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Fibrinogen alpha C chain 5.9 kDa 
fragment (FIC5.9), a biomarker for various 
pathological conditions, is produced 
in post‑blood collection by fibrinolysis 
and coagulation factors
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Abstract 

Background:  Fibrinogen alpha C chain 5.9 kDa fragment (FIC5.9) is a new serum biomarker for chronic hepatitis that 
was discovered by proteomics analysis. Previous studies have shown that FIC5.9 is derived from the C-terminal region 
of fibrinogen alpha chain and the serum levels of FIC5.9 decrease in chronic hepatitis. It also have been reported that 
FIC5.9 cannot be detected in the blood stream of the systemic circulation and it is released from fibrinogen during 
blood clotting in collecting tube. However, the mechanism of FIC5.9 releasing from fibrinogen is unclear.

Methods:  We formulated a hypothesis that FIC5.9 is released by enzymes that are activated by post-blood collection 
and may be coagulation and fibrinolysis factors. In this study, we analyzed the mechanisms of FIC5.9 releasing from 
fibrinogen in healthy blood.

Results:  Our analysis showed that thrombin acts as an initiator for FIC5.9 releasing, and that mainly plasmin cleaves 
N-terminal end of FIC5.9 and neutrophil elastase cleave C-terminal end of FIC5.9.

Conclusion:  FIC5.9 reflects minute changes in coagulation and fibrinolysis factors and may be associated with 
pathological conditions.

Keywords:  Biomarker, Fibrinogen, Plasmin, Thrombin,  Fibrinogen alpha C chain 5.9 kDa fragment (FIC5.9), 
Coagulation, Hepatitis
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Background
Many biomarkers have been discovered by proteomics 
analysis, but fewer have been developed for clinical use 
[1, 2]. Most of the reported biomarkers involve posttrans-
lational modification or degradation, and they are unclear 
why the level of biomarker changes in disease. Thus, 
there is a need to establish the links between synthetic 

mechanism of the biomarker and disease conditions for 
practical use in clinical diagnosis [3].

Fibrinogen alpha C chain 5.9 kDa fragment (FIC5.9) is 
a new serum marker for chronic hepatitis that was dis-
covered in samples from alcoholic liver disease using 
SELDI-TOF MS [4]. FIC5.9 is derived from the C-ter-
minal region of fibrinogen alpha chain and its molecular 
weight is 5890 Da (Fig. 1a). It has been established that 
the level of FIC5.9 is high in healthy people and low with 
onset of hepatitis [5–7]. We developed an ELISA system 
for FIC5.9 and evaluated the clinical utility of FIC5.9 in 
various kinds of chronic hepatitis [8]. The results showed 
that the serum level of FIC5.9 is significantly decreased in 
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the early stage of liver fibrosis and showed a strong indi-
cator for liver fibrosis. We also found that natural FIC5.9 
releasing from fibrinogen is negligible in the blood cir-
culation of healthy subjects, but clearly detected in the 
serum collection tubes, thus we concluded that FIC5.9 
is released from fibrinogen during the process of blood 
coagulation [8]. That is, FIC5.9 is an in  vitro product 
that is released during blood clotting from fibrinogen 
(Fig.  1b). Since our initial identification of FIC5.9, the 
same peptide (if not identified completely, but with the 
completely same mass) has been reported as a biomarker 
in several pathological conditions, including cancers and 
inflammatory disorders [9–14]. However, the mechanism 
of FIC5.9 releasing from fibrinogen is unknown.

Based on the studies above, we formulated a hypothesis 
that FIC5.9 is released from fibrinogen or fibrin by the 
enzyme that is activated post-blood collection. Especially 
we focused on the coagulation and fibrinolysis factors. 
FIC5.9 sequence includes amino acids 576–629 of the 
fibrinogen alpha chain (Fig. 2) and FIC5.9 appears to be 
synthesized by cleavage at RGK/SSS (N-terminal region) 
and RPV/RGI (C-terminal region) [4]. Coagulation 
and fibrinolysis factor, thrombin and plasmin are major 
enzymes that cleave to the carboxyl side of lysine work 
with fibrinogen or fibrin [15]. There are fewer reports 
of enzymes in blood that cleave to the carboxyl side of 
valine, but neutrophil elastase is one of such example 
[16]. In this study, as a first step toward understanding the 
mechanisms of FIC5.9 changes in various pathologies, 

we tested the hypothesis that FIC5.9 is released by these 
enzymes in apparently healthy subjects.

Methods
FIC5.9 synthesis during blood clotting
To confirm the conclusion of our previous study [8] 
regarding the roles of coagulation factors in synthesis of 
FIC5.9, the coagulation cascade was reactivated by add-
ing Thrombocheck APTT-SLA (Sysmex Corp., Hyogo, 
Japan) to coagulation-deficient plasma (factor II, V, VII, 
VIII, IX, X, XI, XII; Sysmex). Control plasma was col-
lected with Insepack II (sodium citrate type, Sekisui 
Medical Co., Tokyo, Japan). After 1-h incubation at 25 °C, 
samples were centrifuged at 1500g for 20 min. The super-
natant was purified with C18/WCX cartridges [4]. FIC5.9 
levels in samples were measured by MALDI-TOF MS on 
a Bruker AUTOFlex® mass spectrometer, using stable 
isotope-labeled FIC5.9 as an internal standard [4]. Each 
experiment was done in triplicate.

In vitro degradation of purified fibrinogen
Purified fibrinogen (Wako Pure Chemical Industries, 
Tokyo, Japan; 70  µg) in PBS buffer was incubated with 
thrombin (Wako; final conc. 2  U/mL [17]), plasmin 
(Wako; 1  U/mL [18]) or neutrophil elastase (Sigma-
Aldrich, St. Louis, MO, USA; 1 U/mL [19]) for 2  h at 
25  °C. The reaction was stopped by adding EDTA (pH 
8.0, 10 mM) and aprotinin (Wako; 1 U/mL). Under these 
conditions, purified fibrinogen is extensively degraded by 
thrombin, plasmin and neutrophil elastase [17–19].

LC–MS/MS analysis of degradation products of fibrinogen
StageTips C18 (Thermo Fisher Scientific, Waltham, MA, 
USA) was used for desalting the degradation products of 
fibrinogen [20]. Obtained peptides were identified by LC/
MS/MS analysis [21].

Analysis and time course of FIC5.9 synthesis in serum 
collection tubes
Serum collection tubes (tubes are evacuated; Insepack 
II, Sekisui Medical Co.) with added thrombin (Wako; 
20  U/mL), hirudin (Thermo Fisher; 1  U/mL [17]), plas-
min (Wako; 0.8 U/mL), tranexamic acid (Wako; 10 mM 
[18]), sivelestat sodium (Cosmo Bio Co.; Tokyo Japan; 
80  µM [19]) or the same volume of saline were used to 
collect blood samples from eleven healthy volunteers 
with an evacuated by Safetouch™ Blood Collection sys-
tem (NIPRO Co., Osaka Japan). The collected blood was 
clotted for 0, 5, 30, 60, 90 min at 25 °C. After blood clot-
ting, serum was obtained by centrifugation at 1500g for 
10 min at 4  °C. The level of FIC5.9 was measured using 
a FIC5.9 ELISA kit described in [6]. Written informed 

Fig. 1  Fibrinogen and FIC5.9 region (a). A model of FIC5.9 syn-
thesis (b). FIC5.9 is released from fibrinogen during the process of 
blood coagulation [8]. FIC5.9 is not found in blood plasma and only 
detected in serum after blood clotting
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consent was obtained prior to the sample collection, and 
the study was approved by the research ethics commit-
tee of the graduate school of medicine, Chiba University 
(Approval no. 677).

Statistical analysis
Statistical analysis was performed by Mann–Whit-
ney U-test with SPSS software, version 18.0 (SPSS Inc., 
Chicago, IL, USA). A P value <0.05 were considered 
significant.

Results
LC–MS/MS analysis of degradation products of fibrinogen 
in vitro
To reconfirm that FIC5.9 is released from fibrinogen 
in the serum collection tube during blood clotting [8], 
we studied FIC5.9 releasing analysis using coagulation-
deficient plasma. Deficiency of factor II, V, VIII and X 
decreased the FIC5.9 releasing from fibrinogen (Addi-
tional file  1), and that factor II (thrombin) had a par-
ticularly marked effect on the releasing of FIC5.9 from 
fibrinogen. We reconfirmed that FIC5.9 is released in the 
serum collection tube during blood clotting. To deter-
mine the coagulation and fibrinolysis factors responsi-
ble to release FIC5.9, we narrowed down the candidate 
enzymes based on these results. Information of enzyme 
cleavage sites was obtained from the Peptidase Data-
base (MEROPS: http://merops.sanger.ac.uk. Accessed 21 

September 2013). and we finally choose thrombin, plas-
min, and neutrophil elastase [17–19]. We degraded puri-
fied fibrinogen with these enzymes and the sequences 
of degradation products were analyzed by LC–MS/MS 
(Fig.  3; Additional file  2). Our degradation conditions 
showed that several cleavage sites are found in fibrinogen 
alpha C terminal domain, but especially the N-terminal 
region of FIC5.9 (RGK/SSS) was cleaved by thrombin or 
plasmin, and the C-terminal region of FIC5.9 (RPV/RGI) 
was cleaved by neutrophil elastase. While we tried fibrin-
ogen digestion experiment, using thrombin, plasmin, 
neutrophil elastase, and their mixture, we could not form 
FIC5.9 itself from fibrinogen, but observed its fragments 
in vitro (data not shown).

Analysis and time course of FIC5.9 releasing in serum 
collection tubes
To determine if thrombin, plasmin and neutrophil 
elastase can release FIC5.9 from fibrinogen in blood, we 
analyzed the time course of FIC5.9 releasing in an evacu-
ated blood collection system. We firstly examined the 
time course of FIC5.9 releasing in plain and silica-coated 
tubes by measuring the levels of FIC5.9 in serum after 0, 
5, 30, 60, 90 min of clotting. The rate of FIC5.9 releasing 
in a silica-coated tube was significantly faster than that in 
a plain tube (Additional file 3), but the final FIC5.9 levels 
did not differ significantly. All further analyses were per-
formed in silica-coated tubes.

Fig. 2  Sequences of fibrinogen alpha chain and FIC5.9. The mature alpha chain is indicated by a grey shadow. The FIC5.9 sequence (amino acids 
576–629) is underlined

http://merops.sanger.ac.uk
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In the next, we examined the time course of FIC5.9 
releasing containing thrombin, hirudin (a thrombin 
inhibitor), plasmin, tranexamic acid (a plasmin inhibi-
tor), or sivelestat sodium (a neutrophil elastase inhibitor) 
(Fig. 4a–c). In all experiments (Fig. 4), 0 min of clotting 
could not eliminate a time lag of serum separation (a time 
for blood reaches from venous blood collection needle to 
blood collection tube, and centrifugation duration), and 
FIC5.9 level was not found to be zero at 0 min. The rate 
of FIC5.9 releasing from fibrinogen with added thrombin 
was significantly faster than that in silica-coated tubes. 
FIC5.9 releasing with added thrombin reached a pla-
teau after 30 min clotting, but the amount of FIC5.9 was 
same with silica-coated and plain tubes (Fig.  4a). Addi-
tion of hirudin (thrombin inhibitor) significantly delayed 
the FIC5.9 releasing, but prolonged to after 90  min of 
clotting. Addition of plasmin significantly increased the 
releasing rate and total amount of FIC5.9, and addition of 
tranexamic acid (plasmin inhibitor) markedly decreased 
the FIC5.9 releasing (Fig.  4b). Addition of sivelestat 
sodium (neutrophil elastase inhibitor) strongly inhibited 
FIC5.9 releasing (Fig. 4c).

Discussion
In this study, we formulated a hypothesis that FIC5.9 is 
released from fibrinogen by coagulation and fibrinolysis 
factors. We firstly analyzed in  vitro released fragments 
from fibrinogen by digestion with thrombin, plasmin 
or neutrophil elastase using LC–MS/MS (Fig.  3). Suc-
cessively we analyzed the time course of FIC5.9 release 
was determined in serum collection tubes spiked with 

thrombin (and its inhibitor, hirudin), plasmin (and its 
inhibitor, tranexamic acid) and sivelestat sodium (neutro-
phil elastase inhibitor) (Fig. 4). We concluded our analy-
sis showed that thrombin acts as an initiator for FIC5.9 
releasing, and that mainly plasmin cleaves N-terminal 
end of FIC5.9 and neutrophil elastase cleave C-terminal 
end of FIC5.9 from fibrinogen.

LC–MS/MS analysis showed that N-terminal end of 
FIC5.9 (RGK/SSS) is cleaved by thrombin or plasmin, 
and C-terminal end of FIC5.9 (RPV/RGI) is cleaved 
by neutrophil elastase (Fig.  3). To confirm that these 
enzymes can release FIC5.9 during blood coagula-
tion, we analyzed the time course of FIC5.9 release 
was determined in serum collection tubes spiked with 
thrombin (and its inhibitor, hirudin), plasmin (and its 
inhibitor, tranexamic acid) and sivelestat sodium (neu-
trophil elastase inhibitor) (Fig. 4). Addition of thrombin 
(or their inhibitor, hirudin) accelerated (or delayed) the 
releasing of FIC5.9 from fibrinogen, but the amounts of 
FIC5.9 at 90 min clotting had no significance. It is clear 
that blood clotting initiates FIC5.9 releasing, and FIC5.9 
is negligible in the blood circulation, but found in serum 
collection tubes. However, these results do not demon-
strate thrombin plays a main role in FIC5.9 releasing 
when once blood clotting process is started in serum 
collection tubes. We conclude thrombin play a role of 
initiation element of FIC5.9 releasing by starting blood 
clotting with its activity.

On the other hands, addition of plasmin sufficiently 
accelerated the releasing of FIC5.9 and increased sub-
stantially the amount of FIC5.9. While thinking thrombin 
is an initiation element of FIC5.9 releasing, these results 
indicate that plasmin is the major enzyme that cleaves the 
N-terminal region of FIC5.9 and affects the amount of 
FIC5.9. In nature, activation of plasminogen to plasmin 
occurs after activation of coagulation factors including 
thrombin [22, 23]. These reports also support the role of 
thrombin as the initiator of FIC5.9 synthesis. Inhibition 
of plasmin activity significantly suppressed FIC5.9 releas-
ing from fibrinogen (Fig. 4). The suppression of plasmin 
by tranexamic acid was significant, but not completely. It 
may be due to other enzymes which can cleave the N-ter-
minal end of FIC5.9; in fact, our in vitro digestion experi-
ments (Fig. 3) show thrombin can cleave N-terminal end 
of FIC5.9. Taken together, plasmin seems to play a main 
role in cleaving N-terminal end of FIC5.9 and releasing 
FIC5.9.

Up to here, we discussed enzymes cleaving N-termi-
nal end of FIC5.9. Our results also indicate neutrophil 
elastase play an important role in cleaving C-terminal 
end of FIC5.9 (Figs. 3, 4). Results of the in vitro digestion 

Fig. 3  Cleavage site mapping of thrombin, plasmin and neutrophil 
elastase in FIC5.9 surrounding regions. Cleavage sites are indicated 
with scissors, depending on the number of peptides identified by LC–
MS/MS analysis. Identified peptide sequence information is shown in 
Additional file 2
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experiments (Fig.  3) showed that C-terminal end of 
FIC5.9 (RPV/RGI) is cleaved by neutrophil elastase, while 
inhibition of its activity strongly suppress FIC5.9 releas-
ing in serum collection tube (Fig. 4). The suppression of 
neutrophil elastase completely inhibited the releasing of 
FIC5.9 from fibrinogen (Fig.  4c), which implies neutro-
phil elastase plays a major role in cleaving the C-terminal 
end and releasing of FIC5.9 from fibrinogen.

In the experiments of serum collection tubes, FIC5.9 
was detected at 0 min of clotting or inhibitor added 
tubes (Fig.  4). We estimate this phenomenon is caused 
by blood collection process; by the moment blood 
reaches serum collection tubes, blood passes blood col-
lection needle and a thin tube connecting between the 
needle and a serum collection tube, clearly blood coagu-
lation process have already started before blood reaches 

Fig. 4  Analysis of time course of FIC5.9 releasing with thrombin spiked/inhibited (a), plasmin spiked/inhibited (b), or neutrophil elastase inhibited 
(c) serum collection tubes. The relative amount of FIC5.9 was measured by FIC5.9 ELISA. Statistical comparison of silica-coated tube versus enzyme-
spiked tube (asterisk), or inhibitor spiked tube (dagger symbol) was performed as described in the “Methods” section
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serum collection tubes; and centrifugation duration is 
10 min.

Our results showed that the mechanism of FIC5.9 
releasing in healthy people is strongly related to coagu-
lation and fibrinolysis factors. And our results suggest 
why FIC5.9 is a marker of alcoholic liver disease and liver 
fibrosis [4–8]. Neutrophil elastase cleaves the C-termi-
nal site of FIC5.9, but only a few reports indicate that 
the level of neutrophil elastase (or the neutrophil count) 
changes in the early stage of chronic hepatitis [24, 25]. 
Therefore, the C-terminal site of FIC5.9 is likely to be 
cleaved at a similar level in healthy people and patients 
with chronic hepatitis. However, an extreme increase or 
decrease in neutrophils might affect FIC5.9 releasing. A 
spike test of neutrophil elastase into the collection tube 
could not be performed because we could not obtain 
enough amount of elastase. Indeed, significant volume of 
enzyme was needed for experiment with blood collection 
tubes. However, the results of LC–MS/MS indicated that 
neutrophil elastase can cleave the C-terminal region of 
FIC5.9. This requires confirmation in a further study.

Thrombin (seems to be an initiator of FIC5.9 synthesis) 
and plasmin (which significantly cleaves the N-terminal 
site of FIC5.9) are molecular markers of liver disease, partly 
because both enzymes are secreted from liver [26–29].

The presence of other factors related to FIC5.9 releasing 
should also be considered. Recently, Marfa et al. reported 
that TGF-β reduces the expression level of fibrinogen 
alpha chain mRNA [7], which is of note because the level 
of TGF-β is related to liver fibrosis and hepatitis [31, 32]. 
In addition, plasma fibrinogen has been proposed as a 
marker for chronic liver disease [33]. As these reports 
show, the low level of FIC5.9 releasing in chronic hepa-
titis is not simply due to enzymatic reactions, but also to 
a decrease in fibrinogen synthesis (a decrease in the pre-
cursor to FIC5.9). Thus, it seems that several factors are 
involved in determining the level of FIC5.9.

Conclusion
Measurement of degradation products in blood circulation 
is commonly used in clinical tests [34, 35]. Most coagula-
tion and fibrinolysis factors are unstable for measurement 
of activity [36–38], as exemplified by the activated partial 
thromboplastin time (APTT) and the prothrombin time 
(PT). FIC5.9 is also a degradation product from fibrinogen 
alpha chain that is released by coagulation and fibrinoly-
sis factors, and reflects a minute change in these factors. 
Thrombin, plasmin and neutrophil elastase are involved in 
the key mechanism of FIC5.9 releasing in clotting of nor-
mal blood. This provides the basis for understanding the 
decrease in FIC5.9 in clotting of blood from patients with 
chronic hepatitis. Further analysis may show similar effects 
in blood from patients with several diseases.
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