
Fan et al. Clinical Proteomics           (2021) 18:32  
https://doi.org/10.1186/s12014-021-09338-6

RESEARCH

Urine proteomics identifies biomarkers 
for diabetic kidney disease at different stages
Guanjie Fan1,2,3,4*†, Tongqing Gong5†, Yuping Lin1,2,3,4†, Jianping Wang6,7†, Lu Sun1,2,3,4, Hua Wei1,2,3,4, 
Xing Yang5, Zhenjie Liu1,2,3,4, Xinliang Li5, Ling Zhao1,2,3,4, Lan Song6, Jiali He1,2,3,4, Haibo Liu5, Xiuming Li1,2,3,4, 
Lifeng Liu5, Anxiang Li1,2,3,4, Qiyun Lu1,2,3,4, Dongyin Zou1,2,3,4, Jianxuan Wen1,2,3,4, Yaqing Xia1,2,3,4, Liyan Wu1,2,3,4, 
Haoyue Huang1,2,3,4, Yuan Zhang1,2,3,4, Wenwen Xie1,2,3,4, Jinzhu Huang1,2,3,4, Lulu Luo1,2,3,4, Lulu Wu1,2,3,4, 
Liu He1,2,3,4, Qingshun Liang1,2,3,4, Qubo Chen1,2,3,4, Guowei Chen1,2,3,4, Mingze Bai6,7, Jun Qin6, Xiaotian Ni6*, 
Xianyu Tang1,2,3,4* and Yi Wang6* 

Abstract 

Background:  Type 2 diabetic kidney disease is the most common cause of chronic kidney diseases (CKD) and end-
stage renal diseases (ESRD). Although kidney biopsy is considered as the ‘gold standard’ for diabetic kidney disease 
(DKD) diagnosis, it is an invasive procedure, and the diagnosis can be influenced by sampling bias and personal 
judgement. It is desirable to establish a non-invasive procedure that can complement kidney biopsy in diagnosis and 
tracking the DKD progress.

Methods:  In this cross-sectional study, we collected 252 urine samples, including 134 uncomplicated diabetes, 65 
DKD, 40 CKD without diabetes and 13 follow-up diabetic samples, and analyzed the urine proteomes with liquid chro-
matography coupled with tandem mass spectrometry (LC–MS/MS). We built logistic regression models to distinguish 
uncomplicated diabetes, DKD and other CKDs.

Results:  We quantified 559 ± 202 gene products (GPs) (Mean ± SD) on a single sample and 2946 GPs in total. Based 
on logistic regression models, DKD patients could be differentiated from the uncomplicated diabetic patients with 
2 urinary proteins (AUC = 0.928), and the stage 3 (DKD3) and stage 4 (DKD4) DKD patients with 3 urinary proteins 
(AUC = 0.949). These results were validated in an independent dataset. Finally, a 4-protein classifier identified putative 
pre-DKD3 patients, who showed DKD3 proteomic features but were not diagnosed by clinical standards. Follow-up 
studies on 11 patients indicated that 2 putative pre-DKD patients have progressed to DKD3.

Conclusions:  Our study demonstrated the potential for urinary proteomics as a noninvasive method for DKD diag-
nosis and identifying high-risk patients for progression monitoring.
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Background
In 2019, more than 463 million people worldwide were 
estimated to be living with diabetes, representing 9.3% 
of the global adult population (20–79 years) [1]. Among 
these people, 20% to 40% will progress to DKD [2], 
which remains a leading cause of morbidity and mortal-
ity in people with type 2 diabetes [3–5]. DKD patients 
are at significant risk of progression to ESRD and 
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cardiovascular diseases. Therefore, early detection, pre-
vention, and treatment are of great importance for dis-
ease management [6]. Clinically, the diagnosis of DKD 
is based on the measurement of eGFR, albuminuria and 
urinary microalbumin creatinine ratio (UACR) along 
with other clinical features [7]. The “gold standard” for 
definitive diagnosis of DKD requires kidney biopsy with 
which an expert renal pathologist makes the diagnosis 
from histological tissue. However, the procedure is inva-
sive and sometimes dangerous, and the evaluation pro-
cess can be biased by human judgment [8]. It is important 
to find a noninvasive test method that can complement 
or replace renal puncture.

DKD is divided into five stages according to clini-
cal guidelines [9, 10]. The stage 1 (DKD1) and stage 2 
(DKD2) DKDs are preclinical stages, and are character-
ized by an increase in glomerular filtration rate (GFR), 
normal albuminuria or intermittent microalbuminuria. 
DKD3, characterized by persistent microalbuminuria, 
mild hypertension, and a normal or slight decline in GFR, 
is the onset of clinical stage [11]. Patients with DKD4 
exhibit clinical symptoms of edema and hypertension, 
along with an increase in albuminuria, which is difficult 
to treat [12]. In the overt DKD4, as the glomerular filtra-
tion rate (GFR) declines, the albumin-to-creatinine ratio 
(ACR) would further increase (> 300  mg/g). Under this 
circumstance, taking any medicine could increase the 
kidney burden thus exacerbate the disease. With proper 
clinical intervention, the DKD progression can often be 
delayed or even reversed before it progresses to stage 
4. Therefore, monitoring the kidney function of DKD3 
patients is critical to the medical treatments and delaying 
disease prognosis.

In the past years, several noninvasive methods have 
been proposed, mostly based on the ‘omics’ techniques 
for the evaluation of urine or serum biomarkers [13, 14]. 
Among these approaches, urinary proteome analysis 
has gained popularity, and has the potential to be tran-
sitioned towards clinical implementation [15, 16]. Meas-
uring urine proteome is non-invasive, and quantitative 
determining the urinary proteins and peptides can be an 
enabling platform to distinguish disease stages or moni-
tor response to therapies. Many efforts have been put 
into finding biomarkers for CKD, aiding risk assessment 
for DKD patients. Using high-resolution capillary elec-
trophoresis coupled with electrospray-ionization mass 
spectrometry, a panel of 40 biomarkers were identified 
from the urinary peptides and they were reported to be 
able to differentiate healthy individuals from diabetic 
patients with persistent normal albuminuria, low-grade 
albuminuria, or nephropathy (PREDICTION) [17]. Fur-
thermore, it could distinguish patients with DKD from 
patients with other CKDs. However, the exact protein 

identities of these peptide biomarkers were not clear. A 
metabolic study utilized normal phase liquid chroma-
tography coupled with time-of-flight mass spectrometry 
(NPLC-TOF/MS) investigated the profile of the plasma 
phospholipids of type 2 diabetes and DKD [18] and 
found that 2 novel biomarkers, PI C18:0/22:6 and SM 
dC18:0/20:2, could be used to distinguish healthy indi-
viduals, type 2 diabetes cases and DKD cases from each 
other, but these two biomarkers cannot distinguish the 
stages of DKD.

A CKD273 classifier was successful in using urine 
peptides to predict the development of DKD before 
patients developed microalbuminuria [19]. A work by 
Liao, W.-L. et al. identified haptoglobin (HPT) and α-1-
microglobulin/bikunin precursor (AMBP) as two bio-
markers with the highest ability to distinguish between 
healthy individuals and patients with nephropathy, and 
between diabetic patients with or without DKD [20] 
in a Taiwanese population. However, the study popu-
lation was limited to patients with an ACR of less than 
300 mg/g, and none of the patients had stage 3 of CKD. 
In addition, the information on the use of insulin or other 
drugs (such as renin-angiotensin system antagonists) that 
may alter renal function was not provided.

Currently, clinical DKD surveillance relies on the meas-
urements of eGFR and UACR, along with other physical 
and clinical parameters. The accuracy of these tests is not 
ideal and often depends on the results of multiple tests 
[21]. Here, we report a streamlined urine proteomics 
workflow to monitor DKD at different stages using liquid 
chromatography coupled with tandem mass spectrom-
etry (LC–MS/MS). Urine proteomes of diabetes without 
complications, DKD, and other nephropathy patients 
without diabetes were measured and used to build logis-
tic regression models to differentiate DKD from uncom-
plicated diabetes and different stages of DKD.

Materials and methods
Sample collection
A total of 239 urine samples from 236 patients, includ-
ing diabetes without nephropathy (n = 134), diabetic kid-
ney disease (n = 65), and nephropathy without diabetes 
(n = 40), were collected in Guangdong Provincial Hospi-
tal of Chinese Medicine, Guangzhou, China. The batch 1 
dataset of 30 urine samples was collected in year 2018, 
including 21 cases of diabetes without nephropathy and 
9 cases of DKD; the batch 2 dataset of 209 urine samples 
was collected in year 2019, including diabetes without 
nephropathy (n = 113), DKD (n = 56) and nephropathy 
without diabetes (n = 40). DKDs were separated into 
two stages as DKD3 (Urinary Albumin/Creatinine Ratio: 
30–300  mg/g) and DKD4 (Urinary Albumin/Creatinine 
Ratio > 300 mg/g).
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Sample preparation and nano HPLC–MS analysis
Midstream of the first-morning urine was obtained and 
stored at −  80  °C. One milliliter of all urine samples 
was centrifuged at 176,000  g for 1  h and the pellet was 
collected. The pellet was resuspended with 160  μl of 
resuspension buffer (100 mM Tris, pH 7.4) with 50 mM 
dithiothreitol (DTT). The suspension was then heated at 
65  °C for 30 min and centrifuged at 176,000 g for 0.5 h. 
The pellet was resuspended with 30 μl NH4HCO3, heated 
at 95 °C for 3 min and cooled to room temperature, then 
digested by trypsin or 12 h.

The digested peptides were vacuum dried and re-dis-
solved in 0.1% formic acid and resolved on an UltiMate 
3000 RSLCnano System (Thermo Fisher Scientific) oper-
ating on a 20 min linear gradient for batch 1 and 30 min 
for batch 2 (5–35% acetonitrile in 0.1% formic acid) at 
a flow rate of 600  nl/min. Tandem mass spectra were 
acquired on a QExactive HF mass spectrometer (Thermo 
Fisher Scientific) in the data-dependent mode. Quality 
control samples were made prepared from trypsin digests 
of 293 T cells and were routinely analyzed to assess the 
LC–MS/MS sensitivity and reproducibility.

Protein identification and label‑free quantification
MS data were processed on the Firmiana platform [22]. 
Proteins were identified against the NCBI human RefSeq 
protein database (released on 04/07/2013, 32,015 entries) 
using the MASCOT search engine (Matrix Science, ver-
sion 2.3.01). Mass tolerance was set as 20 ppm for precur-
sor ions and 0.05 Da for product-ions, respectively. Up to 
one missed cleavage was allowed for trypsin digestion. 
Cysteine carbamidomethylation was considered as a fixed 
modification, N-terminal acetylation and methionine 
oxidation were considered as dynamic modifications. 1% 
FDR on both the peptide and protein levels estimated by 
searching a decoy database were allowed. Only identifi-
cations with ≥ 1 unique and strict peptides and ≥ 2 strict 
peptides (ion score > 20) or ≥ 3 strict peptides, which was 
comparable to 1% FDR at the protein level, were used for 
subsequent analyses. For protein quantification, intensity 
based absolute quantification (iBAQ) algorithm [23] was 
used. To normalize the differences in sample amounts, 
iBAQ values were converted to iFOTs (fraction of total) 
calculated by dividing the iBAQ value of each protein by 
the total iBAQ of the sample followed by multiplying 105 
for easy visualization. All missing values were substituted 
with zero.

Statistical analysis
Pathway enrichment analysis was performed using reac-
tome (https://​react​ome.​org/) [24]. Principal component 
analysis (PCA) was performed by the sklearn (0.21.2) 

package with Python on validation dataset. Two com-
ponents were used for data visualization. Protein differ-
ential excretion was assessed with Kruskal–Wallis test 
and Mann–Whitney U test. The correlation analyses 
between clinical and proteomics data and the statistical 
analyses were calculated by scipy (version 1.3.0) pack-
age with Python. For high-dimensional MS data, dimen-
sion reduction was applied to avoid over-fitting. We 
first defined the differentially expressed proteins as the 
candidate biomarker set, then go through the potential 
combinations of less than or equal to 4 proteins. At last, 
a logistic regression model was carried out to select the 
optimal panel of biomarker.

A Logistic Regression Classifier (sklearn (0.21.2) pack-
age with Python) was built using batch1 data as training 
set and batch2 data as validation set. The performance 
of the model was evaluated by sensitivity and specificity 
computed based on the confusion matrix. The Receiver 
Operating Characteristic curve plotted sensitivity (True 
Positive Ratio) as the x axis and 1-specificity (False Posi-
tive Ratio) as the y axis. Feature selection was applied to 
select most important features that can make the model 
achieve a higher AUC (area under ROC curve). In Classi-
fication model 3, DKD3 progression risk was assessed by 
a risk score (ranging from 0 to 1), calculated by the pre-
dict_proba function in the sklearn (version 0.21.2) pack-
age based on Logistic Regression Classifier.

Results
Urine proteomics of uncomplicated diabetes 
without nephropathy, DKD, and CKD without diabetes
We employed a previously published procedure for meas-
uring urine proteomes [25] with minor modifications. 
This streamlined workflow achieved high efficiency and 
batch-to-batch reproducibility. The stability and repro-
ducibility of the MS platform was ensured by running 
293 T cell protein extracts as quality control (QC) sam-
ples during the data-collection period. The median of the 
Pearson correlation coefficient between QC samples was 
0.93 (Additional file 1: Fig. S1a). With this procedure, we 
measured 239 urine samples from 236 patients, includ-
ing uncomplicated diabetes without nephropathy (diabe-
tes herein for simplicity, 134 samples from 132 patients), 
DKD (65 samples from 64 patients), and chronic kidney 
disease without diabetes (CKD herein for simplicity, 
40 samples from 40 patients) (Fig.  1a, Additional file  3: 
Table  S1). A total of 2946 proteins was identified and 
quantified with high analytical confidence (Additional 
file 1: Fig. s1b, Additional file 3: Table S1) with a median 
of 571 proteins identified per urine sample (Additional 
file 1: Fig. S1c).

Principle component analysis (PCA) of all proteins in 
the dataset showed that, when all samples were projected 

https://reactome.org/)
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Fig. 1  Urine proteomic analysis of Diabetes, DKD, and CKD. a Clinical stages and the number of samples used in the discovery and validation 
datasets. b Principal component analysis of the proteomics data. Each dot represents an urinary sample. Blue: Diabetes, Yellow: DKD, Red: CKD. 
c Reactome pathway analysis of the disease-specific DEPs (323 DEPs for diabetes, 98 DEPs for DKD, 88 DEPs for CKD). d Pearson correlation 
coefficients between the abundance of the 2,946 urine proteins and the 13 routinely tested clinical or health indexes. e. Scatter plots of selected 
high abundance urine proteins and kidney function indexes with strong positive correlations
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onto the first two principal components, representing 
79.6% and 13.5% of the variance, respectively (Fig.  1b), 
diabetes and CKD can be clearly separated, whereas 
DKD appears to be in between. Next, we selected differ-
entially excreted proteins (DEPs) in each group, using the 
following criteria: (1) the ratio of the mean of the high-
est group/second highest group >  = 2, and (2) the p-value 
of Kruskal–Wallis test < 0.05 (Additional file 4: Table S2). 
The 509 DEPs whose expressions were at least two-fold 
higher in one disease than in any other disease were 
defined as disease-specific DEPs (323 DEPs for diabetes, 
98 DEPs for DKD, 88 DEPs for CKD). Reactome analysis 
showed that proteins specific in diabetes were enriched 
in late endosomal microautophagy, regulation of IGF 
transport and uptake by IGFBPs. In contrast, innate 
immune system and platelet activation were significantly 
up-regulated in both DKD and CKD, indicating that the 
two diseases share similar pathology. Moreover, enrich-
ment of these pathways was higher in statistical signifi-
cance between CKD and diabetes than those between 
DKD and diabetes. Notably, the formation of fibrin clot 
(clotting cascade) was up-regulated in CKD, but not in 
DKD (Fig. 1c).

To investigate whether the urinary proteome correlated 
with the clinical parameters assessed by serum tests, we 
performed correlation analysis for the 2946 proteins and 
13 routinely tested clinical or health indexes. We calcu-
lated the Pearson correlation coefficient for each pro-
tein with each index (Fig. 1d, Additional file 4: Table S2). 
Strong correlations (Pearson correlation coefficient > 0.5 
or < −  0.5) were found between 4 kidney functional 
indexes (serum creatinine, albumin-to-creatinine ratio, 
blood urea nitrogen, and glomerular filtration rate) and 
46 urinary proteins. For example, serum creatinine was 
strongly correlated with the urinary protein abundance 
of RBP4 (retinol binding protein 4) and C7 (complement 
C7), with Pearson correlation coefficient of 0.812 and 
0.769, respectively. C7 abundance was also correlated 
with blood urea nitrogen (Pearson correlation coefficient: 
0.729) (Fig. 1e). Consistently, 3 proteins (ALB, RBP4, C7) 
were negatively correlated with glomerular filtration rate 
(Additional file  1: Fig. S1d). These results indicate that 
serum clinical indexes may be reflected in the urine pro-
teome, which could provide additional biological insights 
into kidney dysfunctions in these diseases.

Distinguish DKD from diabetes with a 2‑protein Classifier
We used the dataset collected from year 2018 as the 
discovery dataset and the dataset collected from year 
2019 as the validation dataset (Fig.  1a). To identify uri-
nary biomarkers that distinguish DKD from diabetes, we 
determined DEPs between diabetes and the DKD group 
(including both DKD3 and DKD4 samples) (Fig.  2a). 

From the discovery dataset, which contained 21 diabetes 
and 9 DKD, we found 177 DEPs (Mann–Whitney U test 
p values < 0.05, fold-change of means > 3), among which 
79 were up-regulated and 73 were down-regulated in 
DKD patients (Fig. 2b) Next, we selected high-abundant 
DEPs (mean iFOT > 1) in diabetes or DKD as potential 
biomarkers, resulting in 135 proteins (Additional file  5: 
Table  S3). After dimension reduction, we showed that 
using 2 proteins (ALB, AFM) could readily distinguish 
DKD from diabetes (AUC: 0.928, accuracy: 85.2%, speci-
ficity: 83.2%, sensitivity: 87.5%, Fig. 2c) in the validation 
set. Both ALB and AFM were significantly excreted at 
higher levels in the validation dataset (Fig. 2d).

Reactome analysis revealed that the up-regulated 
DEPs were enriched in neutrophil degranulation, adap-
tive immune system, and complement cascade, while 
the down-regulated DEPs were enriched in membrane 
trafficking and cellular responses to stress (Fig.  2e). 
These results indicated the major functional differences 
between DKD and diabetics as revealed by the urine 
proteome. Close examination of the high abundance 
DEPs (top 50) revealed that liver- (29/50) and bone mar-
row (6/50)-specific proteins [26] were enriched in DKD, 
but low tissue specificity was found among those highly 
expressed in diabetes (Additional file 5: Table S3).

Distinguish DKD3 from DKD4 with a 3‑protein classifier
As DKD3 and DKD4 are managed differently in the 
clinics [27], a non-invasive test to distinguish the DKD 
stages could aid in disease management. To this end, 
we first used the DKD3 (n = 3) and DKD4 (n = 6) sam-
ples in the discovery set to find DEPs (Fig. 3a). Since the 
difference between DKD3 and DKD4 might be smaller 
than that between diabetes and DKD, we applied a 
more relaxed constraints for protein filtering (Mann–
Whitney U test p < 0.05 or fold-change > 3 and detec-
tion frequency > 50%). We identified 104 DEPs with 45 
up-regulated and 59 down-regulated proteins in DKD4 
compared to DKD3 (Additional file  6: Table  S4). An 
unsupervised hierarchical clustering analysis of the val-
idation set using the 104 DEPs showed that DKD3 and 
DKD4 can be well separated (Fig.  3b), suggesting that 
significant differences have occurred when DKD3 pro-
gressed to DKD4. Using the same protein filtering criteria 
in the validation set, 32 up-regulated and 468 down-reg-
ulated proteins were found in DKD4 compared to DKD3 
(Additional file 6: Table S4). A Venn diagram showed that 
7 of the 45 (24.4%) up-regulated DEPs in the discovery 
set and 30 of the 59 (50.8%) down-regulated DEPs were 
also found in the validation set (Fig. 3c). After perform-
ing a dimension reduction, a 3-protein classifier could 
distinguish DKD3 from DKD4. Applying the prediction 
model to the validation set resulted in an ROC of 0.949 
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Fig. 2  A classifier for distinguishing DKD from Diabetes. a A bioinformatic analysis workflow to find candidate biomarkers between the Diabetes 
and the DKD group. n: number of samples used in the analyses. b Volcano plot displaying the differentially expressed proteins between Diabetes 
and DKD. Red and Blue indicated proteins that were significantly enriched in DKD and Diabetes, respectively (p values < 0.05, more than threefold 
change). Other proteins were colored in grey. c ROC curve of distinguishing the Diabetes and DKD samples predicted by the 2-protein classifier. 
d Boxplots showing the ALB and AFM abundance in Diabetes and DKD in the two datasets (center line: median, bounds of box: 25th and 75th 
percentiles, and whiskers: from Q1-1.5*IQR to Q3 + 1.5*IQR, p-value calculated by Mann–Whitney U test). e Reactome pathway analysis of the 
up-regulated (red) and down-regulated (blue) DEPs in DKD samples
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Fig. 3  A classifier for distinguishing DKD4 from DKD3. a A bioinformatic analysis workflow to find candidate biomarkers between DKD3 and DKD4 
samples. n: number of samples used in the analyses. b Hierarchical clustering of DKD3 and DKD4 DEPs using complete linkage. Protein expression 
values were normalized by z-scores. c Venn diagram indicating the overlap of DEPs between discovery and validation datasets. d ROC curve of 
distinguishing DKD3 and DKD4 predicted by a 3-protein classifier. e Reactome pathway analysis of the up-regulated DEPs in DKD4 samples. f 
Boxplots displaying the abundance of the complement component proteins at different stages of DKD and CKD in the two datasets
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(accuracy: 85.7%, specificity: 86.8%, sensitivity: 83.3%, 
Fig.  3d). Reactome analysis revealed that the up-regu-
lated DEPs in DKD3, including all 7 overlapping ones, 
were enriched in hemostasis and immune system, espe-
cially in complement cascade (Fig. 3e–f).

Monitor the transition to DKD with a 4‑protein classifier
Since our goal is early diagnosis for DKD, we re-analyzed 
DKD3 and diabetes datasets to identify proteins that 
could implicate the transition from diabetes to DKD 
(Fig. 4a). As small sample size would result in poor esti-
mation and low statistical power, in the discovery set, we 
performed DEP analysis between diabetes group (n = 21) 
and the DKD group (n = 3) with the following 2 criteria: 
(1) the mean iFOT in DKD group was 2 times higher 
than that in diabetes group; (2) detected in at least 2 sam-
ples in the DKD group, resulting in 203 DEPs (Additional 
File 7: Table S5). Next, we identified DEPs (Mann–Whit-
ney U test p < 0.05, fold change > 2 and detection fre-
quency > 50%) in the validation dataset, resulting in 73 
DEPs (Additional File 7: Table S5). After performing the 
dimension reduction from the 24 overlapping DEPs from 
discovery and validation datasets, a 4-protein classifier 
(SERPINA5, VPS4A, CP, TF) could distinguish diabetes 
from DKD3 (Fig. 4b). Applying this classifier to the vali-
dation dataset resulted in an area under the ROC curve 
of 0.952 (accuracy: 89.4%, specificity: 88.5%, sensitivity: 
92.1%, Fig. 4c) (see Additional file 7).

We noted that 13 of the 113 diabetic samples were 
classified as DKD3 (Fig.  4d). This seemingly false-pos-
itive result may indicate the inaccuracy of the classifier; 
alternatively, it could also indicate clinical misdiagno-
sis, as progression from diabetes to early stage of DKD 
(pre-DKD3) is difficult to detect. We then explored the 
possibility of inferring the uncomplicated diabetes to 
“pre-DKD3” progression based on the difference between 
diabetes and these 13 false-positive DKD3 samples. To 
this end, we identified DEPs among the 13 false-posi-
tive DKD3 and the rest of the diabetes samples in the 
validation set. Using the criteria described (Wilcoxon 
p value < 0.05, ratio of means >  = 2 or <  = 0.5, and fre-
quency > 0.6), we found 35 DEPs (16 upregulated and 
19 downregulated, Additional file  8: Table  S6), which 
include all 4 classifier proteins, as expected. As shown 
in Fig.  4e, the levels of the 4 classifier proteins, as well 
as several other DEPs also showed significant changes 
at other stages of the disease, and the changes were 
more significant as the severity of the disease progress. 
Together, these data indicate that the dysfunctional path-
ways in different stages of the diseases share similarity 
and DKD is a progressive disease.

To test the predictive power of our model, we analyzed 
longitudinal urine samples collected from 11 diabetic 

patients, among which 6 were predicted as the high-risk 
“pre-DKD” patients. We assess the progression to DKD 
by calculating the risk scores for each urine sample using 
model 3. Four of the 6 pre-DKD patients were classified 
as DKD3 once again (Additional file  2: Fig. S2). Impor-
tantly, one of the patients (clinical ID: 0359150) was diag-
nosed as DKD3 by clinical index (Fig. 4f, Additional file 9: 
Table  S7). Moreover, one patient (clinical ID: 8073510), 
who was classified as diabetes in the validation dataset 
and re-classified as DKD3 in 2020, was admitted to hos-
pital in March 2021 for DKD treatment, and then recov-
ered in July 2021 after Valsartan Capsules treatment. 
These results suggest urine proteomics have the potential 
to monitor DKD progression, especially for high-risk dia-
betes patients.

Discussion
In this study, we conducted urinary proteomic stud-
ies on 236 patients. This streamlined, sedimentation-
based method allowed us to detect 559 proteins/sample 
on average and a total of 2946 proteins, requiring 0.5 h/
sample of processing time. The data allowed us to build 
models that could distinguish DKD from diabetes 
(AUC = 0.928) with 2 proteins (ALB, AFM), and distin-
guish DKD3 from DKD4 (AUC = 0.949) with 3 proteins 
(ANXA7, APOD, C9). Moreover, a 4-protein (SER-
PINA5, VPS4A, CP, TF) classifier was built to predict 
early stage DKD3 from diabetes (Fig. 4g). Importantly, a 
small-scale follow-up study on 11 patients showed that 2 
high-risk pre-DKD patients predicted by our model had 
progressed to clinical DKD3, confirming the ability of our 
approach as a noninvasive method to monitor progres-
sion of renal dysfunctions, particularly for patients who 
have been classified as high-risk.

Previous studies showed that inactivation of similar 
biological processes may contribute to the disease pro-
gression [28, 29]. Samples in our dataset allowed us to 
analyze the different stages of the disease in a quantita-
tive manner. We found that similar biological processes 
are indeed altered at different stages. For example, acti-
vation of complement cascades is unique for DKD4 and 
CKD, consistent with a recent study showing that higher 
urinary abundance of CFAH is associated with greater 
risk of progression to ESRD [30]. While activation of 
clotting cascade is enriched in both DKD and CKD 
(Figs. 2e and 1c), it is enriched with much higher statis-
tical significance in CKD when the 3 datasets are com-
pared, suggesting that the increase in coagulation factors 
in urine has the potential to distinguish CKD from DKD 
once these findings are validated by more experimental 
and clinical evidence.

Abnormal urine albumin excretion is a hallmark 
for incipient nephropathy. This has been attributed to 
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Fig. 4  A classifier for monitoring early transition to DKD. a A bioinformatic analysis workflow to find candidate biomarkers between DKD3 and 
Diabetes samples. b Venn diagram showing the overlap of DEPs in the discovery and the validation set. c ROC curve of distinguishing DKD3 and 
Diabetes predicted by a 4-protein classifier. d Dotplot indicating the Diabetes and DKD samples and their predicted stages by the classifier. Each 
point represented one urine sample. Blue and green dots presents Diabetes and DKD, respectively. The x-axis indicates the predicted DKD stage 3. 
Blue dots positioned on the right side of the Prediction line were predicted incorrectly as DKD3 by the model and were used as putative pre-DKD 
in the subsequent analysis. e Boxplots displaying the iFOT intensities of the 4 biomarkers (CP, TF, SERPINA5, VPS4A) in Diabetes, DKD3, DKD4, and 
CKD samples. f The risk scores(left panel) and the 4-marker expression (right panel) of the patient (clinical ID: 8073510). g A schematic summary of 
bioinformatic analysis workflow that derived the 3 prediction models in this study
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dysfunction in glomerular permselectivity and tubu-
lar reabsorption, among other causes. Our data showed 
that, besides albumin, which is the 2nd most abundant 
urinary excreted proteins identified in our assay, other 
small serum proteins also showed an increase in excre-
tion, consistent with the notion of renal dysfunction as an 
underlying cause. Recently, Van and colleague reviewed 
published DKD urinary proteomic/peptidomic litera-
tures, and compiled a list of 75 most robust candidate 
markers at each stage of diabetic kidney disease and 
highlighted their roles in biological processes that may 
contribute to progression [31]. Of the 75 biomarkers, 55 
(73.3%) can be detected in our dataset and 23 of them 
(41.8%) were among the top 100 abundant proteins in our 
dataset (Additional file  3: Table  S1). Interestingly, many 
small serum proteins, including SERPINA1, TF, AMBP, 
APOA1, that showed increased excretion were expressed 
specifically or enriched in liver and bone marrow. On the 
other hand, proteins that showed decreased excretion, 
such as AHSG, CUBN, MASP2, showed low tissue speci-
ficity and were highly expressed in more diverse tissues. 
Notably, expressions of several decreased proteins have 
been reported in the literatures or Human Protein Atlas 
as enriched or specific in the tubular segment and play 
important functional roles in endocytosis.

Recent technical advancement in mass spectrometry 
empowered high throughput unbiased biomarker dis-
coveries. For example, a urinary peptide-based classifier 
consisting of 273 naturally occurring urinary peptides 
was obtained from 3600 individuals analyzed by capillary 
electrophoresis coupled to MS. The so-called “CKD273” 
first proposed by Good et  al. [32] can differentiate 
patients of chronical kidney diseases with different eti-
ology including those caused by diabetes. Recently, the 
CKD273 classifier was applied in a trial for early detec-
tion of DKD (PRIORITY). This multicenter, prospective, 
observational study showed that a high-risk CKD273 
score was associated with an increased risk of progres-
sion to microalbuminuria over a median of 2.5  years, 
independent of clinical characteristics. However, since 
the CE-MS detects naturally occurring urinary peptides 
without enrichment, the variety of proteins detected is 
often limited. In fact, the CKD273 peptides were derived 
from a total of 30 proteins and the collagen fragments 
constitute more than 66% of the 273 peptides. This low 
protein diversity provides limited biological insights into 
disease etiology and offered few treatment recommen-
dations. Alternatively, analysis of urinary proteins, par-
ticularly with the enrichment of excreted vesicles, allows 
the detection and quantification of thousands of proteins 
from 5 ml of a urine sample, and the streamlined work-
flow also enables improved quantitative measurement.

Interestingly, collagens were not detected in high 
abundance as excreted proteins in our dataset. This is 
in contrast to results from urine peptidomics analyses 
represented by the CKD 273 panel, as Collagen a-1 (I) 
(126 fragments) and (III) (55 fragments) chains consti-
tute > 66% of the 273 markers. Since the CKD273 detects 
naturally occurring peptides generated by endogenous 
proteases, these small proteins or peptides were likely 
lost in our sedimentation process. Together, these results 
suggest that proteomics and peptidomics analyses are 
complementary assays that could provide more accurate 
diagnosis with biological insights.

We acknowledge that a limitation of our study is the 
small sample size. A multi-center study is currently 
underway to enroll more patients so that the identified 
biomarkers can be validated in independent cohorts. 
Moreover, our results on DKD and CKD need to be inter-
preted with caution, as the CKD cases in our dataset have 
complex etiology. Larger sample size with more detailed 
clinical information combined with careful data analysis 
could reveal the underlying mechanism of the changes.

In summary, the urinary proteomic cross-sectional 
study allowed the differentiation of uncomplicated diabe-
tes and DKDs at different stages, and the identification of 
biomarkers. Disease progression of the high-risk patients 
identified by the pre-DKD classifier was partly validated 
in a small-scale follow-up study. These results warrant 
the design of perspective studies to test the predictive 
power of our model for monitoring high-risk patients.

Conclusions
In this study, we have established a urinary proteomic 
workflow to conduct a cross-sectional investigation of 
uncomplicated diabetes, DKD, and CKD patients. We 
identified biomarkers that could distinguish DKD from 
uncomplicated diabetes, and stage 4 DKD from stage 
3 DKD. Logistic regression models were built upon the 
discovery dataset, and the classification was validated in 
an independent dataset. Bioinformatics analysis suggests 
that (upregulation of DKD4) complement cascade is an 
indication of DKD progression. Moreover, an algorithm 
was established to identify earlier stage DKD patients. 
Follow-up studies on 11 patients indicated that 2 putative 
pre-DKD patients have progressed to DKD3.

This study demonstrated the potential for urine prot-
eomics as a noninvasive method for DKD diagnosis and 
identifying high-risk patients for progression monitoring. 
The pathways identified from differentially excreted pro-
teins provided important clues on biological basis during 
disease progression.
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