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Abstract 

Background: A hepatocellular carcinoma (HCC) prediction model (ASAP), including age, sex, and the biomarkers 
alpha-fetoprotein and prothrombin induced by vitamin K absence-II, showed potential clinical value in the early 
detection of HCC. We validated and updated the model in a real-world cohort and promoted its transferability to daily 
clinical practice.

Methods: This retrospective cohort analysis included 1012 of the 2479 eligible patients aged 35 years or older under-
going surveillance for HCC. The data were extracted from the electronic medical records. Biomarker values within the 
test-to-diagnosis interval were used to validate the ASAP model. Due to its unsatisfactory calibration, three logistic 
regression models were constructed to recalibrate and update the model. Their discrimination, calibration, and clinical 
utility were compared. The performance statistics of the final updated model at several risk thresholds are presented. 
The outcomes of 855 non-HCC patients were further assessed during a median of 10.2 months of follow-up. Statistical 
analyses were performed using packages in R software.

Results: The ASAP model had superior discriminative performance in the validation cohort [C-statistic = 0.982, 
(95% confidence interval 0.972–0.992)] but significantly overestimated the risk of HCC (intercept − 3.243 and slope 
1.192 in the calibration plot), reducing its clinical usefulness. Recalibration-in-the-large, which exhibited performance 
comparable to that of the refitted model revision, led to the retention of the excellent discrimination and substantial 
improvements in the calibration and clinical utility, achieving a sensitivity of 100% at the median prediction prob-
ability of the absence of HCC (1.3%). The probability threshold of 1.3% and the incidence of HCC in the cohort (15.5%) 
were used to stratify the patients into low-, medium-, and high-risk groups. The cumulative HCC incidences in the 
non-HCC patients significantly differed among the risk groups (log-rank test, p-value < 0.001). The 3-month, 6-month 
and 18-month cumulative incidences in the low-risk group were 0.6%, 0.9% and 0.9%, respectively.

Conclusions: The ASAP model is an accurate tool for HCC risk estimation that requires recalibration before use in a 
new region because calibration varies with clinical environments. Additionally, rational risk stratification and risk-based 
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Background
Liver cancer is the seventh most common malignant 
tumor and the second leading cause of death among all 
cancers worldwide [1]. It is one of the five leading causes 
of death in the Chinese population, among which hepa-
tocellular carcinoma (HCC) accounts for more than 
85–90%. The development of HCC is closely related to 
chronic liver injury of any etiology. Early HCC detec-
tion is of paramount importance for improving progno-
sis due to the lack of a specific clinical presentation [2]. 
Combined testing of tumor markers can increase the sen-
sitivity without reducing the specificity of the diagnosis 
[3]. Scientific risk-based stratification is a key means of 
improving the overall survival rate [4].

Increasing numbers of models have been derived to 
predict the risk of HCC, which can then be used to strat-
ify patients. Some models require unique indicators (e.g., 
genetic testing or DNA level) that make data collection 
difficult or are limited to a certain group of people, such 
as those with viral infections, those taking antivirals, and 
those with a specific alpha-fetoprotein (AFP) level, sub-
stantially limiting the external verification and universal-
ity of such models [5–7]. An easy-to-use, international 
prediction model is urgently needed to guide the person-
alized management of populations at risk for HCC.

Recently, a simple multicenter collaborative and veri-
fied model for the prediction of HCC in hepatitis B virus 
(HBV)-infected patients was reported and had promis-
ing discrimination ability. The ASAP model includes four 
factors: age, sex, AFP level, and prothrombin induced by 
vitamin K absence-II (PIVKA-II) level. The online calcu-
lator can predict the probability of target patients devel-
oping HCC and classify them into three risk groups. The 
accompanying surveillance decisions include the rec-
ommendation that low-risk individuals do not need to 
undergo imaging at 6-month intervals [8]. Moreover, a 
retrospective case-control study reported that the best 
model containing the same four factors improved the 
accuracy of the detection of early-stage HCC in patients 
with viral or nonviral chronic liver disease predominantly 
in populations of Caucasian and African American 
descent [9]. However, this model has not been validated 
in real-world clinical practice. When prediction models 
are validated in new circumstances, due to differences in 
the case mix and model predictor effects, miscalibration 
is common, leading to reduced utility [10, 11]. Therefore, 

comprehensive model validation, including an assess-
ment of the discrimination ability, calibration, and clini-
cal application, is indispensable.

This study was performed to validate and update the 
ASAP model in patients with viral or nonviral chronic 
hepatitis and cirrhosis in daily clinical practice and 
explore the appropriate thresholds for the stratification 
of risk groups that can be used to inform the selection of 
health management strategies.

Methods
Data collection
This retrospective study was performed in an academic 
tertiary hospital, Hubei Provincial Hospital of Traditional 
Chinese Medicine in Central China, from May 2018 to 
January 2021. Data were extracted from the electronic 
medical records. Records from consecutive inpatients 
with both AFP and PIVKA-II results were reviewed. Data 
from patients older than 35 years with hepatitis, cirrho-
sis, hepatic benign space-occupying lesions (SOLs), or 
HCC before October 2019 were included.

The levels of AFP and PIVKA-II were measured with 
the appropriate testing systems from Roche Diagnos-
tics (Shanghai, China) and Fujirebio Diagnostics (Fujire-
bio, Japan), respectively. Because the levels of AFP and 
PIVKA-II can rapidly increase with the onset of HCC, we 
defined three weeks as the longest time from the marker 
measurements to HCC diagnosis [12–14] and selected 
the first detected values to validate and update the ASAP 
model. Individuals with undiagnosed HCC beyond that 
interval and those without HCC were considered at-risk 
individuals in the subsequent follow-up analysis. The 
outcome was the definitive diagnosis of HCC. The fol-
low-up duration was calculated from the time of the first 
measurement to the date of the conclusive HCC diagno-
sis or January 31, 2021. Data were censored at the time 
of loss to follow-up, the time of non-HCC-related death, 
and the end of the study.

The diagnosis of HCC was refuted or confirmed based 
on a comprehensive reference standard, and both a clini-
cal diagnosis and pathological diagnosis were made based 
on spiral computed tomography, magnetic resonance 
imaging, and liver biopsy [4].

Missing data
There were no missing data for AFP or PIVKA-II.

management decision-making, e.g., 3-month follow-up recommendations for targeted individuals, helped improve 
HCC surveillance, which warrants assessment in larger cohorts.

Keywords: Hepatocellular carcinoma, Prothrombin induced by vitamin K absence-II, Alpha-fetoprotein, Nomogram, 
Calibration, Logistic regression model
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Statistical analysis
The levels of AFP and PIVKA-II were log transformed 
because they had right-skewed distributions.

Based on the published coefficient values in the 
development cohort [8], we calculated the linear pre-
dictor of each patient in the validation cohort as an 
offset variable with the coefficient set to 1 and inter-
cept set to 0 to validate the ASAP model. The linear 
predictor was calculated as follows: −  7.57711770 + 
0.04666357[age] − 0.57611693[sex] + 0.42243533[log
(AFP)] + 1.10518910[log(PIVKA-II)] [8]. We evaluated 
its discrimination, calibration, and clinical benefit and 
then recalibrated and updated it based on three logis-
tic regression models [15]. Recalibration-in-the-large 
included the ASAP linear predictor with coefficient 
set to 1 and the assessed intercept. In recalibration, we 
evaluated the intercept and the coefficient of the ASAP 
predictor. In model revision, we kept all variables in the 
original ASAP model and refitted it. We used a boot-
strap resampling procedure in the complete updated 
samples to correct for optimism when model revision 
was applied. The overall performance was evaluated 
by the Brier score and compared among models by the 
chi-square test. A lower Brier score indicates better per-
formance or closer to being correct. The final updated 
model was selected according to a previously reported 
procedure as follows. If the test of the model revision 
against the original ASAP model was not significant, we 
adopted the original ASAP model; otherwise, we contin-
ued. If the test of the model revision against recalibra-
tion-in-the-large was not significant, we adopted the 
updated model intercept; otherwise, we continued. If the 
test of the model revision against recalibration was not 
significant, we adopted the recalibration model; other-
wise, we adopted the revised model [15].

Discrimination was measured using the C-statistic. 
Calibration was assessed with calibration plots. The 
classification accuracy performances were measured 
using the sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) at 
a selection of thresholds. The net benefit (NB) of the 
model was evaluated with decision curve analysis.

We chose the median prediction value of the non-
HCC cases in the final updated model and the HCC 
event rate in the validation cohort from a list of com-
mon thresholds to classify the patients into low-, 
medium-, and high-risk groups [10].

The differences in the relative risk ratios between two 
risk groups were compared by the chi-square test. The 
cumulative HCC incidences of the different risk groups 
without HCC were obtained by the Kaplan-Meier 
method, and their discrepancies were compared by the 
log-rank test.

The model established in our study complied with the 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) 
guidelines [12] (see Additional file 1: Table S1).

A p-value less than 0.05 was considered statistically 
significant. We carried out statistical analyses using pack-
ages in R software (v3.6.2 and v4.0.2; R Foundation for 
Statistical Computing).

Results
Participant selection and characteristics
In total, 3726 records of 2479 participants were reviewed; 
1247 records were repeated measurements and, thus 
excluded. In total, 2479 patients with the first detection 
values of biomarkers were further selected. Furthermore, 
1467 individuals were excluded for the following reasons: 
18 patients treated with warfarin, vitamin K, vitamin K 
antagonist, or antibiotics that alter the gut flora; 320 non-
HCC cancers; 232 HCC patients treated with antitumor 
agents; 83 health examiners and 729 patients without can-
cers or liver diseases; and 85 patients with hepatitis aged 
under 35 years. Ultimately, 1012 qualified patients were 
included in the model validation process. After exclud-
ing 157 confirmed HCC cases, 855 at-risk patients were 
included in the continued follow-up analysis to compare 
the outcomes across the different risk groups (Fig. 1). The 
validation cohort was dominated by single HBV-infected 
patients (77.3%), who had an HCC incidence rate of 15.6% 
(122/782), while the incidence in patients with other eti-
ologies was 15.2% (35/230). There was no significant dif-
ference between the two incidences (χ2 p-value = 0.967). 
The overall HCC incidence in the validation cohort was 
15.5%, which was significantly lower than that in the 
development cohort (41.1%) reported by Yang et al while 
deriving the original ASAP model [8]. Table 1 shows the 
basic characteristics of the two cohorts. Due to the dif-
ferent patient selection criteria and data collection meth-
ods from respective distinct clinical settings, there were 
significant differences in age, etiology, case composition, 
Child-Pugh class, bilirubin, alanine aminotransferase, 
and albumin between the development and validation 
cohorts. The AFP and PIVKA-II serum levels are shown 
in Additional file 2: Fig. S1a, b.

External model validation
Table 2 shows the characteristics and performance of the 
models considered in this paper. The models contained 
four predictor factors: age (years, in 1-year increments), 
sex (male = 0, female = 1), AFP (log ng/mL), and PIVKA-
II (log  mAU/mL).  bage,  bsex,  bAFP, and  bPIVKA-II were the 
regression coefficients that indicated how a patient’s 
values of the predictor factors affected the risk of HCC. 
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Regarding  bage, which was 0.04666357 in the original 
ASAP model [8], the odds ratio of age was exp(bage), i.e., 
1.048. The increased risk of HCC among the patients was 
0.048 per year after adjusting for other factors. Regarding 
the recalibration-in-the-large, including the ASAP linear 
predictor with the coefficient set to 1,  bage was the same 
as that of the ASAP model. Regarding the recalibration 
assessed with a slope of 1.192,  bage was 0.0556229754, 
equal to 0.04666357 multiplied by 1.192. In the model 
revision, we refitted it with our data, and the estimate of 

 bage was 0.06178. Therefore, different models generated 
different  bage values. The same was true for the diverse 
regression coefficients of other factors in different mod-
els. The negative  bsex illustrated that the female patients 
had a lower risk of HCC than the reference group male 
patients after adjusting for age, AFP, and PIVKA-II. In 
the recalibration-in-the-large, the  bsex was − 0.57611693. 
The odds ratio of sex was 0.562. Female patients had a 
43.8% lower risk of HCC than male patients after adjust-
ing for other variables in the model.

Outcome assessment of risk stratification

Electronic health records:
demographics, diagnoses, procedures,

laboratory results, medications, encounters
Cohort, Single center:

from May-1 2018 to Oct-31 2019
3726 records with AFP and PIVKA-II results

from 2479 patients, only the first
detection value selected (n=2479)

       Validation cohort (n=1012)
 (the utmost  interval from measurements

 to HCC diagnosis: three weeks)

1. Hepatitis (n=451)
2. Cirrhosis (n=308)
3. Benign liver SOL (n=96)
4. Newly-diagnosed HCC (n=157)

 Excluded (n=1467)

1. Patients treated with warfarin, vitamin K, vitamin K
 antagonist, or antibiotics that alter gut flora, etc (n=18)
2. Non-hepatocellular carcinoma cancers (n=320)
3. HCC patients treated with antitumor agents (n=232)
4. 83 health examiners and 729 patients without cancers
 or liver diseases (n=812)
5. Patients under 35 years old (n=85)

 Patients not diagnosed  with HCC in three
  weeks continuously follow-uped (n=855)

 to Jan-31 2021

1. Hepatitis (n=451)
2. Cirrhosis (n=308)
3. Benign liver SOL (n=96)

 Excluded (n=157)
1. Newly-diagnosed HCC (n=157)

ASAP model validation and update

discrimination, recalibration,
clinical utility, risk stratification  

Fig. 1 Analysis flowchart. Abbreviations: AFP, alpha-fetoprotein; HCC, hepatocellular carcinoma; PIVKA-II, prothrombin induced by vitamin K 
absence-II; SOL, space-occupying lesion
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The ASAP model had a high diagnostic accuracy 
{C-statistic  =  0.982, [95% confidence interval (CI), 
0.972–0.992]} but significantly overestimated the risk of 
HCC (intercept − 3.243 and slope 1.192 in the calibration 
plot) (Table 2, Fig. 2a) and had poor clinical utility at the 
probability thresholds of 1/3 and 2/3 set in the model [8] 
[with respective NBs of 0.011 (95% CI − 0.017 to 0.038) 

and −  0.019 (95% CI, −  0.061 to 0.025) in the decision 
curve analysis] (Fig. 2c).

Recalibration was necessary due to the apparent over-
fitting of the ASAP model with the new data (Table  2, 
Fig. 2a). The three updated models had the same excellent 
discrimination ability (C-statistic = 0.982), and their cali-
bration was superior to that of the ASAP model, as they 

Table. 2 Characteristics and performance of the original and updated ASAP diagnostic prediction models

AFP alpha-fetoprotein, AIC akaike information criterion, CI confidence interval, df degrees of freedom, Eavg average absolute difference in the predicted and calibrated 
probabilities, Emax maximum absolute difference in the predicted and calibrated probabilities, LRT likelihood ratio test, PIVKA-II protein induced by vitamin K absence 
or antagonist-II
1 The model coefficients are derived from the original ASAP model reported by Yang et al [8]
2 bage,  bsex,  bAFP, and  bPIVKA-II are the regression coefficients of age, sex, AFP, and PIVKA-II, respectively
3 Comparison with the model revision using the methods described by Vergouwe et al [15]

Characteristics ASAP  model1 Recalibration-in-the-large Recalibration Model revision

Calibration parameters

 Intercept 0 − 3.243 − 3.577 –

 Slope 1 1 1.192 –

Model  coefficients2

 Intercept − 7.57711770 − 10.82011770 − 12.60892 − 12.95521

  bage 0.04666357 0.04666357 0.0556229754 0.06178

  bsex − 0.57611693 − 0.57611693 − 0.6867313806 − 0.7449

  bAFP 0.42243533 0.42243533 0.5035429134 0.55643

  bPIVKA-II 1.10518910 1.10518910 1.3173854072 1.28268

Model performance

 Calibration intercept − 3.243 − 0.000 − 0.000 − 0.000

 Calibration slope 1.192 1.192 1 1

 Residual deviance 851.25 212.552 208.489 207.962

 df 1012 1011 1010 1007

 LRT chi-square p-value3 < 0.001 0.332 0.913 –

 Emax (95% CI) 0.526 (0.483–0.557) 0.053 (0.042–0.159) 0.087 (0.049–0.198) 0.082 (0.043–0.185)

 Eavg (95% CI) 0.246 (0.230–0.262) 0.009 (0.007–0.018) 0.006 (0.004–0.015) 0.005 (0.004–0.015)

 C-statistic (95% CI) 0.982 (0.970–0.990) 0.982 (0.972–0.991) 0.982 (0.971–0.991) 0.982 (0.971–0.991)

 Brier score 0.127107476 0.028182937 0.0280551 0.02789345

 AIC 851.25 214.55 212.49 217.96

Fig. 2 Calibration and decision curves of the ASAP model and the updated models predicting HCC risk. Calibration curves of the predicted 
probabilities versus the observed probabilities of (a) the original ASAP model reported by Yang et al [8]; and (b) recalibration-in-the-large developed 
based on the method described by Vergouwe et al [15] in the validation cohort (n = 1012). A nonparametric calibration curve with the 95% 
confidence limits (CL) (red slide line with dashed lines) was created with the Loess algorithm. Observed HCC occurrence (green triangles) with 
the 95% CL was plotted against the average predicted probability in each group. The blue straight diagonal line serves as a reference for perfect 
calibration. The brown bar chart at the bottom of the figure presents the distribution of the predicted probabilities of the cases with outcomes 
(above the line) and those without outcomes (below the line) (“1” vs. “0”). (c) Decision curves showing the net benefit correlated with the utility of 
the original ASAP model reported by Yang et al [8] and the updated models (recalibration-in-the-large, recalibration, and model revision) derived 
using the methods described by Vergouwe et al [15]. Notably, the coefficients of the models are listed in Table 2. The logit (P) calculation formula 
of the ASAP model was {− 7.57711770 + 0.04666357[age] - 0.57611693[sex]+ 0.42243533[log(AFP)] + 1.10518910[log(PIVKA-II)]}; the formula 
of recalibration-in-the-large was {-10.82011770 + 0.04666357[age] − 0.57611693[sex] + 0.42243533[log(AFP)] + 1.10518910[log(PIVKA-II)]}; the 
formula of recalibration was {− 12.60892 + 0.0556229754[age] − 0.6867313806[sex] + 0.5035429134[log(AFP)] + 1.3173854072[log(PIVKA-II)]}; and 
the formula of the model revision was {-12.95521 + 0.06178[age] − 0.7449[sex]+ 0.55643[log(AFP)] + 1.28268[log(PIVKA-II)]}. Abbreviations: AFP, 
alpha-fetoprotein; CL, confidence limits; HCC, hepatocellular carcinoma; Loess: locally weighted linear regression; PIVKA-II, prothrombin induced by 
vitamin K absence-II

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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had nearly zero intercepts. The comparison of the model 
revision against the ASAP model was significant [likeli-
hood ratio test (LRT) χ2 p-value < 0.001]. Recalibration-
in-the-large revealed an intercept of − 3.243 and resulted 
in a significant improvement in the model fit compared 
with that of the ASAP model [LRT χ2 p-value = 0.04384 
(data not shown)], with a recalibration slope of 1.192, and 
did not significantly differ from the revised model (LRT 
χ2 p-value  =  0.332). A nonparametric calibration plot 
using the locally weighted linear regression (Loess) func-
tion is shown in Fig. 2b. Recalibration revealed an inter-
cept of − 3.577 and a slope of 1.192. Recalibration further 
improved the Brier score and average absolute difference 
in the predicted and calibrated probabilities (Eavg) [16] 
and did not significantly differ from the revised model 
(LRT χ2 p-value = 0.913), with a recalibration slope close 
to 1. Calibration curves of the recalibration and model 
revision are shown in Additional file  3: Fig. S2a, b. The 
model revision improved the calibration the most, with 
the smallest Brier score and Eavg (Table 2). The bootstrap 
resampling procedure was used to validate the revised 
model as there was some overfitting with an optimism-
corrected C-statistic of 0.981 and a shrinkage factor of 
0.976. The nomogram and score tables of the re-esti-
mated ASAP model are shown in Additional file  4: Fig. 
S3a and Additional file 5: Table S2, respectively.

Based on the closed testing procedure [15], the ASAP 
model significantly differed from the model revision 
(LRT χ2 p-value <  0.001), but recalibration-in-the-
large showed no significant difference (LRT χ2 p-value 
=  0.332); recalibration-in-the-large was adopted for the 
final updated model by adding an intercept of − 3.243 to 
the ASAP linear predictor (Table 2).

In addition, the decisive curve of recalibration-in-
the-large nearly completely overlapped with those of 
recalibration and model revision, with high NBs over 
the original model within the entire threshold range 
(Fig.  2c). At the 1/3 risk threshold, it increased the NB 
by 0.115 over the ASAP model, representing 11.5 more 
HCC cases identified per 100 patients for the same num-
ber of unnecessary interventions (Table 3) [17]. It is rel-
atively more beneficial for clinicians to use the updated 
model to assess at-risk individuals and improve clinical 
decision-making.

Performance of recalibration-in-the-large among different 
etiologies
Table 3 lists the proportions of overall and HCC patients 
divided by the selected thresholds of recalibration-in-
the-large and the statistical characteristics. The thresh-
olds included the optimal cutoff value (13.1%), the 
incidence in the validation cohort (15.5%), the midpoint 
of the sigmoid curve (50%), the tierce-points of the 

sigmoid curve (1/3, 2/3) set in the original ASAP model 
[8], the median prediction probability in the non-HCC 
cases (1.3%), and the median prediction probability in 
the HCC cases (98.3%). All cutoff values were commonly 
adopted in the model performance evaluation. Lower 
thresholds resulted in higher sensitivities, lower specifici-
ties and higher NBs in the recalibration-in-the-large, and 
vice versa.

Recalibration-in-the-large functioned slightly bet-
ter in patients with single HBV infections, with a C-sta-
tistic of 0.990 (95% CI 0.984–0.997), than in individuals 
with other etiologies, with a C-statistic of 0.943 (95% CI 
0.894–0.992) (Z =  1.879, p-value =  0.060). From prob-
ability thresholds of 0 to 0.7, the single HBV-infected 
group presented consistently higher NBs than the 
remaining group (Table 3), equivalent to detecting more 
HCC cases without increasing the number of false posi-
tives [17].

Risk threshold selection and risk stratification
Risk stratification is the cornerstone of the individual-
ized management of patients at risk for HCC. However, 
an optimal risk threshold does not exist for a prediction 
model. Reasonable risk thresholds should be selected 
based on the actual clinical setting. Considering the 
severity of the disease, low thresholds that are less than 
50% and have high NPVs are usually preferred [10, 18]. 
Similar to the distribution of the predicted probabilities 
of HCC and non-HCC patients in the model revision 
(Additional file 4: Fig. S3b), the recalibration-in-the-large 
achieved a sensitivity of 100% and an NPV of 100% at a 
probability threshold of 1.3% and a specificity of 100% 
and a PPV of 100% at 98.3% with regard to the diagno-
sis of HCC regardless of etiology in the validation cohort 
(Table  3). From the listed thresholds, we selected prob-
ability thresholds of 1.3% and 15.5% to stratify the vali-
dation cohort into low-, medium-, and high-risk groups. 
As a result, 427 non-HCC patients were classified into 
the low-risk group; 183 patients, including 142 HCC 
cases, were classified into the high-risk group; and the 
other 402 patients, including 15 HCC cases, were sorted 
into the medium-risk group. The incidence rates in the 
three groups were 0% (0/427), 3.7% (15/402), and 77.6% 
(142/183). Taking the medium-risk group as the refer-
ence, the relative risk (RR) ratios and 95% CIs of incident 
HCC were 0.0 in the low-risk group and 20.8 (11.9–36.4) 
in the high-risk group.

Clinical outcome assessment after risk stratification
After excluding HCC cases with a confirmative diag-
nosis, the remaining 855 at-risk individuals were 
continuously observed for incident HCC during a 
median of 10.2  months of follow-up. The cumulative 
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HCC incidences were significantly different in the 
low-, medium-, and high-risk groups (log-rank test, 
p-value < 0.001) (Fig. 3). The low-risk group maintained 
the lowest incidence over a period of up to two years. The 
3-month, 6-month and 18-month cumulative incidences 
were 0.6%, 0.9% and 0.9% in the low-risk group; 2.0%, 
3.6% and 5.8% in the medium-risk group; and 4.2%, 9.2% 
and 22.2% in the high-risk group.

These results showed that recalibration-in-the-large, 
combined with reasonable thresholds of 1.3% and 15.5%, 
could be used to effectively stratify patients based on 
their need for HCC surveillance into three risk groups 
that are useful in everyday clinical practice. Patients in 
the high-risk group are likely to be diagnosed with HCC 
soon and need fairly intensive surveillance. Patients with 
uncertain liver SOL in any risk group should undergo 
close monitoring at 3-month intervals. Patients with 
definitely benign or absent liver SOL in the low-risk 
group could undergo monitoring every year, and similar 

patients in the medium-risk group should return for sur-
veillance at 6-month or shorter intervals.

Discussion
This study validated the ASAP model [8] in a significantly 
different setting from that in which it was developed. In 
this setting, the patients underwent all-cause surveillance 
for HCC (Table 1). The model was highly miscalibrated, 
and its uncertainties were corrected using three meth-
ods. By comparing the overall performance of these mod-
els, the recalibration-in-the-large model was used for the 
prediction of incident HCC, and two reasonable thresh-
olds were set for the classification management of at-risk 
patients.

Although the original model was significantly more dis-
criminative in the validation cohort than in the develop-
ment cohort [C-statistic, 0.982 (95% CI 0.972–0.992) vs. 
0.941 (95% CI 0.929–0.952)] [8], it systematically over-
estimated the probability of HCC (Fig. 2a), resulting in a 

Table. 3 Classification statistics of the selected thresholds for the recalibration-in-the-large of the validation cohort and subsets

CI confidence interval, HCC hepatocellular cancer, NB net benefit, NPV negative prediction value, PPV positive prediction value
1 1.3%, the median prediction probability of non-HCC; 13.1%, the optimal cutoff value; 15.5%, the incidence rate of HCC in the validation cohort; 1/3, the low threshold 
in the original ASAP model; 50%, the midpoint of the sigmoid curve; 2/3, the high threshold in the original ASAP model; 98.3%, the median prediction probability of 
HCC
2 Computed with 2000 stratified bootstrap replicates

Probability 
 threshold1

Proportions divided Sensitivity
(95% CI)2

Specificity
(95% CI)2

PPV
(95% CI)2

NPV
(95% CI)2

NB
(95% CI)2

All patients HCC patients

For HCC of any etiology, [15.5% (157/1012)]

 1.3% 427/685 0/157 1 (1–1) 0.499 (0.466–0.532) 0.268 (0.256–0.282) 1 (1–1) 0.150 (0.125–0.173)

 13.1% 823/189 13/144 0.917 (0.873–0.955) 0.947 (0.931–0.963) 0.763 (0.71–0.818) 0.984 (0.976–0.992) 0.136 (0.113–0.160)

 15.5% 829/183 15/142 0.905 (0.854–0.949) 0.952 (0.937–0.966) 0.777 (0.724–0.832) 0.982 (0.973–0.99) 0.133 (0.112–0.155)

 1/3 856/156 20/137 0.873 (0.815–0.924) 0.978 (0.966–0.987) 0.879 (0.828–0.927) 0.977 (0.967–0.986) 0.126 (0.104–0.145)

 50% 874/138 26/131 0.834 (0.771–0.892) 0.992 (0.985–0.998) 0.950 (0.909–0.985) 0.970 (0.960–0.980) 0.123 (0.102–0.143)

 2/3 888/124 37/120 0.764 (0.694–0.828) 0.995 (0.991–0.999) 0.968 (0.934–0.992) 0.958 (0.947–0.969) 0.111 (0.090–0.132)

 98.3% 933/79 78/79 0.503 (0.427–0.580) 1 (1–1) 1 (1–1) 0.916 (0.905–0.928) 0.078 (0.061–0.095)

For single HBV-related HCC, [15.6% (122/782)]

 1.3% 367/415 0/122 1 (1–1) 0.556 (0.520–0.596) 0.294 (0.278–0.314) 1 (1–1) 0.151 (0.129–0.178)

 13.1% 646/136 8/114 0.934 (0.885–0.975) 0.967 (0.952–0.979) 0.839 (0.782–0.892) 0.988 (0.979–0.995) 0.142 (0.120–0.168)

 15.5% 652/130 10/112 0.918 (0.869–0.959) 0.973 (0.959–0.985) 0.862 (0.807–0.916) 0.985 (0.976–0.992) 0.139 (0.114–0.163)

 1/3 664/118 13/109 0.893 (0.836–0.943) 0.986 (0.977–0.994) 0.924 (0.875–0.966) 0.980 (0.970–0.989) 0.134 (0.109–0.160)

 50% 675/107 19/103 0.844 (0.779–0.910) 0.994 (0.988–0.996) 0.963 (0.924–0.991) 0.972 (0.960–0.984) 0.127 (0.102–0.153)

 2/3 685/97 28/94 0.771 (0.697–0.844) 0.995 (0.989–1) 0.969 (0.931–1) 0.959 (0.947–0.972) 0.113 (0.087–0.141)

 98.3% 716/66 56/66 0.541 (0.451–0.631) 1 (1–1) 1 (1–1) 0.922 (0.908–0.936) 0.084 (0.064–0.105)

For HCC of other causes, [15.2% (35/230)]

 1.3% 60/170 0/35 1 (1–1) 0.308 (0.246–0.369) 0.206 (0.192–0.222) 1 (1–1) 0.144 (0.100–0.193)

 13.1% 177/53 5/30 0.857 (0.743–0.971) 0.882 (0.836–0.928) 0.569 (0.475–0.680) 0.972 (0.949–0.994) 0.115 (0.073–0.159)

 15.5% 177/53 5/30 0.857 (0.743–0.971) 0.882 (0.836–0.928) 0.569 (0.475–0.680) 0.972 (0.949–0.994) 0.112 (0.067–0.157)

 1/3 192/38 7/28 0.800 (0.657–0.914) 0.949 (0.918–0.974) 0.737 (0.620–0.862) 0.964 (0.939–0.984) 0.100 (0.057–0.148)

 50% 199/31 7/28 0.800 (0.657–0.914) 0.985 (0.964–1) 0.906 (0.800–1) 0.965 (0.941–0.985) 0.109 (0.061–0.157)

 2/3 203/27 9/26 0.743 (0.600–0.886) 0.995 (0.985–1) 0.964 (0.880–1) 0.956 (0.932–0.980) 0.104 (0.061–0.152)

 98.3% 217/13 22/13 0.371 (0.229–0.543) 1 (1–1) 1 (1–1) 0.899 (0.878–0.924) 0.057 (0.030–0.091)



Page 11 of 15Li et al. Clin Proteom           (2021) 18:21  

reduced clinical benefit and possibly even harm (Fig. 2c), 
including more radiation exposure, more psychological 
harm, and higher costs [10, 11, 19–21]. The main reason 
may be the difference in case mix in the two cohorts [11]; 
the average increased prediction probability of 25.6% was 
the difference between the two HCC incidences (41.1% 
and 15.5%).

The LRT between the original model and model revi-
sion (p-value < 0.001) highlighted the need for recalibra-
tion [15]. Recalibration-in-the-large yielded comparable 
performance to model revision (LRT χ2 p-value = 0.332), 
e.g., the same excellent discrimination, good calibra-
tion, and increased NB across a wide range of probability 
thresholds (Fig. 2b, c), avoiding the excessive and unnec-
essary measurements that would be undertaken if the 
original model was used. Additionally, the updated model 
had superior accuracy and clinical usefulness in patients 
at risk for HCC with single HBV infections than in those 
with other etiologies.

The hierarchy of the quality of the model external veri-
fication using new data from an independent research 
institution is better than temporal verification and geo-
graphic verification using data collected by the original 
research team for model development. Model verifica-
tion with new data might lead to decreased accuracy and 

miscalibration and might influence the model outcome. 
However, we could adjust the overfitting, improve the 
model’s calibration and overall prediction performance, 
and use the model in diverse populations and settings 
[22, 23]. Our data were collected from a different popu-
lation and clinical scenario from that of the develop-
ment cohort. We corrected the calibration by adding an 
intercept of −  3.243 to the original ASAP model, thus 
promoting its generalizability. Our research provided a 
robust verification of the ASAP model.

Accurate predictions and precise interventions have 
received increasing attention. Personalization surveil-
lance schemes are expected to benefit patients by facili-
tating the early detection of HCC, while risk-adapted 
interventions are expected to prevent or delay the pro-
gression of HCC and improve patient prognosis [4, 24, 
25]. The absence of valid noninvasive risk stratification 
tools makes the personalized management of at-risk 
patients challenging. The risk thresholds in a prediction 
model are commonly determined arbitrarily [10] and sel-
dom further tested with regard to their impact on clinical 
outcomes [7, 26]. Proper thresholds can benefit clinical 
management strategies, while inappropriate thresholds 
negatively affect decision-making processes [10]. The 
thresholds set for the online ASAP nomogram, 1/3 and 

Fig. 3 Cumulative HCC incidences in three risk groups based on the recalibration-in-the-large. Kaplan-Meier curve demonstrating significant 
differences in the cumulative HCC incidences among the low-risk group (predicted probability < 1.3%, the median of the predicted probability 
in the non-HCC patients), medium-risk group (predicted probability 1.3–15.5%), and high-risk group (predicted probability > 15.5%, the HCC 
incidence in the validation cohort) (log-rank test, p-value = 9e−04; low-risk vs. medium-risk with p-value = 0.01, medium-risk vs. high-risk with 
p-value = 0.08, and low-risk vs. high-risk with p-value = 3e−05). The two probability thresholds were reasonable for risk classification based on the 
estimation by recalibration-in-the-large in the validation cohort. Abbreviations: HCC, hepatocellular carcinoma
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2/3, were somewhat unsuitable for the recalibration-in-
the-large to risk stratification in clinical contexts simi-
lar to ours, which led to poor predictive results at the 
follow-up outcome evaluation, i.e., most patients were 
in the low-risk group, there were fewer medium-risk 
patients than high-risk patients (32 vs. 124), and there 
was a higher cumulative HCC incidence rate in the low-
risk group than in the medium-risk group (see Additional 
file 6: Fig. S4). The choice of risk thresholds, discrimina-
tion, calibration, and clinical utility need to be reevalu-
ated before its application in a new clinical setting. We 
assessed the performance of recalibration-in-the-large 
at multiple probability thresholds (Table 3) [10, 26] and 
chose a relatively stable median value of non-HCC cases 
and a less harmful event rate to group patients according 
to their level of risk [11, 18] with reference to the distri-
bution characteristics of the predictive values in the study 
cohort (see Additional file  4: Fig. S3b). The probability 
thresholds of 1.3% and 15.5% reasonably and effectively 
defined the risk categories (Table 3 and Fig. 3). Thus, the 
prediction model laid a foundation for the further clini-
cal application of risk stratification to better manage tar-
geted individuals [26, 27].

Routine semiannual follow-up monitoring in at-risk 
patients was expected to improve the detection of early-
stage HCC and the clinical outcomes [3, 20, 28, 29]. 
Low-risk populations with an annual incidence rate of 
HCC < 0.2% can be exempted from surveillance [28, 30, 
31]. However, current studies have shown that the clini-
cal effects are unclear for various reasons [3, 20]. First, 
the limited compliance of patients was not satisfactory 
[4]. Second, the one-size-fits-all recommendation was 
unlikely to be applicable to all patients in multiple set-
tings [32]. Recently, Rich NE et  al reported that tumor 
growth has obvious heterogeneity, and the tumor dou-
bling time varies from less than 3 months to more than 
half a year [33]. 3-month diagnostic delays can allow 
tumors to grow significantly, leading to less effective 
treatment [34]. The expert consensus in East Asia also 
pointed out that HBV-infected patients with two risk 
factors for HCC development need to initiate antiviral 
therapy or undergo monitoring at 3-month intervals [25]. 
Third, the 6-month or unclear detection time window 
in most HCC risk prediction models leads to decreased 
predictive performance of models based on tumor mark-
ers that fluctuate over time [14] and ineffective sugges-
tions regarding the need for 3-month follow-up visits. 
Our follow-up outcome analysis showed that among the 
low-risk group, which had an HCC diagnosis rate of 0%, 
at least 0.6% of the individuals should return at 3 months 
to facilitate the discrimination of very early-stage HCC 
from atypical hyperplastic nodules. Three-month follow-
up strategies developed for the small proportion of the 

population with nodules of uncertain identity will facili-
tate the early diagnosis of HCC. The evaluation of the 
clinical impact of predictive models helps refine the fol-
low-up strategies for different risk groups.

Routine serum biomarkers are often helpful in assess-
ing the HCC risk of patients. Despite its limited accuracy, 
AFP is the most commonly used HCC diagnostic bio-
marker due to its increase in the early stages of the dis-
ease. PIVKA-II is another widely used HCC marker with 
high specificity. PIVKA-II is a powerful supplement to 
AFP in HCC diagnosis [35], and their combination could 
improve the accuracy [35–38]. Recent reports have sug-
gested that the ratio of gamma-glutamyltransferase to 
aspartate aminotransferase (γ-GT/AST) and the Lens 
culinaris agglutinin-reactive fraction of AFP (AFP-L3) 
are valuable markers in HCC diagnosis. The addition 
of the γ-GT/AST ratio or AFP-L3 to the combination 
of AFP and PIVKA-II could further improve the accu-
racy of HCC diagnosis [36, 37]. Our data show that the 
γ-GT/AST ratio of the patients with HCC was signifi-
cantly higher than that of the other risk groups (p-value 
<  0.05) (Table  1). However, when combined with AFP 
and PIVKA-II, the γ-GT/AST ratio did not significantly 
contribute to the logistic regression models predicting 
HCC (p-value = 0.835) or early HCC (p-value = 0.716). 
AFP-L3 has been reported to be a sensitive indicator for 
early HCC detection, and its diagnostic performance 
was inferior to AFP and PIVKA-II [37, 38]. Considering 
its cost-effectiveness and relatively lower performance in 
HCC prediction, few studies have reported the effective-
ness of AFP-L3 combined with AFP and PIVKA-II in the 
diagnosis of overall and early HCC [8, 37]. In the existing 
reports, the increment value of the C-statistic of AFP-L3 
to the model of AFP and PIVKA-II remains controversial 
[37, 38].

Our analysis showed that HCC occurrence was most 
closely related to hepatitis B virus infection; the inci-
dences of HCC in populations with different etiologies 
were similar (p-value >  0.05). The simpler ASAP model 
that only included the AFP and PIVKA-II levels and two 
patient observable attributes, such as age and sex [8], did 
not need to detect other indexes, was not limited by the 
etiologies of liver disease and the antiviral status, could 
accurately predict the risk of HCC and was easily vali-
dated and calibrated with new data from diverse settings.

Our research is the first to apply the HCC diagnostic 
model as a prognostic management tool to the popula-
tion at risk of HCC. This model efficiently excavated the 
potential predictive function of the ASAP diagnostic 
model. This model helped make clinical follow-up deci-
sions for different risk populations, which could achieve 
long-term and refined management of patients at risk 
for HCC. Based on the risk thresholds selected based 
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on the population distribution characteristics, high-risk 
groups could receive more attention and monitoring, and 
the allocation of medical resources could be optimized, 
which could be beneficial for the early detection, inter-
vention, diagnosis, and treatment of HCC. This model 
could improve the prognosis of at-risk patients for HCC. 
Moreover, these indicators have the characteristics of 
noninvasiveness, easy availability, repeatability, and 
standardization, which are conducive to applying and 
promoting the model in clinical practice.

Strength
We determined three weeks as the test-to-diagnosis 
interval based on the clinical characteristics of HCC 
diagnosis [12, 13], which increased the performance of 
the model and provided evidence supporting the devel-
opment of 3-month follow-up strategies and patient 
counseling. We improved the applicability of the ASAP 
model to patients at risk for HCC regardless of etiology 
by updating it based on data from a real-world cohort. 
We clarified that stratified management with reasonable 
thresholds had the potential to aid in achieving an early 
diagnosis and avoiding clinical harm. We refined the 
personalized recommendations for different risk groups 
through a follow-up analysis, e.g., definitively low-risk 
patients can prolong their follow-up intervals to one year, 
avoiding unnecessary investigations, enabling the alloca-
tion of limited medical resources to the most high-risk 
patients, which is an especially important consideration 
during the coronavirus disease 2019 pandemic.

Limitations
A total of 18.8% (161/855) of the patients were lost to 
follow-up, which might have resulted in inaccurate esti-
mates concerning the associations between HCC occur-
rence and the predicted risk. The current study focused 
on the prediction of the risk of all-cause HCC; however, 
the risk of HCC differs by etiology [3, 4, 28, 29]. It would 
be better to generate recalibrated models for each spe-
cific etiology, which would necessitate a larger sample 
size. The models appear to be unable to identify the risk 
of very early-stage cases due to their relatively low pro-
portion in the study and the large overlap in the AFP and 
PIVKA-II levels between early-stage HCC and the risk 
groups (Additional file  2: Fig. S1a, b). Nevertheless, the 
addition of an appropriate risk classification strategy to 
the high discrimination ability of the predictive model 
could effectively improve the status quo. The classifica-
tion of patients with indeterminate nodules into the high-
risk group, thereby ensuring that these patients undergo 
intensive surveillance, may address this shortcoming [4]. 
Validation was performed at a single center with limited 
data, and no cost-benefit analysis was performed.

Conclusion
The ASAP model can be used to accurately predict inci-
dent HCC and facilitate the personalized management of 
at-risk patients. However, independent and robust model 
validation is essential to ensure that the appropriate 
tools are available for the precise prediction of incident 
HCC, which can be used during patient consultation and 
intervention decision-making in novel clinical settings. 
The well-calibrated model obtained with recalibration-
in-the-large combined with the risk-stratified strategies 
established in the article is suitable for the noninvasive 
monitoring of patients at risk for HCC in primary care 
centers. The overall performance needs further validation 
and refinement in larger cohorts. Developing region-spe-
cific recalibration models and selecting the correspond-
ing risk thresholds may improve the generalizability of 
the model.
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revised model, we retained this variable in the revision nomogram due 
to its clinical relevance and high relative frequency in most models. The 
logit (P) calculation formula is {-12.95521 + 0.06178[age] - 0.7449[sex]+ 
0.55643[log(AFP)] + 1.28268[log(PIVKA-II)]}. The prediction probability 
(P) calculation formula is exp[logit (P)]/{1+ exp[logit (P)]}. The illustrated 
patient #39 maps its values to the covariate scales. The calculated nomo-
gram score was 95.1 points, and the estimated prediction probability 
of HCC was 0.177 (95% CI, 0.102-0.288). Tables of point assignments by 
levels of predictors are shown in Additional file 5: Table S2. b Predicted 
probability of HCC versus the densities of the non-HCC and HCC patients 
in the validation cohort. Based on the relationship between the prediction 
probability and nomogram score of the patients with non-HCC and HCC, 
the patients were divided into low-, medium-, high-, and very high- risk 
groups by the following three thresholds: the median of non-HCC patients 
due to its relative stability, the value of the incidence rate with less clini-
cal harm (11), and the median of HCC cases capable of identifying very 
high-risk patients. Their corresponding cutoff scores were 72.5 points (the 
median of non-HCC patients), 94 points (the incidence in the cohort), and 
138 points (the median of HCC patients). Abbreviations: ***: p < 0.001; 
AFP: α-fetoprotein; CI: confidence interval; HCC: hepatocellular carcinoma; 
PIVKA-II: protein induced by vitamin K absence or antagonist-II; Pr/Prob.: 
probability.

Additional file 5: Table S2. Nomogram score tables of the model 
revision.

Additional file 6: Fig. S4. Cumulative HCC incidences in the recalibration-
in-the-large-estimated risk groups classified by the tertile thresholds. 
Kaplan-Meier curve demonstrating significant differences in the cumula-
tive HCC incidences among the low-risk group (predicted probability < 
1/3), medium-risk group (predicted probability 1/3–2/3), and high-risk 
group (predicted probability > 2/3) (log-rank test, p-value = 0.016) based 
on the estimation of recalibration-in-the-large. The cumulative incidence 
in the medium-risk group was the lowest and lower than that in the 
low-risk group. The two probability thresholds were suboptimal for risk 
classification based on the estimation by recalibration-in-the-large in the 
validation cohort. Abbreviations: HCC, hepatocellular carcinoma.
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