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Abstract
Background  COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes 
in critically ill COVID-19 patients’ proteomes enables a better understanding of markers associated with susceptibility, 
symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify 
novel proteins of COVID-19.

Methods  A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched 
COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used 
to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically 
relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein 
expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific 
expression.

Results  Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU 
non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, 
F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) 
maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, 
and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no 
significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key 
proteins, with the digestive and nervous systems being the leading systems.

Conclusions  The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 
sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate 
classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps 
elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) induces coronavirus disease 2019 (COVID-19), a 
pandemic disease affecting more than 750  million indi-
viduals with over 6.8  million deaths [1, 2]. COVID-19 
vaccinations and alternative variants influence the inci-
dence and severity of new COVID-19 cases [3–5]; con-
sequently, an improved understanding of the disease is 
necessary to counteract possible vaccine breakthroughs 
[6, 7]. Individuals with COVID-19 present with heteroge-
neous symptoms and severity due to the complex, multi-
system pathophysiological impact of the SARS-CoV-2 
virus [8–11]. COVID-19 severity is also complicated by 
various demographic and clinical risk factors, including 
age, sex, and pre-existing comorbidities [12–15].

SARS-CoV-2 infection triggers an innate immune 
response characterized by elevations in plasma pro-
inflammatory cytokines, proteases and related proteins 
[16–22]. Vascular injury and endothelial dysregulation 
are key components of COVID-19, often resulting in 
microvascular thrombosis [23–26]. A humoral immune 
response follows the innate reaction, with robust produc-
tion of SARS-CoV-2-specific antibodies [27–29]. In criti-
cally ill patients, COVID-19 results in impaired immune 
cell homing and programmed cell death. Specifically, 
antigen presentation and B/T-cell function is reduced, 
neutrophils and M1-type macrophages are repurposed, 
endothelia and fibroblasts are disrupted, myeloid lines 
become reactive, and the extracellular matrix is altered 
[30]. Despite a wealth of knowledge on COVID-19 
pathophysiology, a unique proteomic signature that (1) 
includes proteins expressed across multiple systems and 
(2) that can be used to identify novel connected path-
ways, remains elusive.

This study aims to identify proteins specific to critically 
ill COVID-19 patients relative to age- and sex-matched 
non-COVID-19 sepsis patients and healthy control sub-
jects. Our specific objectives were: (1) to measure the 
concentrations of 2,000 plasma proteins with antibody 
microarrays from the three cohorts; (2) to determine the 
relative importance of the plasma proteins in identify-
ing COVID-19 patients to develop classification models; 
(3) to correlate the leading proteins to clinically relevant 
variables; (4) to investigate expression changes in the 
leading proteins on hospitalization days 1, 3, 7, and 10; 
and (5) to determine the cell type and organ system 
expression patterns of the leading proteins.

Methods
Study participants, blood sampling, and Cohort Matching
We used the Sepsis 3.0 criteria, which does not require 
pathogen identification, to screen patients admitted to 
our intensive care unit (ICU) [31]. All COVID-19 partici-
pants were pre-vaccinated. Two SARS-CoV-2 viral genes 

(RdRP and E) were detected using a polymerase chain 
reaction to confirm or refute COVID-19 status [32]. 
Blood was drawn on ICU days 1, 3, 7, and 10 for COVID-
19 patients and on ICU days 1 and 3 for non-COVID-19 
patients, depending on their continued admission in the 
ICU. Blood was obtained via indwelling catheters, and if 
a venipuncture was required, research blood draws were 
coordinated with a clinically indicated blood draw. In 
keeping with accepted research phlebotomy protocols 
for adult patients, blood draws did not exceed maximal 
volumes [33]. Blood was centrifuged, the plasma isolated 
and aliquoted at 250 µL in cryovials, and frozen at − 80 °C. 
All samples remained frozen until use, and freeze/thaw 
cycles were avoided. The healthy control subjects were 
individuals without disease, acute illness, or prescription 
medications and whose samples were collected prior to 
the emergence of SARS-CoV-2 (Translational Research 
Centre, London, ON; Directed by Dr. D.D. Fraser) [34, 
35]. Final participant groups were constructed by age- 
and sex-matching ICU COVID-19 patients with ICU 
non-COVID-19 sepsis controls and healthy control sub-
jects, resulting in 15 participants per group.

Patient demographics and Clinical Data
Baseline characteristics for COVID-19 and non-
COVID-19 sepsis controls on ICU admission Day 1 were 
recorded, including age, sex, comorbidities, standard 
hospital laboratory measurements, PaO2 to FiO2 ratio, 
and chest radiograph findings. Also, the Multiple Organ 
Dysfunction Score (MODS) and Sequential Organ Fail-
ure Assessment Score (SOFA) were calculated [31, 36]. 
Clinical interventions received during the observation 
period were also recorded, including the use of antibi-
otics, antiviral agents, systemic corticosteroids, vasoac-
tive medications, antiplatelet treatment, anticoagulation 
treatment, renal replacement therapy, high-flow oxygen 
therapy, and mechanical ventilation (both invasive and 
non-invasive). For healthy controls, only age and sex were 
available.

Antibody microarray
The RayBio® L-Series Human Antibody Array 2000 kit 
(RayBiotech Life Inc., GA, USA) was used to measure 
2,000 proteins in plasma obtained from age- and sex-
matched COVID-19 and non-COVID-19 sepsis patients, 
as well as healthy control subjects. The kits detect a broad 
range of proteins, including, but not limited to, cyto-
kines, growth factors, receptors, signalling proteins, met-
abolic enzymes, and epigenetic markers. Prior to sample 
analysis, the stored plasma cryotubes underwent visual 
inspection to ensure that they were sealed and intact. The 
plasma samples were then thawed, visually inspected, 
and centrifuged to remove low molecular weight amine 
derivaties and unwanted buffer (plasma samples were 
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only used if free of obvious contamination, hemolysis, 
precipitate, and lipemia). A labelling reagent was applied 
to biotinylate the purified plasma. Before application of 
plasma, each lot of the antibody array slides was tested 
with a positive control to verify accuracy within a pre-
defined range (e.g., CV%). A blocking buffer was then 
applied to the microarray glass slides, followed by the 
biotinylated plasma samples at a 20x dilution. A strep-
tavidin-conjugated fluorescent dye (CY3-Equivelent) 
was applied, and protein expression was measured via 
laser fluorescence scanning. There were 4 arrays (“y”) 
that contained 493–507 protein targets (“X”; spots), for 
a total of 2000 protein targets. Of the 4 arrays, one was 
arbitrarily selected to be the “reference array”, to which 
all the other arrays were normalized. Background level 
subtraction was performed by measuring the local back-
ground around each spot and subtracting that from the 
measured spot fluorescence. Fluorescence levels were 
normalized as follows: X(Ny) = X(y) * P1/P(y); where: 
P1 = mean signal intensity of Positive Controls on refer-
ence array, P(y) = mean signal intensity of Positive Con-
trols on Array “y”; X(y) = mean signal intensity for spot 
“X” on Array “y”; and X(Ny) = normalized signal intensity 
for spot “X” on Array “y”. The data used for our analysis 
was the normalized fluorescence intensity signals, which 
is an arbitrary unit refered to as RFI (relative fluorescence 
intensity).

Conventional statistics
Patient baseline clinical characteristics (Day 1 of ICU 
admission) were reported as median (IQR) for continu-
ous variables and frequency (%) for categorical variables. 
A Kruskal-Wallis comparison of the individual proteins 
was conducted between the healthy controls, ICU non-
COVID-19 patients, and ICU COVID-19 patients on 
Day 1, followed by pairwise comparison with a post-hoc 
Dunn test that included a false discovery rate (Benjamini-
Hochberg) correction. A paired comparison of protein 
expression on multiple days was conducted using the 
Wilcoxon Signed-Rank test with Bonferroni correction to 
assess changes during the ICU stay. Only multiple com-
parison-corrected P-values are reported, and those below 
0.05 were considered statistically significant.

Machine learning
The data was split into a feature selection dataset (70%) 
and a testing dataset (30%), stratified by subject groups 
(Supplemental Fig. 1). The feature selection was done on 
Day 1 data that combined healthy controls and ICU non-
COVID-19 patients and compared them against ICU 
COVID-19 patients. The combined cohort ensures the 
selection of the most significant proteins relevant to both 
healthy controls and ICU non-COVID-19 patients, which 
may improve clinical translation. The Boruta feature 

selection algorithm, based on Random Forest classifiers, 
was used to identify the most important proteins [37]. It 
individually compares each protein to randomly arranged 
versions of the data to determine if the protein is better 
at classifying than chance. The results from the Boruta 
feature reduction identified the most relevant proteins 
for classifying COVID-19 (a “reduced protein signature”). 
To assess the classification ability, two separate Random 
Forest classifiers were created to assess healthy controls 
versus ICU COVID-19 patients and ICU non-COVID-19 
patients versus ICU COVID-19 patients.

Steps were undertaken to conduct a conservative 
analysis that mitigates small sample sizes and overfitting 
concerns. The Boruta algorithm was run on the feature 
reduction dataset to determine the most relevant fea-
tures. The testing dataset was modified to contain only 
the identified relevant features. The reduced testing 
dataset was then used for the classification of COVID-
19 with a Random Forest classifier. To reduce overfitting 
and maintain a conservative model, three-fold cross-val-
idation was used with a Random Forest of 10 trees and a 
maximum depth of 3 [38]. The accuracy, receiver operat-
ing characteristic (ROC) curve area-under-curve (AUC), 
and the F1 score are reported. A high F1 score indicated 
that precision and recall are high.

As a Random Forest is a set of decision trees, we were 
able to interrogate this collection of trees to identify the 
features that have the highest predictive value (viz., those 
features that frequently appear near the top of the deci-
sion tree). Based on this characteristic, recursive feature 
elimination (RFE) was used to prepare an optimal model. 
RFE started with the reduced training dataset, fitted a 
Random Forest classifier, dropped the least important 
feature, and repeated the process until only ten features 
remained. Due to the randomness of the algorithm and 
Random Forest models, 10,000 runs of RFE were con-
ducted. Those features in the top 10 for more than a spec-
ified threshold of the 10,000 runs were determined to be 
the optimal features. An optimal testing dataset contain-
ing only these optimal features was generated from the 
reduced testing dataset. The same classification process 
for the reduced testing dataset was used on the optimal 
testing dataset.

The proteomic data was visualized with a nonlinear 
dimensionality reduction on the reduced and optimal 
datasets using the t-distributed stochastic nearest neigh-
bour embedding (t-SNE) algorithm. A t-SNE assumes 
that the ‘optimal’ representation of the data lies on a 
manifold with complex geometry, but in a low dimen-
sion, embedded in the full-dimensional space of the raw 
data [39]. Seperate t-SNE plots were constructed with all 
participants on the complete, reduced, and optimal data-
sets for visual comparison of clustering patterns. A pair-
wise comparison, using cosine similarity, was conducted 
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to determine the similarity between subjects across the 
selected proteins and time points [40]. As such, subjects 
similar across their selected proteomic profile have a 
score closer to 1, while dissimilar subjects have a score 
closer to 0. The analysis was done with data Min-Max 
scaled between 0 and 1, and the cosine similarities were 
visualized using a heatmap.

The indivudal protein performance for distinguishing 
ICU COVID-19 patients from healthy controls and ICU 
non-COVID-19 patients was compared using a bootstrap 
Logistic Regression approach with 1000 repetitions. The 
participants were sampled with replacement, and three-
fold cross-validation was used. The mean ROC AUC, 
sensitivity, specificity, and the F1 score are reported. The 
machine learning analysis was conducted using Python 
version 3.10.11 and Scikit-Learn version 1.2.2 [41].

Natural Language Processing
In order to identify physiological domains of interest in 
COVID-19 patients, exploratory expression analysis was 
conducted with Natural Language Processing (NLP). 
Expertly curated mRNA/protein expression information 
was parsed from the Uniprot Knowledgebase as unstruc-
tured text with UniProt’s REST API [42]. An NLP named-
entity recognition (NER) pipeline was configured with 
the MIMIC package for preprocessing, negation detec-
tion, and the pretrained Stanza BioNLP13CG Biomedical 
model (Python v. 3.10.11; spaCy v. 3.3.1; spaCy-Stanza v. 
1.0.2; negspaCy v. 1.0.3) [43–45]. The negation detection 
was done using the NegEx-based negspaCy implemen-
tation with a modified English clinical term set to filter 
negative expression terms. Although the BioNLP13CG 
biomedical model was based on Cancer Genetics and 
publicly available PubMed abstracts, compared to the 
other Stanza models, it provided the most granular entity 
classification, including anatomical system, organ, tis-
sue, multi-level tissue, and cell type entities. The detected 
organ and cell type entities were manually classified into 
keyword-based groups separately. The manual expression 
curation process relies on existing literature and is not 
easily structured into specific organ systems. The organ, 
tissue, multi-tissue, and anatomical system entity types 
were combined and manually sorted into organ systems 
to include the maximum expression information in the 
analysis. The frequency of the keyword-based categories 
with respect to the relevant proteins was determined to 
identify physiological patterns of expression.

Results
A total of three age- and sex-matched groups were 
included, consisting of COVID-19 patients (median years 
old = 60; IQR = 12; n = 15), non-COVID-19 sepsis patients 
(median years old = 57; IQR = 11; n = 15), and healthy con-
trol subjects (median years old = 56; IQR = 10; n = 15). 

There were no significant differences in age (Kruskal-
Wallis H-test, P = 0.87) and sex (Chi-Square, P = 1.000) 
between the three cohorts. Baseline demographic char-
acteristics, comorbidities, laboratory measurements, 
interventions, and chest x-ray findings of COVID-19 
and non-COVID-19 sepsis controls are reported in 
Table 1. The two cohorts were generally similar in terms 
of their demographics, comorbidities, and interventions, 
except that COVID-19 patients had longer intubation 
periods and greater ICU days. While all ICU patients 
met the Sepsis 3.0 presentation criteria, only 40% of the 
non-COVID-19 ICU patients had pathogen identified. 
The COVID-19 patients were more likely to have bilat-
eral pneumonia, lower white blood cell and lymphocyte 
counts, higher INR and PTT, and a lower PaO2/FiO2 
ratio.

The expression levels of 2,000 proteins (1,968 unique 
proteins) were measured (Supplemental Fig.  2), and the 
cohorts plotted with t-SNE (all 2,000 proteins; Supple-
mental Fig.  3). Using Boruta feature selection machine 
learning, the leading 28 proteins were identified in com-
paring ICU COVID-19 patients to ICU non-COVID-19 
patients (ICU day 1 for both) and healthy control sub-
jects, and their relative importance is provided in Table 2. 
The leading 28 protein model had high classification 
ability when comparing ICU COVID-19 patients to ICU 
non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, 
F1 = 0.89) as well as when comparing ICU COVID-19 
patients to healthy control subjects (accuracy = 0.89, 
AUC = 1.00, F1 = 0.88). Individually, each of the 28 pro-
teins was significantly different in COVID-19 patients 
compared to non-COVID-19 patients (FDR adjusted 
P < 0.05). When compared to healthy controls, 4 proteins 
out of the 28 (Galanin, ProSAAS, VimentinB, and NET1) 
were not significantly different from COVID-19 patients. 
Of the 28 proteins, only four had overall elevated levels 
in the COVID-19 patients (Fyn, Fen1, Azurocidin, and 
NET1; Supplemental Fig. 4). The individual classification 
abilities varied between the 28 proteins and is provided in 
Supplemental Tables 1 and Supplemental Table 2. Visual-
izing the 28 protein classification ability on Day 1 using 
t-SNE plots demonstrated a distinct COVID-19 patient 
cluster separation (one outlier) from healthy controls 
(Fig.  1A) as well as non-COVID-19 patients (Fig.  1C). 
The functions of the 28 proteins are described in Supple-
mental Table 3.

Recursive feature elimination was used to determine 
a set of optimal proteins. Those proteins in the top 10 
for at least 5,000 of the 10,000 RFE repetitions (50%) 
were selected as the optimal protein model. Nine of the 
28 proteins were optimal: PF4V1, NUCB1, CrkL, Ser-
pinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1 
(Supplemental Fig. 5). The optimal set of proteins main-
tained a high classification ability between COVID-19 
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Table 1  Demographics and Clinical Variables of non-COVID-19 and COVID-19 ICU patients
Variable Non-COVID-19 ICU (n = 15) COVID-19 ICU (n = 15) P Value
Age, median (IQR) 57.0 (52.0–63.0) 60.0 (53.0–65.0) 0.739
Male, no. (%) 7 (46.7) 7 (46.7) 1.000
Height (cm), median (IQR) 164.0 (159.1-172.5) 170.0 (163.5–173.0) 0.329
Weight (kg), median (IQR) 77.0 (64.6–97.8) 92.0 (81.6-107.5) 0.044
BMI, median (IQR) 28.4 (23.2–33.6) 30.7 (28.2–38.6) 0.135
SOFA, median (IQR) 7.0 (5.0–9.0) 5.0 (2.5–9.5) 0.318
MODS, median (IQR) 5.0 (3.5-8.0) 4.0 (3.5-6.0) 0.367
Sepsis Presentation, no. (%) 15 (100.0) 15 (100.0) 1.000
Pathogen Identified, no. (%) 6 (40.0) 15 (100.0) < 0.001
Comorbidities, no. (%)
  Diabetes 6 (40.0) 5 (33.3) 1.000
  Hypertension 10 (66.7) 7 (46.7) 0.462
  Coronary Artery/Heart Disease 2 (13.3) 2 (13.3) 1.000
  Chronic Heart Failure 2 (13.3) 0 (0.0) 0.483
  Chronic Kidney Disease 1 (6.7) 2 (13.3) 1.000
  Cancer 1 (6.7) 2 (13.3) 1.000
  COPD 3 (20.0) 1 (6.7) 0.598
Pulmonary pathology, no. (%)
  Unilateral Pneumonia 8 (53.3) 1 (6.7) 0.014
  Bilateral Pneumonia 1 (6.7) 14 (93.3) < 0.001
  Bilateral Opacities 1 (6.7) -- --
  Interstitial Infiltrate 2 (13.3) -- --
Laboratories, median (IQR)
  Hemoglobin 124.0 (104.5-138.5) 121.0 (107.0-131.0) 0.547
  White Blood Cell count 16.4 (12.0-21.2) 8.7 (7.0-16.2) 0.031
  Neutrophils 12.7 (9.9–15.8) 7.7 (5.7–13.3) 0.055
  Lymphocytes 1.4 (0.8–1.8) 0.8 (0.6-1.0) 0.030
  Platelets 212.0 (173.0-262.0) 209.0 (163.5-301.5) 0.917
  Creatinine 79.0 (53.5–98.5) 82.0 (63.0-190.0) 0.340
  International Normalized Ratio 1.0 (1.0-1.1) 1.2 (1.2–1.3) 0.006
  Lactate 1.5 (1.0-3.3) 1.7 (1.1–1.9) 0.803
  Partial thromboplastin time (PTT) 23.0 (21.5–24.5) 28.0 (25.5–31.0) < 0.001
  PaO2/FiO2 Ratio 172.0 (137.8-290.8) 120.0 (69.5–153.0) 0.026
Intervention, no. (%)
  Renal Replacement Therapy 1 (6.7) 3 (20.0) 0.598
  High-Flow Nasal Cannula 4 (26.7) 9 (60.0) 0.139
  Non-Invasive Mechanical Ventilation 4 (26.7) 6 (40.0) 0.700
  Invasive Mechanical Ventilation 14 (93.3) 11 (73.3) 0.330
  Days Intubated, median (IQR) 4.0 (2.5-5.0) 14.0 (2.5–18.0) 0.046
  Steroids 7 (46.7) 4 (26.7) 0.450
  Vasoactive Medications 10 (66.7) 12 (80.0) 0.682
  Antibiotics 15 (100.0) 15 (100.0) 1.000
  Anti-virals 2 (13.3) 3 (20.0) 1.000
  Antiplatelet 7 (46.7) 5 (33.3) 0.710
  Anticoagulation 15 (100.0) 14 (93.3) 1.000
Outcome
  Death, no. (%) 2 (13.3) 7 (46.7) 0.109
  ICU Days, median (IQR) 5.0 (4.5-6.0) 17.0 (11.0-24.5) < 0.001
Note: P Value calculated with Mann-Whitney U test for continuous variables or Fisher Exact Test for binary variables
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patients on Day 1 and healthy controls (accuracy = 0.97, 
ROC = 0.97, F1 = 0.96) as well as between COVID-19 and 
non-COVID-19 on Day 1 (accuracy = 0.93, ROC = 1.00, 
F1 = 0.92). All proteins were significantly different in 
COVID-19 patients from non-COVID-19 patients, while 
ProSAAS and NET1 were not significantly different 
between COVID-19 and healthy controls (FDR-adjusted 
P < 0.05). Of the 9 proteins, only Fen1 and NET1 were 
elevated in COVID-19 patients. Visually, the t-SNE plots 
based on the nine optimal proteins illustrate a separation 
between the COVID-19 patients and healthy controls, 
with two outliers (Fig. 1B) as well as a distinct separation 
between COVID-19 patients and ICU non-COVID-19 
patients (Fig. 1D).

Pairwise cosine similarity between all subjects and 
available time points was calculated to compare the 
cohorts in terms of their reduced and optimal protein 
profiles, presented in Fig.  1E and F, respectively. The 
healthy control subjects have the most homogenous pro-
tein profiles in both the 28 and 9 protein models. The 
non-COVID-19 sepsis controls were relatively homog-
enous across ICU Days 1 and 3, with observable differ-
ences from healthy control subjects. The COVID-19 
patients are distinct at all time points from the other 
cohorts. Compared to the 28 protein profile, the COVID-
19 patients are more homogenous across time points 
with the 9 protein profile. The expression of the leading 
proteins in COVID-19 patients on ICU Days 3, 7, and 10 
were compared to their ICU Day 1 expression and dem-
onstrated no significant differences over time (P > 0.05; 
data not shown).

The relevant leading 28 protein measurements of the 
COVID-19 patients were compared to their clinical vari-
ables. A total of seven significant associations (P < 0.01) 
were identified and are presented in Figs. 2 and 3. Fibro-
nectin levels in all COVID-19 patients were below 
healthy control subjects and demonstrated a negative 
correlation with hemoglobin (Fig. 2A). Most COVID-19 
patients’ PCTM1 measurements were below healthy con-
trol subjects and negatively correlated with INR (Fig. 2B). 
SerpinB5, ERRa, and IGFBP-5 in COVID-19 patients 
were all positively correlated with PTT, and most patients 
had measurement levels below healthy control subjects 
(Fig.  2C-E). MammaglobinA was lower in COVID-19 
patients who received high-flow nasal cannula inter-
vention (Fig.  3A). ProSAAS was lower in patients with 
hypertension comorbidity (Fig. 3B).

Named-entity recognition was conducted on the tissue 
expression information provided by the UniProt Knowl-
edgebase. Out of the 28 leading proteins, 14 (50%) had 
organ expression information (Supplemental Table 4), 
and 8 (29%) had cell type expression information (Sup-
plemental Table 5). The percentage of the 14 proteins 
expressed in specific organ systems, led by the digestive 

and nervous systems, is shown in Fig. 4. The percentage 
of the eight proteins expressed in specific cell types is 
shown in Supplemental Fig. 6.

Discussion
In this study, we measured the expression of 2,000 plasma 
proteins with antibody micro-array technology from age- 
and sex-matched COVID-19 patients, non-COVID-19 
sepsis controls, and healthy control subjects. Using 
machine learning-based protein subset identification, we 
identified a 28-protein model that accurately differenti-
ated COVID-19 patients from their comparison cohorts. 
Furthermore, we determined an optimal 9-protein subset 
model that maintained high classification ability. Some 
identified proteins were associated with clinical and 
demographic characteristics in the COVID-19 patients. 
NLP of expert-curated expression information identi-
fied multi-system expression of the leading proteins. 
This study has identified a reduced protein signature 
for COVID-19 patients that contributes to COVID-19 
pathophysiology characterization and may inform the 
development of therapeutic interventions upon further 
investigation.

Our critically ill COVID-19 cohort was similar to other 
reported cohorts, with only minor differences [8, 46–49]. 
For example, the mortality rate in our COVID-19 patients 
was higher than reported by other studies and may sug-
gest a greater illness burden in our patients [8, 46, 50]. 
The platelet count in our COVID-19 patients was lower 
than reported in the literature [51–53], perhaps reflect-
ing greater microvascular injury and overall microclot 
risk [23]. Similarly, the PaO2/FiO2 ratio was also lower in 
our COVID-19 patients [8, 53], indicating higher levels 
of acute lung injury. Although COVID-19 lymphocyte 
counts, INR, and bilateral pulmonary complications were 
significantly different than in non-COVID-19 sepsis con-
trols, they were similar to those in COVID-19 patients 
reported in the literature [49, 52, 53].

A unique 28-protein signature that differentiated 
COVID-19 patients from non-COVID-19 sepsis con-
trols and healthy control subjects was determined. Each 
of the identified proteins was individually different in 
the COVID-19 cohort from the non-COVID-19 cohort, 
as well as 24 proteins were different in the healthy con-
trol subjects. Many proteins had high individual distin-
guishing power, further positioning them as possible 
disease biomarkers. Those proteins with weaker indi-
vidual performance may be beneficial in a combination 
or secondary role. Time-based analysis and inspection 
of the pairwise subject comparison demonstrated no 
changes in COVID-19 protein expression over multiple 
ICU days and interventions, suggesting that the reduced 
protein signature is robust, reproducible, and remains 
highly predictive of COVID-19 disease status over 10 
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hospitalization days. In addition, an optimal model con-
sisting of 9 proteins (PF4V1, NUCB1, CrkL, SerpinD1, 
Fen1, GATA-4, ProSAAS, PARK7, and NET1) main-
tained the high classification ability found in the super-
set 28-protein model. The pairwise comparison analysis 

suggests that the nine-protein model may be more con-
sistent across multiple days than the 28-protein model.

Correlation analysis comparing the expression of the 
28-protein in COVID-19 patients with their respec-
tive clinical characteristics identified seven associations. 
Interestingly, five proteins correlated with measures of 

Fig. 1 (See legend on next page.)
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blood clotting, including the INR and PTT. The COVID-
19 patients had significantly higher INR and PTT mea-
surements compared to non-COVID-19 sepsis controls; 
however, the measurements were within the normal clin-
ical range. Almost all patients across the two ICU cohorts 
had anticoagulation interventions. PCMT1 was nega-
tively correlated with INR in COVID-19 patients but not 
linked to thrombosis in the literature. SerpinB5, ERRa, 
and IGFBP-5 measurements in COVID-19 patients were 
mainly lower than healthy controls and exhibited a posi-
tive correlation with PTT; however, similar to PCMT1, 
none of the correlated proteins have been linked to 
thrombosis previously. Hemoglobin was negatively cor-
related with fibronectin in COVID-19 patients, with all 
patients having fibronectin levels lower than healthy con-
trols. MammaglobinA, a secreted glycosylated proteins 
involved in cell signalling and the immune response, dif-
ferentiated COVID-19 patients who received high-flow 
nasal cannula oxygen therapy as an intervention [54, 55]. 
Lastly, ProSAAS, a neuroendocrine hormone, was lower 
in those patients with pre-existing hypertension [56].

Serpins are a family of protease inhibitors that use con-
formational changes to inhibit target enzymes [57]. Four 
of the 28 proteins that changed in COVID-19 were Ser-
pins (A1, D1, A4, and A12), and all were downregulated. 
In line with a previous study, SerpinA1 was downregu-
lated in our COVID-19 cohort [58]. SerpinA1 is proposed 
to limit SARS-CoV-2 cell entry via inhibition of cell sur-
face transmembrane protease 2 (TMPRSS2) function, 
a critical step in the required processing of the SARS-
CoV-2 spike protein [59]. In addition, SerpinA1 was asso-
ciated with decreased COVID-19 severity [60, 61], and 
suggested as a potential COVID-19 treatment. Indeed, 
COVID-19 patients with moderate to severe acute respi-
ratory distress syndrome improved in a phase 2 ran-
domized control trial after SerpinA1 intervention [62]. 
Administration of SerpinA1 is also suggested as a ther-
apy for alpha-1-antitrypsin deficiency (AATD), in which 
there is an increased risk of emphysema, obstructive lung 

disease, and liver disease [61–68]; however, it is unclear if 
AATD mutations are associated with COVID-19 sever-
ity [61, 69, 70]. SerpinD1, a thrombosis inhibitor [71], 
competes with the SARS-CoV-2 spike protein to bind 
heparin, resulting in increased thrombosis risk [72]. The 
regulation of SerpinD1 in COVID-19 is controversial, as 
a study has shown that SerpinD1 was higher in moderate 
and severe cases [73]. SerpinA4, also known as kallistatin, 
exerts multiple effects on inflammation, angiogenesis, 
and tumor growth. A single nucleotide polymorphism in 
the SerpinA4 gene was linked to acute kidney injury in 
COVID-19 patients [74]. Down-regulation of SerpinA4 
was noted in COVID-19 non-survivors, indicating a 
persistent pro-inflammatory signature [75]. SerpinA12 
is an adipokine that has been linked to the development 
of insulin resistance, obesity, and inflammation [76]. 
In COVID-19, the downregulation of SerpinA12 may 
heighten inflammation via the kallikrein–kinin system 
[77].

NLP analysis processed expert-curated expression 
information from the UniProt Knowledgebase to iden-
tify organ- and cell-specific proteins. Of the 28 proteins, 
14 (50%) had organ system expression information, with 
most proteins linked to expression in the digestive and 
nervous systems. NLP cell-type analysis results were 
inconclusive, as only eight proteins had cell-type expres-
sion information.

Gastrointestinal system complications are prevalent 
in COVID-19 patients, including diarrhea, nausea/vom-
iting, and abdominal pain [9, 78, 79]. Fen1, involved in 
critical DNA synthesis and repair mechanisms, was over-
expressed in our COVID-19 cohort. Fen1 is reported to 
be involved in hepatocellular and gastrointestinal can-
cers [80, 81], and a novel antiviral strategy that utilizes 
FEN1 to decrease SARS-CoV-2 cellular functions has 
been proposed [82]. The expression of both CrkL and 
fibronectin was decreased in our COVID-19 cohort. The 
former, which is associated with gastrointestinal cancers, 
has been suggested as a potential COVID-19 drug target 

(See figure on previous page.)
Fig. 1  Identification of important plasma proteins in ICU COVID-19 patients. (A) Healthy controls compared to ICU COVID-19 Day 1 measurements plot-
ted in two dimensions, following t-SNE dimensionality reduction of all 28 important proteins determined by Boruta feature reduction. The plot shows 
cluster separation of ICU COVID-19 patients from healthy control subjects, with one possible outlier. (B) Healthy controls compared to ICU COVID-19 Day 
1 measurements plotted in two dimensions, following t-SNE dimensionality reduction of the top 9 important proteins determined by Recursive Feature 
Selection with a 50% threshold. The plot shows the cluster separation of ICU COVID-19 patients from healthy control subjects with one outlier. (C) ICU 
non-COVID-19 patients compared to ICU COVID-19 Day 1 measurements plotted in two dimensions, following t-SNE dimensionality reduction of all 28 
important proteins determined by Boruta feature reduction. The plot shows the cluster separation of ICU COVID-19 patients from ICU non-COVID-19 
subjects. (D) ICU non-COVID-19 patients compared to ICU COVID-19 Day 1 measurements plotted in two dimensions, following t-SNE dimensionality 
reduction of the top 9 important proteins determined by Recursive Feature Selection with a 50% threshold. The plot shows the cluster separation of ICU 
COVID-19 patients from ICU non-COVID-19 subjects. (E) A heatmap demonstrated the pairwise cosine similarity between cohorts’ protein profiles for 
the important 28 proteins across all timepoints. A greater cosine similarity measure between subjects indicates similar protein profiles, while a smaller 
measure indicates large differences between profiles. The protein profile of ICU COVID-19 patients is distinctively different from that of ICU non-COVID-19 
and healthy control participants. (F) A heatmap demonstrated the pairwise cosine similarity between cohorts’ protein profiles with only the top 9 pro-
teins across all timepoints. A greater cosine similarity measure between subjects indicates similar protein profiles, while a smaller measure indicates large 
differences between profiles. The protein profile of ICU COVID-19 patients is distinctively different from that of ICU non-COVID-19 and healthy control 
participants, with more homogeneity within each group
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[83–85]. The latter is a widely expressed extracellular 
matrix protein associated with liver regeneration, fibro-
genesis, and intestinal inflammation [86–88].

Nervous system symptoms in COVID-19 patients are 
prevalent, with COVID-19 severity being associated with 
increased neurological complications [89–91]. Our NLP 
analysis identified proteins, mainly down-regulated, from 
our COVID-19 cohort that are linked to the nervous 

system. SHANK1, downregulated in COVID-19 patients, 
facilitates protein-protein interactions in excitatory syn-
apses [92], and its downregulation may hinder neuro-
nal communication [93]. Our COVID-19 patients had 
decreased expression of PCMT1, a carboxyl methyltrans-
ferase. PCMT1 downregulation is linked to neurodegen-
erative diseases and may increase ß-amyloid production 
[94, 95]. PARK7 is decreased in our COVID-19 patients 

Fig. 2  Correlations between important 28 proteins and continuous clinical variables in ICU COVID-19 patients. Blue points are ICU COVID-19 measure-
ments; the green-filled area represents the 5th percentile to 95th percentile protein expression range of healthy control subjects. Only significant correla-
tions (p < 0.01) are shown. The correlation coefficient and P Value per comparison are shown. (A-B) Plots demonstrating decreased protein expression in 
COVID-19 compared to healthy controls for Fibronectin and PCMT1. Fibronectin is significantly negatively correlated with hemoglobin (p = 0.006), and 
PCMT1 is significantly negatively correlated with the International Normalized Ratio (p = 0.006). (C-E) Plots demonstrating reduced protein expression in 
COVID-19 compared to healthy controls for SerpinB5, EERa, and IGFBP-5. Each protein, SerpinB5, EERa, and IGFBP-5, is significantly positively correlated 
with Partial Thromboplastin Time (p = 0.006, p = 0.003, p = 0.008, respectively)
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and may not effectively perform its protective role against 
neurotoxicity and neuronal viability [96–98]. PARK7 
performs various cellular functions, including acting as 
a chaperone, interacting with transcription factors, and 
being involved in anti-oxidative properties under oxida-
tive stress conditions [99–101]. PARK7 is a critical pro-
tein involved in the gut-brain axis and related to altered 
gut microbiomes [102, 103]. Nucleobinding 1 (NUCB1) 

is widely expressed in brain neurons and stabilizes amy-
loid protofibrils before they mature and become harm-
ful in neurodegenerative diseases [104, 105]; however, 
its downregulation in our COVID-19 patients suggests 
decreased neurological protective mechanisms. Prese-
nilin2 is a crucial protein in neurodegenerative disease 
and was decreased in our COVID-19 patients. Prese-
nilin2 is responsible for the cleaving enzymatic action 

Fig. 4  Frequency of protein expression in major organs/body systems. A bar plot demonstrates the percentage of proteins that are expressed in specific 
major organs and body systems as determined by Natural Language Processing (NLP). There were 14 proteins, out of the 28 proteins (50%), with UniProt 
organ system expression information. The organ system classification combines NLP-identified organs, tissue, multi-level tissue, and anatomical system 
entities. The lymphatic system did not have any associated proteins and was not shown for visualization clarity

 

Fig. 3  Differences in the important 28 proteins relative to binary clinical variables in ICU COVID-19 patients. (A) A box plot demonstrating that Mamma-
globinA is significantly elevated in those that didn’t receive high-flow nasal cannula (p = 0.003). (B) A box plot demonstrating that ProSAAS is significantly 
lower in those who had hypertension (p = 0.009)
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required to form amyloid plaques and also forms Ca2+ 
leak channels that support the calcium hypothesis of AD 
[106–109]. Similar to Presenillin2, ProSAAS, an amyloid 
anti-aggregant in Alzheimer’s disease, is decreased in 
our COVID-19 patients [110]. ProSAAS is a neuroendo-
crine chaperone protein with protective effects against 
neurodegeneration, such that increased endocrine and 
neurological cell stressors are associated with elevated 
expression [111, 112]. Galanin was downregulated in our 
COVID-19 patients and operates on the neuroendocrine 
axis with various functions throughout the central and 
peripheral nervous and endocrine systems [113]. Fyn, 
elevated in our COVID-19 cohort, has a harmful role in 
neurological diseases and may be a potential target for 
neurodegenerative disease due to its ß-amyloid signalling 
and tau interactions [114–116].

NLP analysis also identified the endocrine system as 
potentially impacted due to differential protein expres-
sion. COVID-19 patients with hypertension had sig-
nificantly lower expression of ProSAAS, which may be 
related to ProSAAS peptides involved in salt sensitiv-
ity [117]. Diabetes diagnosis and insulin sensitivity have 
been linked to COVID-19 severity and mortality [118–
120], and downregulated ERRa in our COVID-19 cohort 
is linked to insulin resistance, diabetes, and obesity 
[121–124]. ERRa regulates glycolysis and lipid metabo-
lism in multiple organs, along with steroidogenesis in the 
adrenal cortex [125–127]. Similar to our cohort, lower 
IGFBP-5 expression was previously observed in COVID-
19 patients [128], and IGFBPs are linked to diabetes and 
metabolic disorders [129–133]. SerpinA12 was down-
regulated in our COVID-19 patients and is associated 
with diabetes and obesity due to its insulin-sensitizing 
effects [134–138]. The downregulated NUCB1 in our 
COVID-19 patients suggested a harmful effect related 
to type 2 diabetes as it performs amyloid stabilization in 
human islet cells to prevent fibrils in the pancreas that 
impact type 2 diabetes [104, 139, 140]. The decreased 
PARK7 in COVID-19 patients could also be connected to 
a metabolic imbalance. PARK7 protects pancreatic beta-
cells from oxidative stress conditions, and its deficiency 
is associated with decreased inflammatory and adipogen-
esis responses [141–143] and type 2 diabetes [144, 145]. 
Lastly, Presenilin 2 is expressed in endocrine cells, but 
there is insufficient data on its role and association with 
diabetes [146, 147].

COVID-19 is linked with various cardiovascular 
changes, including vascular transformation, thrombosis, 
and angiogenesis [148–153]. NLP analysis revealed pro-
teins expressed in the cardiovascular system. GATA-4 
is involved in cardiac remodelling, differentiation, and 
signalling by acting as a cardiogenic transcription fac-
tor [154–156]. GATA-4 was reduced in our COVID-
19 patients, indicating that subsequent remodelling 

pathways may be impaired. IGFBP-5 expression was 
reduced in COVID-19 patients [128], and it is an inhibi-
tor of angiogenesis and vascular smooth muscle cell pro-
liferation [157–159]. PF4V1, decreased in our COVID-19 
patients, is an angiogenesis inhibitor and may also regu-
late inflammation and thrombosis [160–163]. SerpinA4 
(Kallistatin) was lower in our COVID-19 patients [164], 
and it protects against vascular oxidative stress and 
inflammation as well as inhibiting angiogenesis [165–
167]. Thus, the decreased expression of IGFBP-5, PF4V1, 
and SeprinA4 in COVID-19 may be cardioprotective, 
perhaps via suppression of angiogenesis and vascu-
lar transformation. EphB4, also associated with angio-
genesis, was downregulated in our COVID-19 patients 
[168–171].

The novelties of this study include the proteins iden-
tified, the immune microarray platform utilized, and 
several of the analytic techniques. Previous proteomics 
studies have also identified molecular models that dif-
ferentiate COVID-19 patients from non-COVID-19 sep-
sis controls and healthy control participants [172–175]. 
While these studies identify a number of important 
molecules, they did not evaluate their effectiveness in a 
single combined model, which decreases the likelihood 
of cross-identity concerns with other diseases. The novel 
proteins identified in our study may be attributed to our 
use of an immune microarray platform, while other stud-
ies utilized mass spectrometry or proximity extension 
assays [172–177]. Pathway analysis was used in previous 
studies to help understand COVID-19 pathophysiology 
[174, 176, 177]; however, our approach utilized NLP to 
identify organ and cell expression patterns.

In this study, we identified a novel 28-protein signature 
and an optimal 9-protein signature that accurately classi-
fies COVID-19 patients from non-COVID-19 sepsis con-
trols and healthy control subjects; however, our study has 
several limitations. First, the number of subjects in each 
comparison group was limited to 15, which impacted the 
choice of analytic. Conservative methods were used to 
avoid common overfitting or non-generalizable results. 
Conventional statistics consisted of only non-paramet-
ric methods with strict multiple comparison correction. 
Machine learning classification utilized cross-validation 
with conservative parameters and without any hyperpa-
rameter tuning. Also, protein model building and testing 
consisted of separate data subsets to reduce overfitting. 
Second, not all identified proteins had UniProt Knowl-
edgebase-curated expression information, leaving the 
potential for unrecognized patterns in organ and cell sys-
tem expression. Similarly, there is a possibility for missed 
organ/cell identification with NLP; however, preprocess-
ing of expression information was carefully done, and 
NER used a state-of-the-art biomedical model. Third, 
static protein measurements must be interpreted with 
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caution as they do not always correlate with functional 
changes. As one example, Serpins undergo a conforma-
tional change to elicit biological effects and therefore 
require further functional analyses. Lastly, we only 
compared the COVID-19 proteome signatures to other 
cohorts, but there may be cross-identity concerns with 
other illnesses. The use of multiple proteins would reduce 
this latter limitation. Although our exploratory study had 
these minor constraints, the data provided insight into 
the pathophysiological changes in COVID-19 patients.

Conclusion
Our understanding of COVID-19 pathophysiology, espe-
cially in critically ill patients, is incomplete due to its 
multi-system complications. We identified 28 proteins 
that accurately differentiate COVID-19 ICU patients 
from non-COVID-19 sepsis ICU controls and healthy 
control subjects. The leading proteins are expressed in 
multiple organ systems and are associated with various 
diseases and pathophysiological functions, including 
diabetes, neurodegeneration, metabolic processes, and 
vascular transformation. The results of our proteomic 
exploratory study offer insightful information about 
COVID-19 and might aid in the development of future 
treatments.
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