marker of RA [71].
Elucidation of its dual role in inflammation and endothelial
dysfunction in rheumatic disorders has been a major focus
for researchers. There are no reports on its differential
expression pattern in the synovial fluid in RA and SpA.
Given its functional implication in RA and considering the
high risk of cardiovascular manifestations, we hypothesized
that there should be a significant difference in the expres-
sion levels of VCAM-1 across RA and SpA patients. Thus,
we carried out sandwich ELISA-based quantification of
VCAM-1 in synovial fluid samples of RA (n = 20) and
SpA (n = 20) patients. We found that soluble VCAM-1
concentration in RA (2–8.3 μg/ml) was significantly higher
than in SpA (1.2-5.7 μg/ml) with a (p-value = 0.002;
Mann–Whitney U test). This finding validates our MS-
based quantitative data that showed a higher level of
VCAM-1 in RA. The MS/MS spectral representation
of one of its peptides identified is provided in Figure 3(A)
and the relative abundance pattern across RA and SpA
from ELISA is shown in Figure 3(B). This data is in agree-
ment with our hypothesis that VCAM-1 may actively
participate in the pathogenesis of RA as compared to SpA.

Conclusions
We implemented a multilectin affinity approach to isolate
and quantify glycoproteins from the synovial fluid of
patients with RA and SpA. In addition to identifying a
number of novel candidates, we found several molecules
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that were in agreement with previous reports. We validated
the overexpression of VCAM-1, a potential inflammatory
marker in RA with respect to SpA. In addition to VCAM-
1, validation of the overexpression of ECM-1 and LUM in
RA and ApoC-II, ApoC-III and complement protein C5
in SpAs could provide newer dimensions to biomarker
discovery for rheumatological diseases. A combination of
markers such as VCAM-1 and cadherin-5 and LUM and
ECM-1 in synovial fluid of RA patients could potentially
reflect progression of RA with a corresponding increase in
atherosclerosis.
When we compared our data with that from pulldown
studies with the lectin jacalin as reported by Saroha
et al. [72], we observed that almost all of their data
overlapped with the list of upregulated proteins in RA
identified by our study. These proteins include protein
families such as complement proteins, plasma protease
C1 inhibitor, immunoglobulins, alpha glycoproteins
and fibrinogen. Future studies could focus on peptide
level enrichment, which could provide glycosylation sites in
addition to potentially reducing any non-specifically bound
proteins.
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Methods
Collection and processing of synovial fluid samples
Approximately 2–4 ml of synovial fluid was aspirated
from knees of 26 patients with RA and 26 patients with
SpA and stored in vacutainers containing heparin (BD, NJ,
USA) at 4°C. Clinical details of the patients used for are
provided in Additional file 4: Table S3. The selection of pa-
tients was based on the American College of Rheumatol-
ogy criteria for RA and on European Spondyloarthropathy
Study Group criteria for SpA. The samples were obtained
after informed consent from patients and after approval
from the ethical committees of the Armed Forces Medical
College, Pune, India and Fortis Hospitals, Bangalore, India.
The samples were centrifuged at 1,500 g at room tem-
perature for 15 minutes and the supernatants were filtered
using 0.22 μm filters (Millipore, Ireland). The filtered
samples were stored at −80°C until further analysis.
MS-based iTRAQ labeling was performed using the
multilectin affinity enriched proteins from 10 pooled
synovial fluid samples from each of the two conditions.

Glycoprotein enrichment
Glycoprotein enrichment was carried out by using a mix-
ture of three agarose bound lectins, Wheat germ agglutinin,
Concanavalin A and Jacalin (Vector laboratories, USA),
as previously described [32]. Agarose-bound lectins
were washed and aliquots from each lectin were com-
bined together to form a suspension. Thereafter, the
pooled lectins were split equally and each fraction was
mixed with synovial fluid containing 5 mg protein
obtained from 10 pooled RA or SpA samples and made
up to 5 ml using Tris buffered saline (0.05 M Tris–HCl,
pH 7.5, 0.15 M NaCl). After overnight incubation at 4°C,
the bound glycoproteins were eluted using competitive elu-
tion, performed by a mixture of sugars (100 mM each of
M-pyranoside, galactose, melibiose and N-acetyl glucosea-
mine in Tris buffered saline, pH 7.5). The selection of
sugars was based on their specificity towards the three
lectins used as per the manufacturer’s instructions. The
eluates were then washed and concentrated using 3 kDa
MWCO filters (Amicon, Millipore, Ireland). The protein
amount was estimated by Lowry’s assay using the Bio-Rad
DC method (catalog number 500–0116) and the proteins
were stored at −20°C until further use.

iTRAQ labeling
For each group, 100 μg of enriched glycoproteins were
used for iTRAQ labeling. The labeling was carried out
essentially as described previously [33]. Denaturation of
proteins was carried out by 2% SDS followed by reduction
and alkylation with reducing agent and cysteine blocking
agents, respectively. Subsequently, the samples were than
digested with the modified sequencing grade Trypsin
(Promega, Madison, WI, USA) at 37°C overnight. The
tryptic peptides from two different sets were labeled
using iTRAQ reagents as per manufacturer’s instructions
(iTRAQ Reagents Multiplex kit; Applied Biosystems/MDS
Sciex, Foster City, CA). We used the 4plex kit for differen-
tial labeling; RA and SpA derived tryptic peptides were
labeled with 116 and 117, respectively. Labeled peptides
were pooled, vacuum-dried and reconstituted in 10 mM
KH2PO4, 20% acetonitrile (pH 2.8) and fractionated by
strong cation exchange (SCX) chromatography.

SCX- based fractionation
SCX chromatography was carried out essentially as
described earlier [73]. Briefly, the tryptic peptides were
fractionated on a PolySULFOETHYL A column (PolyLC,
Columbia, MD, USA) with 200 Å, 5 μm, 200 × 2.1 mm
dimensions, using an Agilent’s 1200 HPLC-system (Agilent
Technologies Inc., Santa Clara, USA). A linear gradient of
increasing solvent B (350 mM KCl in solvent A, pH 2.8)
at a flow rate of 200 μl/min with over a period of 70 min
was used for fractionation. Peptide fractions were collected
using an automatic fraction collector. Complexity of
each fraction was determined based on UV absorbance
at 214 nm, finally leading to a total of 18 fractions. The
fractions were cleaned using custom made C18 stage-tips
(3 M Empore high-performance extraction disks) and
were subsequently subjected to LC-MS/MS analysis.

LC-MS/MS analysis
The samples were analyzed on an LTQ-Orbitrap Velos
mass spectrometer (Thermo Fisher Scientific Inc., Bremen,
Germany) interfaced with Agilent’s 1200 nano-LC system
for reverse phase separation of peptides and sample delivery
(Agilent Technologies Inc. Santa Clara, USA). Peptides
were first enriched on a trap column (75 μm × 2 cm, C18
material 5-10 μm, 100 Å) at a flow rate of 3 μl/min and
resolved on a reverse phase analytical column (75 μm ×
10 cm, C18 material 5 μm, 120 Å) at a flow rate of
300 nl/min. Peptides were eluted using a linear gradient
of 5–30% acetonitrile over 60 min. The electrospray
source was fitted with a 5 μm emitter tip (New Objective,
Woburn, MA) maintained at 2 kV ion spray voltage. MS
data was acquired in a data dependent manner with full
scans acquired using the Orbitrap mass analyzer at a mass
resolution of 60,000 at 400 m/z and MS/MS scans acquired
at a mass resolution of 15,000 at 400 m/z. Twenty most
intense precursor ions from a survey scan of each MS cycle,
were selected for MS/MS. The fragmentation was carried
out using higher-energy collision dissociation (HCD) using
40% normalized collision energy. The fragmented peptides
were dynamically excluded for 30 sec. The automatic gain
control for full FT-MS was set to 1 million ions and for
FT-MS/MS was set to 0.1 million ions with a maximum
accumulation time of 200 ms. The lock mass option (m/z,
445.120025) was enabled for accurate mass measurements.
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Data analysis
Proteome Discoverer Beta Version 1.3 (Thermo Fisher
Scientific Inc., Bremen, Germany) was used for database
searches. A precursor mass range of 350–7000 Da and
a signal to noise of 1.5 were used. A combined Mascot
(Mascot version 2.2, Matrix Science) and SEQUEST
search was done using the Proteome Discoverer suite
against the NCBI Human RefSeq database 45 containing
32, 964 entries with known contaminants. Search parame-
ters included trypsin as the enzyme with maximum 1
missed cleavage allowed; oxidation of methionine was set as
a dynamic modification while alkylation at cysteine and
iTRAQ modification at N-terminus of the peptide and ly-
sine were set as static modifications. Precursor and frag-
ment mass tolerance were set to 20 ppm and 0.1.Da,
respectively. Peptide and protein data were fetched using
high peptide confidence (1% FDR) and rank one peptide
match filters. Reporter ion quantitation node was used for
relative expression pattern of proteins based on the relative
intensities of reporter ions for the corresponding peptides.

Enzyme linked immunosorbant assay (ELISA)
We determined the concentrations of sVCAM-1 in synovial
fluid of RA and SpA cases using a commercially available
ELISA kit (Invitrogen Corporation, Camarillo, CA, USA).
Sandwich ELISA was performed with synovial fluid samples
from 16 RA and 16 SpA cases, along with 4 additional
samples each from the screening phase (thus, n = 20 in
RA and SpA). The protocol implemented was as per the
instructions given in the kit. The demographic details of
the patients have been provided in the Additional file 5:
Table S4. The sensitivity of the kit used was <0.5 ng/ml.
Statistical analysis was done with the GraphPad Prism ver-
sion 5.04 (San Diego California, USA). Statistically signifi-
cant difference among the diseases was calculated by
Mann–Whitney U test of the non-normally distributed
data. A p-value of 0.05 or lesser was considered significant.

Bioinformatics analysis
To gain biological insights into the data derived, we carried
out a bioinformatics analysis of the protein list. Proteins
were classified based on the Gene Ontology (GO)-based
molecular class and cellular component features using
our in-house resource, Human Reference Protein database,
HPRD (http://www.hprd.org/). To determine known glyco-
proteins in our list, we compared our data with HPRD and
the publically available UniProt resource with published
literature evidence (http://www.uniprot.org/).

Data availability
We used the two public data repositories for submit-
ting our mass spec data. Raw files are available online
and can be downloaded from Tranche (http://www.
proteomecommons.org/tranche/) using the following
hash: l + KH4WzubdLKlJnNx2NbDTmCC + Q2SL2SFz
XHr4mAfghsZbOzYYBVa + VTOjfxnUg136ByJYXv1JD
uZd + Kv8dQIGGbOeQAAAAAAAAIwQ== (URL-http://
proteomecommons.org/dataset.jsp?i=77886).
Processed data and the search results including the

detailed protein/peptide data can be downloaded from
our own resource called the Human Proteinpedia (http://
www.humanproteinpedia.org) [74].

Additional files

Additional file 1: Table S1. Details of proteins and peptides identified
in the study.

Additional file 2: Table S2. Details on sub-cellular localization,
functional class and whether or not reported as glycoproteins.

Additional file 3: Figure S1. Tandem mass spectra of representative
peptides identified for Lumican (A), S100-A8 (B), Complement 5 (C) and
Galectin-3 binding protein (D).

Additional file 4: Table S3. Clinical details of patients used in iTRAQ
labeling.

Additional file 5: Table S4. Demographic details of patients used in ELISA.
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