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Abstract
Introduction The tandem mass spectrometer is a powerful
tool with which to generate peptide (tandem) mass spectrum
data for the analysis of complex biological protein mixtures
in genomic-related disease cell lines. However, the majority
of experimental tandem mass spectra cannot be interpreted
by any database search engines. One of the main reasons
this happens is that majority of experimental spectra are of
quality too poor to be interpretable. Interpreting these “un-
interpretable” spectra is a waste of time. Therefore, it is
worthwhile to determine the quality of mass spectra before
any interpretation.
Objectives This paper proposes an approach to classifying
tandem spectra into two groups: one with high quality and
one with poor quality.
Methods The proposed approach has two steps. First, each
spectrum is mapped to a feature vector which describes the
quality of the spectrum. Then, a weighted K-means
clustering method is applied in order to classify the tandem
mass spectra.
Results and Conclusion Computational experiments illus-
trate that one cluster contains the majority of the high-quality
spectra, while the other contains the majority of the poor-
quality spectra. This result indicates that if we just search the
spectra in the high-quality cluster, we can save the time for
searching the majority of poor-quality spectra while losing a

minimal amount of high-quality spectra. The software created
for this work is available upon request.

Keywords Tandemmass spectrum . Quality assessment .

Weighted k-means . Feature vector . Peptide . Protein

Introduction

One of the most important goals in early detection of
genomic-related disease such as cancer or obesity is to
identify and characterize the proteins and protein com-
plexes present in related cell lines. High-performance liquid
chromatography (HPLC) coupled with a tandem mass spec-
trometer provides an automated, high-throughput approach
widely used to generate peptide (tandem) mass spectral data
for the analysis of complex biological protein mixtures [1].
Most frequently, peptide identifications are made by
comparing tandem mass spectra with a sequence database
to find the significantly matching peptides in the database.
Through the assignment of peptides to spectra, the original
proteins present in the sample are inferred. Over the past
decade, many automated database search engines have been
developed for assigning peptides to tandem mass spectra,
for example, SEQUEST [2], Mascot [3], and Sonar [4].
These search engines, as well as de novo sequencing
methods [5, 6], have been successfully applied to peptide
mass spectrum assignments in many proteomics projects.
However, the majority of tandem mass spectra cannot be
interpreted by these and other automatic methods, even
after filtering poor-quality spectra using some simple filters
such as “most intensive peak selection” criterion [2–4].
There are several reasons that the automatic methods fail to
interpret the mass spectra. However, one of the main
reasons is that these spectra are of quality too poor to be
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interpretable. In general, a tandem mass spectrum is consid-
ered to be of high quality if it is produced from peptides;
otherwise, it is considered to be of poor quality. Hence, it is
worthwhile to develop an automatic quality assessment
algorithm to discriminate high-quality from poor-quality
spectra before interpretation by any method.

In the past, several supervised machine learning algo-
rithms have been proposed to assess the quality of tandem
mass spectra, which means a labeled training dataset is
needed to train a classifier, and the trained classifier is used
to classify spectra as high-quality or poor-quality [7–11].
Ideally, the training set should be identified by some
peptide identification algorithms and manually validated,
i.e., the set should be correctly labeled without or with very
few falsely labeled spectra. However, these sets are hard to
obtain in most cases. Worse still, tandem mass spectrom-
eters may produce different spectra even for the same
peptide under different experimental conditions. Thus, the
performance of classifiers can be improved by training a
classifier for each experiment. Clustering algorithms, which
do not need a labeled training set, may be alterative choices
for the quality assessment of tandem mass spectra.

In this paper, we propose a clustering algorithm-
weighted k-means (WKM) method to classify the experi-
mental spectra into two clusters, one with high-quality and
the other with poor-quality spectra without using any prior
information about the spectra dataset from search engines.
The remainder of the paper is organized as follows. The
“Feature Extraction” section studies the properties of
theoretical spectra and introduces a means of mapping a
spectrum to a feature vector. The “WKM” section intro-
duces the WKM method. In the “Experiments and Results”
section, one dataset is used to investigate the performance
of the proposed method. The “Conclusions and Future
Work” section concludes this study.

Feature Extraction

This subsection describes a means of mapping a tandem
mass spectrum to a feature vector which describes the quality
of the spectrum. To do this, the properties of theoretical
spectra are discussed first.

Properties of Peptide Theoretical Spectra

Many algorithms such as SEQUEST [2], Mascot [3], and
Sonar [4] have been used to assign experimental MS/MS
spectra to peptides in a protein/peptide database. A key
component of these algorithms is the score function, which
evaluates the similarity between each experimental MS/MS
spectrum and the predicted (theoretical) spectrum of a given
peptide in the database. A peptide whose theoretical

spectrum has the maximum similarity to the experimental
spectrum is a likely candidate for the solution of the
peptide identification problem. An experimental peptide
mass spectrum is often expressed by a peak list, i.e.,
S ¼ fðxi; hiÞjj1 � i � mg, where (xi, hi) denotes the frag-
ment ion i with m/z value xi and intensity hi. Since ion
intensities are the results of many unknown factors and are
yet difficult to utilize for spectral quality assessment, this
study does not take into account intensity values of ions after
the original spectra are pre-preprocessed by filtering out the
noise peaks. Therefore, the peptide mass spectra in this study
are reduced into a set of m/z values and are denoted by SE.

On the other hand, the perfect MS/MS spectrum of a
peptide is the theoretical spectrum. In practice, no mass
spectrometers can produce perfect MS/MS spectra. However,
investigating the peptide theoretical spectrum is extremely
helpful for understanding the high-quality spectra which
could potentially be assigned to a peptide. Let P be a peptide
consisting of n amino acids a1, a2, …, an with respective
mass m(ai). The mass of peptide P is calculated by

m Pð Þ ¼ m Hð Þ þ m OHð Þ þ
Xn

i¼1

m aið Þ ð1Þ

where m(H) and m(OH) are the additional masses of the
peptide’s N- and C-terminals. Hereafter, we will use m(X) to
express the mass of a molecule or a group of atoms X.

In a tandem mass spectrometry experiment, a protein is
fragmented into a series of peptide ions (sometime also
called precursor ions or parent ions) at the first stage. For ion
trap spectrometers, the produced precursor ions are mostly
doubly or triply charged [12]. In the second stage, a series of
selected precursor ions are fragmented further into fragment
ions. For a doubly charged precursor ion, most of its
fragment ions are singly charged, whereas a triply charged
precursor ion, is likely to fragment at backbone bonds to
form a series of singly charged and doubly charged fragment
ions. Therefore, in this study, we consider both doubly
charged and triply charged precursor ions, but only singly
and doubly charged fragment ions.

As peptide P fragments at backbone bond between the
i-th and i+1-th amino acids counting from the N-terminal,
several types of ions could be produced as shown in the
Fig. 1. The singly charged ion with N-terminal is denoted
by bþi , and its m/z value is computed by

m bþi
� � ¼ m Hð Þ þ

Xi

j¼1

m aj
� � ð2Þ

The doubly charged ion with N-terminal is denoted by
bþþ
i , and its m/z value is computed by

m bþþ
i

� � ¼ m bþi
� �þ m Hð Þ� ��

2 ð3Þ
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The singly charged ion with C-terminal is denoted by yþn�i,
and its m/z value is computed by

m yþn�i

� � ¼ 2� m Hð Þ þ m OHð Þ þ
Xn

j¼iþ1

m aj
� � ð4Þ

The doubly charged ion with C-terminal is denoted by yþþ
n�i,

and its m/z value is computed by

m yþþ
n�i

� � ¼ m yþn�i

� �þ m Hð Þ� ��
2 ð5Þ

From Eqs. 1 through 5, the following complementary
equations

m Pð Þ�2� m Hð Þ ¼ m bþn�i

� �þ m yþn�i

� � ð6Þ

m Pð Þ=2þ 2� m Hð Þ ¼ m bþþ
i

� �þ m yþn�i

� �þ m Hð Þ� ��
2

ð7aÞ

m Pð Þ=2þ 2� m Hð Þ ¼ m bþi
� �þ m Hð Þ� ��

2þ m yþþ
n�i

� �

ð7bÞ

m Pð Þ=2þ 2� m Hð Þ ¼ m bþþ
i

� �þ m Hð Þ� ��
2þ m yþþ

n�i

� �

ð8Þ
hold for a theoretical peptide spectrum. Therefore, Eqs. 6
through 8 indicate that high-quality spectra should have more
complementary pairs of m/z values than poor-quality spectra.

According to the principle of peptide fragmentation in
tandem mass spectrometry [13], these ions could lose a
molecule of water or ammonia. Therefore, high-quality
spectra should also have pairs of m/z values with differences
of (half) a water molecular mass or an ammonia molecular
mass for (doubly) singly charged ions, in contrast with poor-

quality spectra. In addition, the N-terminal ions could lose a
CO group, while C-terminal could lose an NH group,
Therefore, high-quality spectra could have more pairs of m/z
values with differences of (half) a CO mass or (half) an NH
mass for (doubly) singly charged ions compared with poor-
quality spectra.

In addition, for a theoretical spectrum, the difference
between two consecutive singly charged N-terminal (C-
terminal) ions is one of 20 amino acid mass weights. The
difference between two consecutive doubly charged N-
terminal (C-terminal) ions is half a mass weight of one of
20 amino acids. Therefore, high-quality spectra should also
have more pairs of m/z values with difference of (half) an
amino acid mass weight for (doubly) singly charged ions
than poor-quality spectra.

Features of Peptide Mass Spectra

According to the properties of the theoretical spectra, we
introduce 12 discriminatory features to describe the quality
of peptide mass spectra. These features may be classified
into four categories: amino acid distances, complements,
water or ammonia losses, and supportive ions. To do this,
we first define four variables for a given peptide mass
spectrum SE. For a peak in SE with m/z value x, this peak is
also denoted by x for simplicity. In the following, x and y
are the m/z values of peaks x and y, respectively.

dif1 x; yð Þ ¼ x� y; x; y 2 SE ð9Þ

dif2 x; yð Þ ¼ x� yþ 1ð Þ=2; x; y 2 SE ð10Þ

sum1 x; yð Þ ¼ xþ y; x; y 2 SE ð11Þ

sum2 x; yð Þ ¼ xþ yþ 1ð Þ=2; x; y 2 SE ð12Þ

Fig. 1. The schematic of the
common peptide fragment ions
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1. Amino acid distances: These features measure how likely
two components in a peptide mass spectrum SE are to differ
by one of 20 amino acids. Let

DIF1 ¼ x; yð Þjdif1 x; yð Þ � Mi; i ¼ 1; � � � ; 17f g

DIF2 ¼ x; yð Þjdif1 x; yð Þ � Mi=2; i ¼ 1; � � � ; 17f g

DIF3 ¼ x; yð Þjdif2 x; yð Þ � Mi=2; i ¼ 1; � � � ; 17f g

where M1,⋯, M17 stand for the 17 mass weights of all 20
amino acids. In this study, we consider all methionine
amino acids to be sulfoxidized and do not distinguish three
pairs of amino acids in their masses: isoleucine vs. leucine,
glutamine vs. lysine, and sulfoxidized methionine vs.
phenylalanine. This is because the masses of each of these
three pairs are very close. The comparison implied by ≈
uses a tolerance which is set to 0.5 Thompson in this study,
but can be changed by the user. The set DIF1 collects all
pairs of singly charged ions in the spectrum SE that are
different from one amino acid. The set DIF2 collects all
pairs of doubly charged ions in the spectrum SE that are
different from one amino acid. The set DIF3 collects all
pairs of one doubly charged and the other singly charged
ions that are different from one amino acid. Let

Fi ¼ DIFij j; i ¼ 1; 2; 3

where �j j represents the cardinality of a set. If a tandem
mass spectrum is produced from a peptide with well
fragmentation, one expects that values Fi i ¼ 1; 2; 3ð Þ
calculated from this spectrum should be much higher than
those from a spectrum produced randomly.

2. Complements: These features measure how likely an N-
terminus ion and a C-terminus ion in the peptide mass
spectra SE are to be produced as the peptide fragments at
the same peptide bond. Let

SUM1 ¼ x; yð Þjsum1 x; yð Þ � Mparent þ 2� m Hð Þ� �

SUM2 ¼ x; yð Þjsum1 x; yð Þ � Mparent

�
2þ 2� m Hð Þ� �

SUM3 ¼ x; yð Þjsum2 x; yð Þ � Mparent

�
2þ 2� m Hð Þ� �

where Mparent is the mass of the precursor ion of spectrum
SE. The set SUM1 collects the complementary pairs of
singly charged ions. The set SUM2 collects the comple-
mentary pairs of doubly charged ions. The set SUM3

collects the complementary pairs of one doubly charged ion
and the other singly charged ion. For the same reason given

for the first three features, we define another three features
as the cardinalities of these three sets, i.e.,

F3þi ¼ SUMij j; i ¼ 1; 2; 3

3. Water or ammonia losses: These features measure how
likely one ion in a peptide mass spectrum SE is to be produced
by losing a water or an ammonia molecule from other ions.
Let

WAD1 ¼ x; yð Þjdif1 x; yð Þ � MwaterorMammoniaf g

WAD2 ¼ x; yð Þjdif1 x; yð Þ � MwaterorMammonia=2f g

WAD3 ¼ x; yð Þjdif2 x; yð Þ � MwaterorMammonia=2f g

where Mwater and Mammonia are the mass of a water
molecule and an ammonia molecule, respectively. The set
WAD1 collects the pairs of singly charged ions with a
difference of a water or an ammonia molecule. The set
WAD2 collects the pairs of doubly charged ions with a
difference of a water or an ammonia molecule. The set
WAD3 collects the pairs of one doubly charged ion and the
other singly charged ion with a difference of a water or an
ammonia molecule. Similarly, we define the next three
features as the cardinalities of these three sets, i.e.,

F6þi ¼ WADij j; i ¼ 1; 2; 3

One can consider the water losses and the ammonia
losses separate features, but the resulting feature vector will
have more components. In the classification problem, more
features do not mean a better classifier. The reverse is often
true, as the insignificant features could degrade the
discriminatory power of other significant features [14].

4. Supportive ions: These features measure how likely one
ion in a peptide mass spectrum SE is to be a supportive ion. In
this paper, we consider two kinds of supportive ions: a-ions
and z-ions. Although a-ions and x-ions are complementary if
a peptide fragments at the specific bond shown in Fig. 1, the
a-ions are often generated by losing a CO group from b-ions
[13], but not by fragmenting at the specific bond. For the
same reason, we take z-ions into account but not c-ions

AZD1 ¼ x; yð Þjdif1 x; yð Þ � MCOorMNHf g

AZD2 ¼ x; yð Þjdif1 x; yð Þ � MCOorMNH=2f g

AZD3 ¼ x; yð Þjdif2 x; yð Þ � MCOorMNH=2f g

18 Clin Proteom (2009) 5:15–22



where MCO and MNH are the mass of a CO group and an
NH group, respectively. The set AZD1 collects the pairs of
singly charged ions with a difference of a CO or an NH
group. The set AZD2 collects the pairs of doubly charged
ions with a difference of a CO or an NH group. The set
AZD3 collects the pairs of one doubly charged ion and the
other singly charged ion with a difference of a CO or an
NH group. Finally, we define the next three features as the
cardinalities of these three sets, i.e.,

F9þi ¼ AZDij j; i ¼ 1; 2; 3

At this point, we have introduced 12 features with
physical meaning to describe the quality of peptide spectra.
The four features Fj (j=1, 4, 7, 10) are evidence of the
existence of singly charged ions, called singly charged
features. The other eight features are evidence of the
existence of doubly charged ions. In principle, the high-
quality spectra are expected to have larger feature values
than the poor-quality spectra. However, the longer the
peptide, the larger the feature values are. The classifier used
for quality assessment may have low sensitivity, as the high-
quality spectra produced from a shorter peptide would have
smaller feature values. To alleviate these effects, we
normalize the feature values by formula Fi=log LEð Þ, where
LE is the estimated peptide length of a peptide ion. LE is
computed by dividing the peptide ion mass by an average
amino acid mass of 110 Da.

WKM

Let (xi,i=1,⋯,n) be a dataset of n objects (spectra) with the
dimensionality of d. Let xij denote the jth feature of object

xi. X=(xij) is called a feature matrix of object set D. For a
given partition Δ with K clusters, the cost function for a
weighted K-means clustering technique [15] is defined by

JG Δð Þ ¼
XK

k¼1

X

xi2Dk

xi � mkð ÞG xi � mkð Þ0 ð13Þ

where mk ¼ 1
nk

P
xi2Dk

xi, nk are the mean and the number

of objects in Dk, respectively, and G is an arbitrary
symmetrical positive matrix whose determinant is 1,
i.e., det Gð Þð Þ ¼ 1.

The objective of a weighted K-means algorithm is to
find an optimal partition expressed by Δ* and a symmet-
rical positive matrix G* with the determinant of 1 which
minimize JG(Δ), i.e.,

JG* Δ*ð Þ ¼ min
Δ

JG* Δð Þ� � ð14Þ

The problem is a constraint optimization problem. By
the use of Lagrange multiplier, it can prove that a given
partition Δ with K clusters

G ¼ W�1 det Wð Þð Þ1=d ð15Þ
where W ¼ PK

k¼1
Wk and Wk ¼

P
xi2Dk

xi � mkð Þ0 xi � mkð Þ is

the within-group variance of cluster k (k=1,⋯,K). Obvi-
ously, W is dependent on partition Δ. To avoid ambigu-
ousness, denote W induced by Δ as W(Δ). Substituting
Eq. 15 into 13 leads to J Δð Þ ¼ d det W Δð Þð Þ. Since d is
constant, the cost function of a weighted K-mean algorithm
can be reduced to

J Δð Þ ¼ det W Δð Þð Þð Þ1=d ð16Þ

Weighted K-means algorithm (WKMA) 
),,()](,[ KXWKMAJ oo ∆=∆∆  

Input:   an initial partition, ∆ ; the feature matrix, X ; the number of clusters, K  
Output: the optimal partition, 0∆  and its cost function value, )( 0∆J

1. Compute km  and )(∆J  for an initial partition ∆ . 

2. repeat 
3.      for 1=i to n  
4.          →k   the index of the cluster where ix  belongs  

5.          if 1≠kn  then  compute 

                

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−∆−
−

≠−∆−
+

=
klxxWxx

m

m

klxxWxx
m

m

ll
l

l

ll
l

l

l

     ,)'()]'()[(
1

     ,)'()]'()[(
1

1

1

ρ  

6.  if  kl
l

j ρρρ <= min  then move ix  to jD , adjust ∆ ,  and re-compute kj mmJ ,, 

7.     end for 
8. until no significant change of J  in n  consecutive attempts 
13. return  0∆  and )( 0∆J

Fig. 2 Iterative optimal weight-
ed K-means algorithm
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The objective of a weighted K-mean algorithm becomes to
find an optimal partition expressed by Δo which minimizes

J Δoð Þ ¼ min
Δ

det W Δð Þð Þð Þ1=d ð17Þ

Now consider how the cost function J changes when
an object x currently in cluster Di tentatively moves to
a different cluster Dj. Let Δ ¼ D1; � � � ;DKð Þ;Δ0 ¼
D1; � � � ;Din xf g; � � �DKð Þ, and Δ00 ¼ D1; � � � ;Din xf g; � � � ;ð
Dj [ xf g; � � � ;DKÞ i 6¼ jð Þ. Obviously the condition for
successfully moving x from Di into Dj is

det W Δ00ð Þð Þ < det W Δð Þð Þ ð18Þ
The following two equations can be derived from the

definitions

W Δð Þ ¼ W Δ0ð Þ þ mi

mi � 1
x� xið Þ0 x� xið Þ ð19Þ

W Δ00ð Þ ¼ W Δ0ð Þ þ mj

mj þ 1
x� xj
� �0

x� xj
� � ð20Þ

Condition 18 is reduced to

mj

mj þ 1
x� xj
� �

W Δ0ð Þ½ ��1
x� xj
� �0

<
mi

mi � 1
x� xið Þ

W Δ0ð Þ½ ��1
x� xið Þ0

ð21Þ

since det Aþ by0 yð Þ ¼ det Að Þ 1þ byA�1y0ð Þ for any d×d
invertible matrix A, any d-dimensional row vector y, and
any number β.

If reassignment is profitable, the greatest decrease in the
cost function is obtained by selecting the cluster for which
mj

mjþ1 x� xj
� �

W Δ0ð Þ½ ��1
x� xj
� �0

is minimal. According to

the above discussion, an iterative optimal weighted K-

algorithm is designed and shown in Fig. 2.

Table 1 The mean centers for SMP2

Cluster 1 (11,356) 12.20 14.65 2.99 0.28 0.01 0.06

2.10 1.68 0.14 1.95 2.03 0.18

Cluster 2 (7,131) 59.64 68.57 18.00 1.66 0.01 0.35

9.57 7.55 0.95 7.75 7.82 1.03

The number of spectra in cluster 1 is 11,356, while that in cluster 2 is
7,131. Because each spectrum is represented by a 12-dimensional
feature vector, the cluster center of each cluster is also a 12-
dimensional vector. The meaning of each value of the vector is the
corresponding introduced feature in the “Features of Peptide Mass
Spectra” section

Table 2 Number of spectra in two clusters with respect to SEQUEST
score

SEQUEST
score

No. of spectra
in cluster 1

No. of spectra
in cluster 2

≥2.0 496 2,050

≥2.2 315 1,471

≥2.4 221 1,181

≥2.6 164 969

≥2.8 127 822

≥3.0 102 689

≥3.2 80 578

≥3.4 58 486

≥3.6 47 408

≥3.8 39 351

≥4.0 30 290

Columns 2 and 3 list the number of spectra in clusters 1 and 2 whose
SEQUEST scores are bigger than a threshold listed in column 1,
respectively

Table 3 The mean centers for SMP 3

Cluster 1 (7,739) 19.21 21.12 9.26 0.28 0.13 1.42

3.12 2.61 0.57 2.32 2.33 0.61

Cluster 2 (10,305) 2.78 3.06 1.20 0.03 0.02 0.21

0.40 0.35 0.08 0.35 0.36 0.09

The number of spectra in cluster 1 is 7,739, while that in cluster 2 is
10,305. Because each spectrum is represented by a 12-dimensional
feature vector, the cluster center of each cluster is also a 12-
dimensional vector. The meaning of each value of the vector is the
corresponding introduced feature in the “Features of Peptide Mass
Spectra” section

Table 4 Number of spectra in two clusters with respect to SEQUEST
score

SEQUEST
score

No. of spectra
in cluster 1

No. of spectra
in cluster 2

≥2.0 5,776 2,448

≥2.2 4,402 1,494

≥2.4 3,045 869

≥2.6 2,055 445

≥2.8 1,378 217

≥3.0 978 94

≥3.2 787 39

≥3.4 614 21

≥3.6 499 12

≥3.8 414 9

≥4.0 339 4

Columns 2 and 3 lists the number of spectra in clusters 1 and 2 whose
SEQUEST scores are bigger than a threshold listed in column 1,
respectively
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Experiments and Results

Dataset

This study employs the standard protein mixture (SPM)
dataset acquired on an ion trap mass spectrometer [16, 17]
to investigate the performance of the proposed method.
This dataset consists of 37,044 peptide tandem spectra
collected in 22 HPLC/MS/MS runs. The samples analyzed
were generated by the tryptic digestion of a control mixture
of standard 18 proteins (not of human origin) [16, 17]. The
MS/MS spectra were searched using SEQUEST against a
human protein database appended with the sequences of the
18 standard proteins and other common contaminants. The
SEQUEST will be used to verify the clustering results.

The spectra with different charges have significant
different properties. This study applies the proposed
method to two subsets of the SPM dataset: one subset
consisting of all 18,496 doubly charged spectra (denoted by
SPM2) and the other consisting of all 18,044 triply charged
spectra (denoted by SPM3). All singly charged spectra are
ignored in this study.

Results

Using the proposed method, SMP2 is divided into two
clusters: cluster one consisting of 11,365 spectra and cluster
two consisting of 7,131 spectra. Table 1 lists the mean
centers of two clusters. Obviously, the spectra in cluster 2
are of high quality, while those in cluster 1 are of poor
quality because the mean center of cluster 2 is much larger
than that of cluster 1.

Table 2 shows the number of spectra with the
SEQUEST scores greater than a variety of threshold values.
It indicates that the majority of the spectra with higher
SEQUEST scores are in cluster 2. Generally, if the
SEQUEST score of a doubly charged spectrum is greater
than 2.5, this spectrum is considered to be identified (well
interpreted). If we used the SEQUEST score of 2.6 as the
cutoff value, 85:53% ¼ 969= 164þ 969ð Þð Þ of the interpret-
able spectra are in cluster 2. In other words, if we just
search spectra in cluster 2 using a database, we can save
61:45% ¼ 11; 365= 11; 365þ 7; 131ð Þð Þ of the time while
only losing 14.47% (=1–85.53%) of the interpretable spectra.

Using the proposed method, SMP3 is also divided into
two clusters: cluster one consisting of 7,739 spectra and
cluster two consisting of 10,305 spectra. Table 3 lists the
means centers of two clusters. Obviously, the spectra in
cluster 1 are of high quality, while those in cluster 2 are of
poor quality, as the mean center of cluster 1 is much larger
than that of cluster 2.

Table 4 shows the numbers of spectra with the
SEQUEST scores greater than a variety of threshold values.

It indicates that the majority of the spectra with higher
SEQUESTscores are in cluster 1. Generally, if the SEQUEST
score of a triply charged spectrum is greater than 3.5, this
spectrum is considered to be identified (well interpreted). If
we used the SEQUEST score of 3.6 as the cutoff value,
97:65% 499= 12þ 499ð Þð Þ of the interpretable spectra are
in cluster 1. In other words, if we just search spectra in
cluster 1 using a database, we can save 57:11% ¼ 10; 305=ð
10; 305þ 7; 739ð ÞÞ of the time while losing only 2.35%
(=1–97.65%) of the interpretable spectra.

In summary, considering the SMP2 and SMP3 as a
whole dataset, if we just search spectra in the clusters
with high quality by SEQUEST, we can save 59:3% ¼ð
10; 305þ 11; 365ð Þ= 11; 365þ 7; 131þ 10; 305þð 7; 739ÞÞ
of the time while losing only 10:71% ¼ 1� 969þ 499ð Þ=ð
164þ 969þ 12þ 499ð ÞÞ of the interpretable spectra in the
cluster with poor quality.

Conclusions and Future Work

The evaluation of tandem mass spectra is important for
the reduction of the database search time. This study has
proposed a method of classifying tandem mass spectra
into one group of mass spectra with high quality and one
with poor quality. Computational experiments illustrate
that if we just search the spectra in the high-quality group,
we can save about 60% of searching time while losing
only about 10% of high-quality spectra. This result
indicates that the proposed method is useful in saving
database search time because it ignores the spectra in the
cluster with poor quality.

In this study, the proposed method has been applied to
raw tandem mass spectra which were noise-contaminated.
Recently, we have developed a method to denoise raw
tandem mass spectra [18], which can improve the reliability
of peptide identification. It could make more sense and
improve the reliability of tandem mass spectral quality
assessment by classifying denoised mass spectra. One
direction of our future work is to combine the denoising
method with quality assessment methods to improve the
reliability of mass spectral quality assessment.
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