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Abstract

Background: Follicular fluid is a unique biological fluid in which the critical events of oocyte and follicular
maturation and somatic cell-germ cell communication occur. Because of the intimate proximity of follicular fluid to
the maturing oocyte, this fluid provides a unique window into the processes occurring during follicular maturation.
A thorough identification of the specific components within follicular fluid may provide a better understanding of
intrafollicular signaling, as well as reveal potential biomarkers of oocyte health for women undergoing assisted
reproductive treatment. In this study, we used high and low pH HPLC peptide separations followed by mass
spectrometry to perform a comprehensive proteomic analysis of human follicular fluid from healthy ovum donors.
Next, using samples from a second set of patients, an isobaric mass tagging strategy for quantitative analysis was
used to identify proteins with altered abundances after hCG treatment.

Results: A total of 742 follicular fluid proteins were identified in healthy ovum donors, including 413 that have not
been previously reported. The proteins belong to diverse functional groups including insulin growth factor and insulin
growth factor binding protein families, growth factor and related proteins, receptor signaling, defense/immunity,
anti-apoptotic proteins, matrix metalloprotease related proteins, and complement activity. In a quantitative analysis,
follicular fluid samples from age-matched women undergoing in vitro fertilization oocyte retrieval were compared
and 17 follicular fluid proteins were found at significantly altered levels (p < 0.05) between pre-hCG and post-hCG
samples. These proteins belong to a variety of functional processes, including protease inhibition, inflammation, and
cell adhesion.

Conclusions: This database of FF proteins significantly extends the known protein components present during the
peri-ovulatory period and provides a useful basis for future studies comparing follicular fluid proteomes in various
fertility, disease, and environmental exposure conditions. We identified 17 differentially expressed proteins after hCG
treatment and together these data showed the feasibility for defining biomarkers that illuminate how the ovarian
follicle microenvironment is altered in various infertility-related conditions.

Keywords: Follicle development, Follicular fluid, Human, Proteomics
Introduction
The biologic niche where oocyte growth and maturation
occurs within the ovary is termed the ovarian follicle. The
maturing ovarian follicle is separated from other struc-
tures within the ovary by a basement membrane and has
both somatic cell components (mural and cumulus gran-
ulosa cells) as well as the germ cell component (oocyte).
During follicular development there is a coordination of
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development between the somatic cells and the oocyte.
This regulation and coordination involves endocrine, as
well as paracrine and autocrine signaling within the spe-
cialized microenvironment of the human ovarian follicle.
As a follicle is undergoing maturation through the sec-
ondary to antral stages, it develops a fluid filled cavity
termed the antrum. The antrum of the developing follicle
is filled with fluid (termed follicular fluid) which is a select
ultrafiltrate of plasma that has been modified by secretion
and uptake of specific components by the cells within the
follicle itself [1,2]. The ability of proteins to cross this
blood-follicle barrier is based both on molecular weight
as well as charge characteristics [3]. Follicular fluid is the
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Figure 1 Overlap of proteins identified at 5% false discovery
rate in three follicular fluid samples from ovum donors
undergoing ovarian stimulation for assisted reproductive
technology. A total of 742 proteins were identified, of which 305
were found in all three samples. Source accessions for the identified
proteins are listed in Additional file 1: Table S1.
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medium by which signaling mediators are transported in
and out of the follicle, as well as within the follicle be-
tween various cell types. Given that intrafollicular com-
munication is critical for normal oocyte development and
reproduction, much effort has been directed at better un-
derstanding intrafollicular signaling. It is evident that
there is communication from the mural granulosa cells to
the cumulus complex [4-6]; from the cumulus complex
to the oocyte; and from the oocyte back to the somatic
compartment [7-10]. These signaling events can be medi-
ated by soluble small molecules via gap junctions or lipid
signals (e.g., cGMP, ffMAS, sphingosine-1-p) [11-14], but
the majority of the components for paracrine intrafollicu-
lar signaling identified to date involve peptide hormones
[15-19].
Because of the intimate proximity of follicular fluid to

the maturing oocyte, this biologic fluid provides a unique
window into the processes occurring during follicular
maturation. The specific components within follicular
fluid will help us better understand intrafollicular signal-
ing, as well as reveal potential biomarkers of oocyte
health for women undergoing assisted reproductive ART
treatment. In this study we used a mass spectrometry
approach to identify the proteins present in human fol-
licular fluid (FF) to better understand the paracrine
signals at play in the peri-ovulatory time period. Prior
mass spectrometry studies have been performed on FF
samples obtained from IVF patients. Studies have evalu-
ated fluid from presumably healthy women (such those
with male factor infertility) [20,21]; from women who
have had successful IVF compared to those who did not
[22]; in mature versus immature follicles [23]; and in
pathologic states such as infertility [24-26] or in women
suffering from repetitive pregnancy loss [27]. In order to
develop a better understanding of this matrix, we set out
to explore the proteome of healthy young fertile women
to better define the normal repertoire of the intra-
follicular environment during oocyte maturation. In this
study we assayed FF from anonymous oocyte donors
undergoing IVF oocyte retrieval, with the hypothesis that
the proteins identified will allow for a better understand-
ing the follicular fluid milieu in normal healthy reproduct-
ive age women. Human chorionic gonadotropin (hCG) is
routinely used as a single injection to induce the final
stage of follicle and oocyte maturation during IVF treat-
ment. Therefore, we have also performed a comparison of
the follicular fluid proteome from pre-hCG and post-hCG
follicular fluid samples to reveal which proteins are signifi-
cantly changed during follicular maturation.

Results and discussion
Proteomic analysis of biological fluids is complicated by
the large dynamic range of protein concentrations, span-
ning ten orders of magnitude, greatly exceeding that of
any methods used for proteomic analysis [28]. Follicular
fluid is a plasma filtrate with the concomitant large dy-
namic range of protein concentrations that make detec-
tion of lower abundance proteins, where new clinically
useful marker proteins might be found, challenging. To
maximize the depth of coverage, individual follicular fluid
samples from 3 ovum donors were immunodepleted of
the 14 most abundant plasma proteins and extensively
fractionated using alkaline pH reverse phase chromatog-
raphy of peptides prior to LC-MS/MS analysis. A total of
742 distinct follicular fluid proteins were detected, with
305 of these found in all three samples (Figure 1). A list
of the follicular fluid proteins detected in each sample,
with score, Swiss-Prot accession numbers, and gene
names is presented in Additional file 1: Table S1.
Several groups have previously analyzed post-hCG FF by

using mass spectrometry-based methods [9,21-26,29,30].
Twigt et al. identified 246 proteins from FF by using SDS-
PAGE and isoelectric focusing (IEF) fractionation prior to
LC-MS/MS [31]. A comparison of the combined list of
proteins obtained using both fractionation methods, shows
that the majority of proteins, 189/246 were also detected in
this study (Additional file 1: Table S1). Using immunode-
pletion, SDS-PAGE, IEF, and strong cation exchange separ-
ation strategies, Ambekar et al. recently reported 480 FF
proteins [21]. The FF proteome described here includes
297 of those proteins (Additional file 1: Table S1). We have
extended the follicular fluid proteome with an additional
413 high confidence distinct proteins. We detected FF pro-
teins not previously reported using MS methods, e.g., cell
migration-related MEMO1, S100-A7, and secretogranin-1
and −2.
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Plasma proteins contribute to the composition of all
body fluids, e.g., peritoneal fluid, urine, synovial fluid, sal-
iva, and cerebrospinal fluid. (reviewed in [32,33]) The
constituents and concentrations of plasma-derived pro-
teins in body fluids are dependent on the molecular
weight, charge, solubility, microvascular permeability and
the molecular structure of the compartment. A compari-
son of the FF proteome to the list of 1929 high confidence
human plasma proteins combined from 91 experiments
[34] showed 585 proteins in common (Additional file 1:
Table S1), a not unexpected finding given the plasma-
filtrate origin of the follicular fluid. The coagulation
factors are potentially correlated to the inflammatory-
related peptides present in FF and have relevant roles
within the follicle [35,36]. Thrombin, which found in
lower levels in FF as compared to serum [37], was re-
cently shown to be an intra-ovarian signal for optimal
follicular luteinization in mice [38]. Antithrombin was
found in decreased levels in FF from IVF patients with
successful outcomes [22]. To investigate the differences
in the FF proteome, which is compartmentalized by a
basement membrane to that of an extracellular fluid
where there is no barrier, we compared the proteins to
a recently published synovial fluid (SF) proteome [39].
Of the 575 SF proteins reported, 321 (56%) were
also detected in FF and the overwhelming majority of
these (308) were detected in plasma (Additional file 1:
Table S1).
The FF proteome was analyzed to determine gene ontol-

ogy annotations for biological processes, molecular func-
tions, and cellular compartment. The majority of the
follicular fluid proteins detected are involved in metabolic
processes (19%), cellular processes (14%), cellular commu-
nication (11%), and immune responses (11%) (Figure 2A).
A significant number are involved in response to stimulus
and developmental processes. The top molecular function
categories (Figure 2B) were catalytic activity (31%), bind-
ing (29%), and receptor activity (15%). Classification based
on the subcellular localization (Figure 2C) indicated that
56% of proteins were extracellular.
Multiple proteins associated with the inflammatory

response were detected: the complement proteins,
interleukin-related peptides, proteins regulating chemoat-
traction (attractin, macrophage migration inhibitory fac-
tor, collectin-11), and serine proteases (serine protease-1,
2, and 23). Activation of the inflammatory cascade is
required for normal ovulation events, and inhibitors of
inflammation such as COX-2 inhibitors have been shown
to disrupt ovulation [40,41]. Therefore it is not surprising
that several of the proteins in follicular fluid during the
peri-ovulatory time are related to inflammation [42]. The
super family of serine protease inhibitors (serpins) are
involved in coagulation, fibrinolysis, and inflammation
[43]. Prior studies, primarily using ELISA methods, have
described numerous cytokines and chemokines present in
human follicular fluid form patients undergoing IVF, al-
though their relationship to IVF success is debatable
[44,45]. In a recent publication, Bianchi et al. [46], using
2-DE and LC-MS for proteomic analysis of follicular fluid
from women undergoing IVF, reported inflammation be-
ing the predominant class of proteins identified.
A complex program of signaling events is required for

follicular maturation [47,48]. Multiple FF proteins with
roles in signaling were identified, including insulin
growth factor (IGF) and IGF binding proteins, growth
factor or growth factor related proteins, anti-apoptotic
proteins, and matrix metalloprotease related proteins
(Table 1). The intra-ovarian IGF system has been exten-
sively studied in terms of its effects on folliculogenesis
and steroidogeneisis (reviewed in [49]). Matrix metallo-
proteases (MMPs) play a role in the processing of hor-
mones to their active forms, as well as in a variety of
other processes including extracellular matrix remodel-
ing and inflammation. MMP-9 has been suggested to be
a correlated with IVF success [50]. TIMP1 has been de-
tected in human luteinized granulosa cells, as well as in
the ovarian cells from other species [51-53]. Apoptosis
of cumulus cells in the oocytes has recently been associ-
ated with competence [54].
In addition to plasma-derived proteins, another source

of proteins within the follicular fluid is the somatic cells
within the follicle, which make up the bulk of the protein
constituent of the follicle. Many of the proteins detected
were intracellular and may represent events such as cu-
mulus separation from the wall in the mature peri-
ovulatory follicle and proteolysis of the follicle wall in
preparation for ovulation could release intracellular
components. We note that multiple intracellular protein
fragments are routinely identified from human plasma
[34,42,55,56] and FF [21,31]. The cumulus matrix
undergoes expansion concomitant with considerable
extracellular matrix remodeling at the peri-ovulatory
time period. This is congruous with the presence of
several extracellular matrix components, e.g. (laminin
subunits, ECM1, Fibrillin-1, CGAT1) present at signifi-
cant levels in the follicular fluid. Furthermore, many of
these proteins are known to be abundantly secreted by
granulosa cells in the periovulatory time as the cumulus
cells begin to expand and separate in a hyaluronan matrix
in preparation for ovulation and fertilization. The proper
expansion of this matrix is critical for normal sperm
penetration and fertilization events to occur [57].
The maturing oocyte, although the largest cell in the

human body, contributes negligibly to the bulk of the se-
creted protein in the follicle fluid. For example, two key
oocyte secreted factors (OSF), growth differentiation
factor 9 (GDF-9) and bone morphogenic protein 15
(BMP-15) [8] were not detected. This inability to detect
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Figure 2 Gene ontology analysis of the proteins identified in human follicular fluid. Proteins were classified according to A) biological
processes, B) molecular function, and C) cellular compartment. Results are displayed as percent of genes classified to a category over the total
number of class hits.
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oocyte-specific secreted proteins using untargeted mass
spectrometry methods [20-26,29-31,58], including our
own analyses, likely reflects the much lower abundance
of oocyte secreted factors in the follicular fluid relative to
the other proteins. Targeted proteomics approaches with
enhanced the sensitivity have the potential to detect
OSFs present at the tens of ng/mL level [59-61].
Numerous ovarian proteins were detected including fol-

listatin, folllistatin-related proteins 3 and 4, inhibin -alpha,
−betaA, −betaB, −betaC, oviduct specific glycoprotein,
secreted protein acidic and rich in cysteine (SPARC), pap-
palysin, and out at first protein homolog (OAF). Some of
these were detected for the first time at the protein level
in human follicular fluid (Additional file 1: Table S1). The
calcium-binding SPARC protein is expressed in elevated
levels in tissues undergoing remodeling and wound repair.
SPARC has been shown to be significantly increased in lu-
teinized granulosa cells and is regulated by pro-angiogenic
and extracellular matrix factors during the folliculo-luteal
transition [62]. Pappalysin has also been detected in
serum, and in a recent analysis was reported at elevated
levels in the serum of women suffering from preeclampsia
compared to normotensive women [63].
Identification of putative markers at the protein level

paves the way for rapid tests of oocyte competence, but
sensitivity is key to the success of these approaches. We
compared the proteins found in FF with microarray data
acquired from floating granulosa (predominantly mural



Table 1 Follicular fluid proteins with functional roles in signaling

Accession Gene Name Protein Name

IGF related

P35858 IGFALS Insulin-like growth factor-binding protein complex acid labile subunit

P05019 IGF1 Insulin-like growth factor I

P01344 IGF2 Insulin-like growth factor II

P08833 IGFBP1 Insulin-like growth factor-binding protein 1

P18065 IGFBP2 Insulin-like growth factor-binding protein 2

P17936 IGFBP3 Insulin-like growth factor-binding protein 3

P22692 IGFBP4 Insulin-like growth factor-binding protein 4

P24593 IGFBP5 Insulin-like growth factor-binding protein 5

P24592 IGFBP6 Insulin-like growth factor-binding protein 6

Q16270 IGFBP7 Insulin-like growth factor-binding protein 7

Q13219 PAPPA Pappalysin-1

Metalloproteinase related

P08253 MMP2 72 kDa type IV collagenase

P14780 MMP9 Matrix metalloproteinase-9

Q9UHI8 ADAMTS1 A disintegrin and metalloproteinase with thrombospondin motifs 1

Q76LX8 ADAMTS13 A disintegrin and metalloproteinase with thrombospondin motifs 13

Q6UY14 ADAMTSL4 ADAMTS-like protein 4

Q96KN2 CNDP1 Beta-Ala-His dipeptidase

P15169 CPN1 Carboxypeptidase N catalytic chain

P01033 TIMP1 Metalloproteinase inhibitor 1

P16035 TIMP2 Metalloproteinase inhibitor 2

O95980 RECK Reversion-inducing cysteine-rich protein with Kazal motifs

Anti-apoptotic

P99999 CYCS Cytochrome c

P81605 DCD Dermcidin

Q9Y4L1 HYOU1 Hypoxia up-regulated protein 1

P02750 LRG1 Leucine-rich alpha-2-glycoprotein

P83110 HTRA3 Probable serine protease HTRA3

P49908 SEPP1 Selenoprotein P

Other growth factor & related

P15514 AREG Amphiregulin

Q9Y5C1 ANGPTL3 Angiopoietin-related protein 3

P01019 AGT Angiotensinogen

O94985 CLSTN1 Calsyntenin-1

Q16627 CCL14 C-C motif chemokine 14

P26992 CNTFR Ciliary neurotrophic factor receptor subunit alpha

Q96HD1 CRELD1 Cysteine-rich with EGF-like domain protein 1

Q9UBP4 DKK3 Dickkopf-related protein 3

Q13822 ENPP2 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2

Q8N441 FGFRL1 Fibroblast growth factor receptor-like 1

Q9Y625 GPC6 Glypican-6

P10912 GHR Growth hormone receptor

Q04756 HGFAC Hepatocyte growth factor activator
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Table 1 Follicular fluid proteins with functional roles in signaling (Continued)

P08581 MET Hepatocyte growth factor receptor

P26927 MST1 Hepatocyte growth factor-like protein

P07333 CSF1R Macrophage colony-stimulating factor 1 receptor

P10721 KIT Mast/stem cell growth factor receptor

Q7Z7M0 MEGF8 Multiple epidermal growth factor-like domains protein 8

O14786 NRP1 Neuropilin-1

P30086 PEBP1 Phosphatidylethanolamine-binding protein 1

P36955 SERPINF1 Pigment epithelium-derived factor

Q99435 NELL2 Protein kinase C-binding protein NELL2

Q9HCB6 SPON1 Spondin-1

Q03167 TGFBR3 Transforming growth factor beta receptor type 3

Q15582 TGFBI Transforming growth factor-beta-induced protein ig-h3

P35590 TIE1 Tyrosine-protein kinase receptor Tie-1

P30530 AXL Tyrosine-protein kinase receptor UFO

P35916 FLT4 Vascular endothelial growth factor receptor 3

Q6EMK4 VASN Vasorin
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granulosa) and cumulus granulosa cells isolated at the
time of oocyte retrieval to determine whether we could
detect cellular proteins that are secreted or shed [64].
Communication between the oocyte and the surround-
ing somatic cells is essential for acquisition of compe-
tence (reviewed in [65,66]). A total of 586 FF proteins
were found at the transcript level in these cell types
(Additional file 1: Table S1). Sixty-three showed in-
creased mRNA expression in the cumulus cells (>1.5
fold), while 55 transcripts showed increased expression
in the mural cell transcriptome (>1.5 fold). Thus, prote-
omic approaches such as this one have sufficient sensi-
tivity to detect protein abundance changes in FF that
may arise from the mural and/or cumulus granulosa cell
constituents of the follicle.
To quantify differences in protein abundances after

hCG treatment, FF proteins from 6 individuals (3 pre-
hCG treatment and 3 post-hCG treatment were compared
using iTRAQ mass tags to measure relative abundance
changes. The ratios from each group were compared using
Student’s t-test and 17 proteins were found to be signifi-
cantly different (p < 0.05). Eleven proteins were signifi-
cantly higher in the post-hCG samples compared to the
pre-hCG samples, and six proteins were significantly
lower in the post-hCG samples compared to the pre-hCG
samples (Table 2). Prior studies have shown that the
majority of these proteins have been detected in FF by
orthogonal detection methods such as Western blotting
or ELISA. For example prostatic acid phosphatase, metal-
loproteinase inhibitor 1, alpha-2-HS-glycoprotein, gelso-
lin, prothrombin, coagulation factor X, inhibin alpha,
histidine-rich glycoprotein and extracellular matrix pro-
tein 1 have been detected in human follicular fluid by
orthogonal methods [67-73]. Further, 10 of the 17 proteins
had transcripts that were present in both mural and cu-
mulus granulosa cells (Additional file 1: Table S1). Alpha-
2-HS-glycoprotein, N-acetylmuramoyl-L-alanine amidase,
prothrombin, pantetheinase, complement component C8
alpha chain, Beta-Ala-His dipeptidase and histidine-rich
glycoprotein are presumably not of granulosa cell origin
based on the transcriptome comparison. This provides
important validation of the iTRAQ proteins detected, al-
though a limitation of our study is that the levels of
changes could not be validated within our own samples
due to sample volume limitations. The proteins showing
differences belonged to a variety of functional processes,
including protease inhibition, inflammation, angiogenesis,
and cell adhesion. Complement C8 alpha chain was found
in higher abundance (1.4-fold) in pre-hCG FF. The role of
the complement factors in follicle maturation is unclear,
though it has been postulated that they are possible oocyte
maturation factors [74]. Another complement factor, C3,
was differentially expressed in women with severe ovarian
hyperstimulation syndrome [69].
TIMP-1 has been shown to be expressed in luteinized

granulosa cells of humans [52], and was found in 4.4-
fold higher levels in post-hCG samples. MMPs and tis-
sue inhibitor of metalloproteinases (TIMPs) have been
reported to have multiple effects on ovarian function,
particularly remodeling the extracellular matrix [75]. A
study in endometriosis patients undergoing IVF showed
that mature follicles yielding MII oocytes had signifi-
cantly higher TIMP1 levels compared to follicles yielding
immature germinal vesicle oocytes, and that embryos of
good morphology were correlated with follicles with
higher TIMP1 [73]. Exposure of rats to persistently



Table 2 Follicular fluid proteins with altered abundance after hCG treatment

Protein Accession Gene Name p value Relative abundance

Increased abundance post-hCG

Prostatic acid phosphatase P15309 PPAP 1.1E-06 22.0

Metalloproteinase inhibitor 1 P01033 TIMP1 8.3E-04 4.4

Alpha-2-HS-glycoprotein P02765 FETUA 7.5E-03 2.4

N-acetylmuramoyl-L-alanine amidase Q96PD5 PGRP2 3.1E-03 2.4

Complement component C7 P10643 CO7 1.1E-02 2.2

Gelsolin P06396 GELS 1.1E-02 2.0

Vitronectin P04004 VTNC 2.2E-02 1.8

Prothrombin P00734 THRB 5.0E-03 1.7

Carboxypeptidase N subunit 2 P22792 CPN2 2.6E-02 1.7

Cystatin-C P01034 CYTC 4.8E-02 1.5

Extracellular matrix protein 1 Q16610 ECM1 3.5E-02 1.5

Decreased abundance post-hCG

Pantetheinase O95497 VNN1 4.7E-02 1.3

Complement component C8 alpha chain P07357 CO8A 2.6E-02 1.4

Coagulation factor X P00742 FA10 4.5E-02 1.9

Beta-Ala-His dipeptidase Q96KN2 CNDP1 3.0E-02 3.8

Inhibin alpha chain P05111 INHA 1.2E-02 4.4

Histidine-rich glycoprotein P04196 HRG 1.9E-02 5.5
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elevated levels of TIMP1, designed to emulate endomet-
riosis, showed an overall negative affect on ovarian func-
tion as it disturbed folliculogenesis and lowered the
number of corpora lutea (CL) formed [53]. Inhibin alpha
was one of the most up-regulated proteins pre-hCG, con-
sistent with prior studies showing significant expression
specifically in granulosa cells [76] as well as its known
regulation by LH signaling [77,78]. These proteins have
the potential to be biomarkers of normal luteinization
and, in combination, could be used as a panel to assay
follicular health at the folliculo-luteal transition. The se-
creted protein extracellular matrix protein 1 (ECM1) is a
glycoprotein that inhibits the activity of MMP9 [79].
Higher FF and serum MMP9 levels are associated with
IVF success [50]. Thus, levels of ECM1 could be a pre-
dictor of oocyte quality.
Histidine-rich glycoprotein (HRG) is an abundant

plasma protein that binds a variety of ligands including
fibrinogen, heparin, and thrombospondin and has roles
in angiogenesis, coagulation, and the immune system
[80-84]. HRG has been previously reported in FF [71]
and was found in our study to be 5.5-fold higher levels in
pre-hCG samples. A single nucleotide polymorphism
(C633T) in HRG, which results in a serine to proline at
position 186, is associated with primary recurrent miscar-
riage [85] and a lower pregnancy rate in IVF patients
[86]. The tryptic fragment encompassing this site is only
3 amino acids in length, thus too short to be detected by
the LCMS methods used in this study. The angiogenic
factors fibroblast growth factor (FGF) and vascular endo-
thelial growth factor (VEGF) are produced by the
pre-ovulatory follicle and may be key regulators of the
angiogenic balance in the follicle [87]. Elevated VEGF
levels are associated with unfavorable clinical IVF out-
comes such as ovarian hyperstimulation syndrome
(reviewed in [88]) and dissolved oxygen content of the
follicle, which is related to VEGF, has been correlated
with poor oocyte quality [89]. HRG negatively regulates
VEGF signaling [90], and HRG levels could be a func-
tional link to between VEGF levels [10,77,91] and re-
sponses to stimulation and IVF outcome.
One of the most down-regulated proteins pre-hCG was

prostatic acid phosphatase. Lower levels of this protein in
follicle fluid are associated with immature oocytes (as
assessed by fertilization) [70], in accordance with the
levels seen in pre-hCG follicles. Furthermore, in addition
to lower levels of prostatic acid phosphatase from pre-
HCG FF, we also found lower levels of prothrombin and
PGRP2. Recently, Severino et al., [92] used a similar MS
approach in FF from IVF patients who conceived versus
those who did not and found these three proteins were
more abundant in successful IVF. This is consistent with
our findings, since pre-hCG follicles do not contain oo-
cytes competent for fertilization. Potentially, a panel of
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proteins that are regulated during hCG administration
would yield a protein signature of optimal luteinization
for an individual follicle.
This comparative proteomics analysis provided infor-

mation about abundance changes in follicular phase fluid
(pre-hCG) vs. at the luteal transition (post-hCG), to our
knowledge the first such analyses using pre-hCG follicu-
lar fluid. Our comparative proteomics analysis showed
relatively few significant differences in protein expression
from pre- versus post-hCG follicular fluid despite the
knowledge that several proteins related to intra-follicular
signaling are known to either be up-or down-regulated at
the time of the LH surge (e.g., EGF-like growth factors,
C-type natriuretic peptide [6,93]). The reason for this is
that these proteins were below the detection limit of the
iTRAQ portion of our study. However, our unbiased
mass spectrometry analysis did detect the EGF-like
growth factor amphiregulin, which is present at the
average level of 30 ng/ml in post-hCG samples [93].
Therefore it is likely that a combination of sample het-
erogeneity and preferential detection of higher abun-
dance proteins were the reasons for the relatively low
number of iTRAQ differences seen. Our analysis was
performed on follicle fluid obtained from ovum donors
after the granulosa cells were exposed to an artificial lu-
teinization signal from exogenous hCG administration.
Given inter-patient variability, it would be of great benefit
to be able to compare this to unluteinized follicle fluid
from within the same patients (ideally with serum sam-
ples as controls) to allow for enhanced detection of path-
ways specifically activated by the LH surge and to better
understand the intrafollicular environment during the
earlier stages of follicle development. Of the FF proteins
found to be significantly different between pre-hCG and
post-hCG samples, some have putative or known func-
tions in follicle maturation. Others may represent bio-
markers of follicle maturation, although their functional
role, if any, remains uncertain. The proteins described
here will provide a framework for potentially assessing
the competence of an oocyte from a given follicle.

Conclusions
This analysis has been the most comprehensive prote-
omic evaluation of human follicular fluid in a single
study to date, with 742 distinct proteins identified. This
extends the FF proteome to 982 high confidence pro-
teins, underscoring the utility of multiple, orthogonal
protein and peptide methodologies for comprehensive
examination of this complex proteome. This database of
FF proteins provides a useful basis for studies comparing
follicular fluid proteomes in various fertility, disease, and
environmental exposure conditions. In particular, alter-
ations in the protein complement of FF from infertile
patients with varying etiologies such as advanced female
age, endometriosis, or polycystic ovarian syndrome
could be compared to our study on fertile egg donors to
improve our understanding of how the ovarian follicle
microenvironment is altered under these conditions.
The goal of the present study was to characterize the

follicular fluid proteome from fertile women and quan-
tify differences in protein abundances after the hCG ad-
ministration. A comparison with microarray data from
mural granulosa cells and cumulus granulosa cells iso-
lated at the time of oocyte retrieval [64] showed that we
could detect many differentially expressed transcripts at
the protein level in FF. This ability to detect proteins
that may be derived from the somatic cell repertoire of
the follicle allows for a functional analysis of these dis-
tinct compartments during follicular maturation. Differ-
ences in the cumulus cell transcriptome, for instance,
have been correlated with IVF outcomes [94-96]. To im-
prove our understanding of normal human intrafollicu-
lar dynamics, we performed an untargeted quantitative
analysis to reveal biomarker candidates and/or signaling
cascades active during follicle growth and maturation.
The proteins identified here provide an additional layer
of understanding of which proteins are expressed during
this time and can provide a method of assessing the
somatic compartment of the human follicle. Future di-
rections should focus on targeted protein quantitation
from individual follicular aspirates as the basis for non-
invasive assessment of oocyte quality. The proteins
described here that change in response to hCG may be
detected in serum or follicular fluid as markers of pre-
mature or appropriate luteinization to allow for im-
proved ovarian stimulation outcomes.

Methods
Research approval
All subjects gave consent for donation of follicular fluid
for research purposes as part of a UCSF Institutional Re-
view Board approved IVF tissue bank protocol.

Source and collection of human follicular fluid samples
Patients undergoing assisted reproductive technology
(ART) by standard ovarian stimulation protocols were re-
cruited to collect follicular fluid (FF). Details regarding the
stimulation parameters, oocyte retrieval and FF prepar-
ation and storage have been previously described [93,97].
For all experiments, FF was obtained from mature sized
follicles (≥16 mm diameter). For the comprehensive prote-
omics analysis, follicular fluid from three anonymous
ovum donors (all age <30) receiving down-regulated ovar-
ian stimulation protocols were used. Each patient had ei-
ther one or two aspirates collected at the time of oocyte
retrieval (36 hours after hCG treatment for all post-hCG
samples) and only a single FF sample from each donor
was used for mass spectrometry analysis.
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For relative quantification, pre-hCG FF was obtained
from three patients: i) a single ovum donor who did not
inject hCG and ii) two stimulated IVF patients with sin-
gle lead follicles that were aspirated to allow salvage of
ovarian stimulation. For the post-hCG samples, FF from
three age-matched donors, using the same type of ovar-
ian stimulation protocol, were used.

Sample preparation for mass spectrometry
The protein concentrations were determined using BCA
Assay (Thermo Scientific, San Jose, CA). Follicular fluid
samples were processed according to the manufacturer’s
instructions using a MARS-Hu-14 immunodepletion col-
umn from Agilent Technologies (Santa Clara, CA). The
protein flow-through fraction was collected and desalted
by using a 3 kDa molecular weight cutoff (MWCO) centri-
fugal concentrator (Sartorius AG, Goettingen, Germany).
Immunodepleted samples were denatured using 6 M urea,
cysteines reduced with 500 mM dithiothreitol (DTT) and
alkylated with 500 mM iodoacetamide (IAA) followed by
an over-night incubation with sequencing grade trypsin
(Promega, Madison, WI) at 37°C. The resulting peptides
were acidified with formic acid and desalted using Oasis
HLB Extraction Cartridges (Waters Corporation, Milford,
MA). For iTRAQ analysis, a 50 μg aliquot immunode-
pleted follicular fluid sample from 6 patients (3 pre-hCG
and 3 post-hCG treatment, age-matched) was digested
with trypsin and labeled with 8plex iTRAQ reagent accord-
ing to manufacturer’s protocol (AB Sciex, Foster City, CA).
A pool comprised of equal amounts of protein from each
of the post-hCG samples was labeled and used as the ref-
erence standard. Both labeled and unlabeled samples
were subjected to offline peptide fractionation by using a
Paradigm MS4 HPLC System (Michrom, Auburn, CA)
equipped with a Zorbax Extend-C18 column (4.6 ×
100 mm, 3.5 μm particle size, Agilent Technologies,
Santa Clara, CA) and a guard column of the same pack-
ing material. A 100 μg sample of protein digest was
reconstituted in 100 μL of Solvent A (0.1% NH4OH,
pH 10). Peptides were eluted using a linear gradient of 2-
50% Solvent B (0.1% NH4OH in acetonitrile) over
30 min. and 30 fractions were collected. The fractions
were vacuum-dried, reconstituted in 0.1% formic acid,
and stored at −80°C until analysis.

LC-MS/MS and bioinformatics
For protein identification, peptides were analyzed by LC-
MS/MS using a nanoLC Ultra system (Eksigent Tech-
nologies, Dublin, CA) interfaced with a LTQ Orbitrap
Velos mass spectrometer (Thermo Scientific, San Jose,
CA). Peptides were separated using an Acclaim Pep-
Map100 C18 column (75 μm i.d. × 15 cm, 3 μ, 100 Å)
with a linear gradient of 2-40% B (98% ACN, 0.1% FA)
over 60 minutes. MS data were acquired using an LTQ
Orbitrap Velos with data-dependent ion selection con-
sisting of the initial MS scan (m/z 350–1600) followed
by eight MS/MS scans (m/z 100–1600). The .raw files
were processed by Mascot Daemon v.2.2.2 (Matrix
Science, Boston, MA) to generate mgf files. Data from
the iTRAQ labeled samples were acquired using the
same LC conditions using a nano2D MDLC (Eksigent)
interfaced with a QSTAR Elite mass spectrometer (AB
Sciex). The Paragon algorithm in ProteinPilot v.4.2 (AB
Sciex, Foster City, CA) was used for protein identifica-
tion and quantification and false discovery rates (FDRs)
assessed by decoy database searching [98]. Data were
searched against the SwissProt database v20120222
using the following parameters: carbamidomethylation
of cysteines, trypsin enzyme, Homo sapiens species filter,
and thorough search effort. Proteins detected with 5%
local FDR were reported. To determine significant
changes in protein abundances log-transformed iTRAQ
ratios were analyzed using Student’s t-test and the
threshold for differential abundance was p < 0.05. Gene
Ontology analysis of proteins was carried out by using
the PANTHER (Protein Analysis Through Evolutionary
Relationships) classification system [99] and Swiss-Prot
KB gene ontology data [100].

Additional file

Additional file 1: Table S1. Proteins identified in human follicular fluid.
Proteins detected in human follicular fluid. Proteins detected at 5% FDR
in at least one sample were reported. The first column for each sample,
FF1-FF3, “Rank” shows the ranking of the specified protein to all other
proteins identified in that sample and the second column, “Unused
ProtScor” is the ProteinPilot confidence score. Follicular fluid proteins also
reported in Ambekar, et al., [21] and Twight et al., [31] are denoted by an
“x”. Proteins detected for the first time in FF are in bold. Farrah et al., [34]
shows FF proteins that are in the Human Plasma PeptideAtlas list and
Balakrishnan et al., [39] shows proteins detected in synovial fluid. Follicular
fluid proteins were compared to granulosa cell transcriptomic data from
Koks et al., [64] and the corresponding FF proteins denoted with an “x”.
Mural granulosa cells, mGC; cumulus granulosa cells, cGC.
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