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Abstract 

Background:  High blood glucose level is one of the main characteristics of diabetes mellitus. Based on previous 
studies, it is speculated longevity families may have certain advantages in blood glucose regulation. However, limited 
information on these items has been reported. The purpose of this study was to profile differences of plasma prot-
eomics between longevity subjects (with normal fructosamine (FUN) level) and non-longevity area participants (with 
exceeding standard FUN level).

Methods:  In this study, a TMT-based proteomics analysis was used to profile differences of plasma proteomics 
between longevity subjects (with normal FUN level) and non-longevity area participants (with exceeding standard 
FUN level). Results were validated by Luminex detection.

Results:  A total of 155 differentially expressed proteins (DEPs) were identified between these two groups. The DEPs 
related to blood glucose regulation were mainly involved in glycolysis/gluconeogenesis, pyruvate metabolism and 
propanoate metabolism, and most of the DEPs were contained in carbohydrate metabolism, PI3K-Akt pathway, 
glucagon signaling pathway and inflammatory response. Validation by Luminex detection confirmed that CD163 was 
down-regulated, and SPARC, PARK 7 and IGFBP-1 were up-regulated in longevity participants.

Conclusions:  This study not only highlighted carbohydrate metabolism, PI3K-Akt pathway, glucagon signaling 
pathway and inflammatory response may play important roles in blood glucose regulation, but also indicated that 
YWHAZ, YWHAB, YWHAG, YWHAE, CALM3, CRP, SAA2, PARK 7, IGFBP1 and VNN1 may serve as potential biomarkers for 
predicting abnormal blood glucose levels.
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Background
Diabetes mellitus (DM), a serious, chronic disease, is 
one of the top 10 causes of death globally. The estimate 
of global diabetes prevalence in the 20–79 year age group 
was tripled from 151 million in 2000 to 537 million in 
2021. And about 6.7 million people aged 20–79  years 
are estimated to die from diabetes-related causes in 2021 
[1]. People living with diabetes have high risk of serious 

complications, which leading to undue stress on medical 
systems, society and families [1, 2].

DM usually occurs when blood levels of glucose raise. 
Blood glucose can be monitored by fasting plasma glu-
cose (FPG) value, the 2-h plasma glucose (2-hPG) value 
during a 75-g oral glucose tolerance test (OGTT), or 
glycated haemoglobin (HbA1c) criteriaion. Other bio-
chemical markers, such as 1, 5-anhydroglucitol (1, 5-AG), 
glycatedalbumin, FUN, adiponectin, C-peptide are also 
used in diagnosing and monitoring DM [2–4]. Among 
them, FUN can provide information about glycemic 
levels over a period of two to 3 weeks. It can be used to 
monitor DM, particularly in cases with restrictions on 
the use of glycated hemoglobin [5].

Open Access

Clinical Proteomics

*Correspondence:  zongkui.wang@ibt.pumc.edu.cn; changqing.li@ibt.pumc.
edu.cn

Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking 
Union Medical College, Chengdu 610052, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12014-022-09382-w&domain=pdf


Page 2 of 12Zhang et al. Clinical Proteomics           (2022) 19:45 

Bama Yao Autonomous County, which located in 
Guangxi Zhuang Autonomous Region of China, is one 
of “The World’s Longevity Town ship” [6]. The report 
of International Diabetes Federation (IDF) showed that 
the prevalence of diabetes increases with age [1]. Simi-
lar results have been confirmed in populations of Bama. 
But it is interesting to note that the average blood glucose 
level in Bama area is lower than that in other regions, and 
the blood glucose level of longevity family group of Bama 
is significantly lower than that of non-longevity family 
group [7–9]. Therefore, it is speculated that longevity 
families may have certain advantages in blood glucose 
regulation. But till now, limited information on these 
items was reported.

In our previous studies [6, 10], we found some dif-
ferentially expressed proteins (DEPs) between Bama 
longevous family group and normal controls from non-
longevous region of China. Some of these DEPs such as 
PGK1, ENO1, LDHA, LDHB, PKM, and GAPDH, were 
glycolysis/gluconeogenesis-related proteins. Otherwise, 
GCK and ARL2BP, which were the specifically and dif-
ferentially expressed autoantibodies in the offspring from 
longevous and non-longevous families from Bama, were 
related to the regulation of blood glucose. To further 
investigate the characteristics of blood glucose regulation 
in Bama-induced longevity, Tandem mass tag (TMT)-
based approach was used to systematically explore the 
expression of plasma proteins in the plasma donors from 
non-longevous region which have an exceeding standard 
FUN level and offspring of longevous families in Bama 
which have normal FUN level in this study. The DEPs 
were revealed by bioinformatics analysis and human 
magnetic Luminex screening assay was used to verify the 
result of TMT-based analyses.

Methods
The workflow of the present study was shown in Addi-
tional file 1: Figure S1.

Sample collection
Two groups were enrolled in this study. A total of 30 
participants of group A were enrolled from a non-
longevous region of China (Shimen, Hunan province), 
with exceeding standard FUN level (> 286  μmol/L) and 
were offsprings of non-longevous families (a family with 
none ≥ 90 years old immediate family members). The vol-
unteers of group B permanently reside in Bama longevity 
hotspot (Bama, Guangxi province) and were offsprings of 
longevous families (a family with at least two ≥ 90 years 
old immediate family members) and with normal FUN 
level (0.0–286  μmol/L). The ABO, age and gender were 
matched in group A and B.

According to the standard of the “whole blood and 
component donor selection requirements” previously 
described [11, 12], the inclusion criteria were that all par-
ticipators were over 18  years of age, healthy, and unre-
lated; the exclusion criteria were people had history of 
thrombus or hemorrhage, usage of oral anticoagulation 
therapy, pregnancy, HBV/HCV/HIV infection, hepatic 
disease, et al.

Sample preparation
Each participant’s blood sample was collected by plasma 
apheresis and then immediately stored at −70  °C in ali-
quots until being transported to institute of blood trans-
fusion (IBT) at Chengdu on dry ice. Once arrived the 
laboratory, one aliquot of each sample was immediately 
used for FUN detection, and other aliquots were stored 
at −70 °C until analysis. The information of participants 
was shown in Table 1.

Sample preparation, TMT‑labelling, HPLC fractionation 
and LC–MS/MS
For TMT-based proteomic analysis, 30 plasma samples 
of each cohort were marked as Group A and Group B, 
respectively. Pooled plasma samples were obtained by 
mixing equal volumes of each 10 individual plasma sam-
ples from each group. Then a ProteoMiner™ Protein 
Enrichment Introductory Large-Capacity Kit (Bio-Rad, 
Richmond, USA) was used to remove the high abundance 
proteins of the pooled plasma. Total protein concentra-
tions of the low abundance protein enrichment plasma 
samples were determined using a bicinchoninic acid 
(BCA) protein assay kit (Pierce, Rockford, IL, USA), and 
SDS-PAGE was used to verify the consistency of each 
group.

Subsequently, protein digestion and TMT-labeling 
were done with the detailed procedures in our pre-
vious studies [6, 10]. In short, approximately 100  μg 
proteins per sample were digested by a procedure of two-
step tryptic digestion after samples were reduced and 
alkylated according to the protocol. Then each group of 
digested peptides was labeled using a 6-plex TMT labe-
ling kit (Thermo Fisher Scientific, Torrance, CA, USA). 
Sample labeling was as follows: A1:126, A2:127, A3:128, 
B1:129, B2:130, and B3:131.

Thereafter, high pH reverse-phase high-performance 
liquid chromatography (HPLC) was used to fraction-
ate the labeled samples into 60 fractions. Then, the pep-
tides were combined into 18 fractions and vacuum-dried. 
The dried samples were subsequently reconstituted and 
tested by LC-MS/MS.

Afterwards, using an EASY-nLC 1000 UPLC system 
(Thermo Fisher Scientific, San Jose, USA), the peptides 
from each fraction were dissolved in 0.1% formic acid, 
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directly loaded onto a reversed-phase analytical column 
(150 mm length, 75 μm ID). The gradient was comprised 
of an increase from 7 to 25% solvent B (0.1% formic acid 
in 90% acetonitrile) over 26 min, 25–40% in 8 min, climb-
ing to 80% in 3 min, and then holding at 80% for the last 
3  min, at a constant flow rate of 400 nL/min. Then the 
peptides were analyzed by tandem mass spectrometry 
(MS/MS) using Q Exactive Plus (Thermo Fisher Scien-
tific). The electrospray voltage applied was 2.0 kV. Intact 
peptides and ion fragments were detected in the orbitrap 
at a resolution of 70,000 and 17,500, respectively. In the 
MS survey scan, a data-dependent mode with an auto-
matic alteration (1 MS scan followed by 20 MS/MS scans) 
was used for the top 20 precursor ions above a threshold 
ion count of 5 × 104 with 30  s dynamic exclusion. The 
m/z scan range was 350–1800, and the fixed first mass 
was set as 100  m/z. Automatic gain control (AGC) was 
used to prevent overfilling of the Orbitrap.

LC–MS/MS data and bioinformatics analysis
The MS/MS data were processed by Max Quant search 
engine (v.1.5.2.8) against human UniProt database 
(http://​www.​unipr​ot.​org; Taxon ID 9606, 20,380 entries). 
Trypsin/P was specified as cleavage enzyme allowing up 
to 2 missing cleavages. The precursor mass tolerance was 
set as 20 ppm in First search, 5 ppm in Main search, and 
the mass tolerance for fragment ions was set as 0.02 Da. 

Acetylation (Protein N-term) modification and oxida-
tion on Met were specified as variable modifications, and 
carbamidomethyl on Cys was specified as fixed modifica-
tion. Quantitation method set to TMT 6-plex, and False 
discovery rate (FDR) was adjusted to < 1% at protein, pep-
tide and PSM levels, and minimum score for peptides 
was set > 40.

The DEPs were annotated through Gene Ontology 
(GO) from the UniProt-GOA database (http://​www.​ebi.​
ac.​uk/​GOA/). WoLF PSORT (version of PSORT/PSORT 
II) and SubLoc (http://​www.​bioin​fo.​tsing​hua.​edu.​cn/​
SubLoc/) were used to predict subcellular localization 
of DEPs, InterProScan based on protein sequence align-
ment method (http://​www.​ebi.​ac.​uk/​inter​pro/) was used 
to describe the domain functional of the DEPs, and the 
Clusters of Orthologous Groups (COG) of protein data-
base was carried out for functional classification of 
DEPs. The pathway enrichment analysis of the DEPs was 
assessed by Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway database (http://​www.​genome.​jp/​
kegg/). And the protein-protein interaction (PPI) net-
works were identified and visualized by STRING data-
base (http://​string-​db.​org). A p-value < 0.05 was used as 
the threshold to determine the significant enrichments of 
GO annotation and KEGG pathways.

Table 1  Sample grouping information of proteome analysis of this study※

Normal value range: FUN (0–286 μmol/L), TG (0.0–2.3 mmol/L), TC (0.0–5.6 mmol/L), HDLC (≥ 0.9 mmol/L), LDLC (0.0–4.11 mmol/L), APOA1(1.1–1.7 g/L), APOB(0.66–
1.33 g/L)
※ Group A, participants from a non-longevity area, with an exceeding standard FUN level; Group B, offsprings of longevous families, with normal FUN level

Group A and Group B were conducted by two-tailed unpaired Student’s t test. *p < 0.05, **p < 0.01

Cohort Group A(n = 30) Group B (n = 30)

A1 (n = 10) A2 (n = 10) A3 (n = 10) B1 (n = 10) B2 (n = 10) B3 (n = 10)

Age (y) 49.50 (41–54) 49.60 (42–55) 49.60 (43–56) 49.30 (36–56) 49.10 (32–57) 49.00 (39–57)

Gender

 Female 6 6 6 5 5 5

 Male 4 4 4 5 5 5

Blood type

 A 3 3 3 3 3 3

 B 2 2 2 2 2 2

 AB 1 1 1 1 1 1

 O 4 4 4 4 4 4

 FUN (μmol/L)** 356.55 ± 46.35 387.66 ± 64.04 351.56 ± 63.72 186.67 ± 23.10 190.28 ± 26.53 179.01 ± 13.20

 TG(mmol/L)** 3.34 ± 1.45 3.67 ± 1.64 2.93 ± 0.96 1.61 ± 1.43 1.20 ± 0.40 1.34 ± 0.59

 TC(mmol/L) 3.99 ± 0.57 4.61 ± 1.02 3.87 ± 0.71 4.17 ± 0.89 4.17 ± 0.48 4.54 ± 0.72

 HDLC(mmol/L) ** 0.74 ± 0.15 0.84 ± 0.31 0.80 ± 0.15 1.21 ± 0.37 1.13 ± 0.26 1.12 ± 0.22

 LDLC(mmol/L) 2.29 ± 0.47 2.69 ± 0.77 2.06 ± 0.42 2.32 ± 0.60 2.49 ± 0.33 2.83 ± 0.76

 APOA1(g/L)** 1.09 ± 0.17 1.20 ± 0.20 1.13 ± 0.14 1.46 ± 0.22 1.48 ± 0.24 1.48 ± 0.23

 APOB(g/L) 0.70 ± 0.17 0.84 ± 0.20 0.67 ± 0.17 0.65 ± 0.24 0.83 ± 0.22 0.84 ± 0.23

http://www.uniprot.org
http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/GOA/
http://www.bioinfo.tsinghua.edu.cn/SubLoc/
http://www.bioinfo.tsinghua.edu.cn/SubLoc/
http://www.ebi.ac.uk/interpro/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://string-db.org
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Validation of proteomics results (Luminex liquid 
suspension chip detection)
Group A (37 individuals from a non-longevous region, 
with exceeding FUN level) and group B (37 Bama vol-
unteers of longevous families, with normal FUN level) 
provided blood samples to verify the quantitative data 
obtained by TMT proteomics. The subjects of validation 
were all different from the groups of 30 subjects studied 
in the discovery phase. The information of participants of 
validation set was shown in Table 2.

The plasma levels of SPARC (secreted protein acidic and 
rich in cysteine), CD163 (Scavenger receptor cysteine-
rich type 1 protein M130), PARK 7 (Protein/nucleic acid 
deglycase DJ-1) and IGFBP-1(insulin-like growth factor-
binding protein 1) were measured by Human Premixed 
Multi-Analyte Kit (4-plex; LXSAHM-04, R&D Systems, 
Inc., Minneapolis, USA). And the assay was performed 
by Wayen Biotechnologies (Shanghai, China). Briefly, 
fifty microliters of standards or samples were added into 
the 96-well polystyrene microplate. Subsequently, fifty 
microliters of magnetic beads were added and the plate 
was incubated in dark, with gently shaking at room tem-
perature for two hours. The plate was carefully washed 
3 times, and fifty microliters of biotin-antibody were 
added in each well. The plate was incubated for 1 h and 
then was washed 3 times. After that, fifty microliters of 
Streptavidin-PE were added into each well and then the 
plate was incubated for 30  min. After the final washing 
step, the values were read by using a Luminex 200 system 
(Luminex Corporation, Austin, TX, USA), and data were 
processed by the software (Luminex xPONENT) of the 
instrument.

Results
Overview of protein identification and quantification
A total of 967 proteins were identified, of which 834 
proteins contained quantifiable information (quanti-
fied at more than a 95% CI and with no less than two 
unique peptides) (Fig.  1A). The detailed data of subcel-
lular localization, GO-based annotation, KEGG pathways 
and domain prediction of the 967 identified proteins are 
shown in Additional file  2: Table  S1. For comparison 
between group A (non-longevous region participants) 
and group B (Bama longevous region participants), a 
protein exhibiting a fold change of > 1.2 or < 0.83 and a p 
value of < 0.05 was regarded as a differentially expressed 
protein (DEP). Based on these two criteria, 155 DEPs 
were identified, of which 23 were significantly up-regu-
lated and 132 were down-regulated in group A compared 
with group B (Fig. 1B and Additional file 3: Table S2).

Annotation analysis of the differentially expressed proteins
The 155 DEPs were mainly clustered into 33 GO func-
tional categories, of which accounted to 15 biological 
processes, 9 cellular components, and 9 molecular func-
tions (Fig.  2 and Additional file  4: Table  S3). Biological 
process analysis showed most of the DEPs were involved 
in single-organism process (12%, n = 137), cellular pro-
cess (12%, n = 133), biological regulation (11%, n = 122), 
and response to stimulus (10%, n = 115) (Fig.  2A and 
Additional file 4: Table S3). For cellular components, the 
DEPs were mainly originated from cell (20%, n = 141), 
organelle (19%, n = 136), extracellular region (19%, 
n = 133), and membrane (14%, n = 99) (Fig. 2B and Addi-
tional file 4: Table S3). The prevalent molecular functions 
were binding (50%, n = 143) and catalytic activity (19%, 
n = 53) (Fig. 2C and Additional file 4: Table S3).

In addition, the subcellular localization of DEPs analy-
sis results indicated that cytoplasm (33%), extracellular 
(33%) and nucleus (8%) were the top three significant 
subcellular location sites (Fig.  2d, and Additional file  5: 
Table S4).

To further understand the function of the proteins, 
COG of protein database was carried out for functional 
classification of DEPs. The results revealed that the DEPs 
were classified into 18 COG categories, among which, 
cytoskeleton, signal transduction mechanisms and post-
translational modification, protein turnover, chaperones 
were the three largest groups. Furthermore, general func-
tion prediction only and defense mechanisms also con-
tained many DEPs (Fig. 3, and Additional file 6: Table S5).

GO enrichment analysis is shown that the most sig-
nificantly enriched cellular components were cell-sub-
strate junction and focal adhesion. The main molecular 
functions were actin binding, cadherin binding and cell 
adhesion molecule binding. And the biological processes 

Table 2  Sample grouping information of Luminex assay of this 
study*

*  Group A, participants from a non-longevity area, with an exceeding standard 
FUN level; Group B, offsprings of longevous families, with normal FUN level

Cohort Group A(n = 37) Group B (n = 37)

Age (y) 49.49 (18–58) 45.77 (25–56)

Gender

 Female 19 21

 Male 18 16

Blood type

 A 15 6

 B 8 7

 AB 0 3

 O 14 21

FUN (μmol/L) 366.11 ± 72.49 186.88 ± 43.68
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were mainly enriched in actin cytoskeleton organization 
and actin filament organization. (Fig. 4A and Additional 
file  7: Table  S6). GO enrichment analysis exhibited that 
the DEPs were mainly involved in binding, organization, 
regulation, etc.

The analysis of protein domain enrichment (Fig. 4B and 
Additional file  8: Table  S7) revealed that the most con-
spicuously enriched term was 14–3-3 domain. It should 
be noted that most of the significantly enriched domains 
are directly related to the enzymes that play a role in car-
bohydrate metabolism, such as “14-3-3 domain”, “Lactate 
dehydrogenase/glycoside hydrolase family 4, C-terminal”, 
“Lactate/malate, N-terminal”, and “Lactate/malate dehy-
drogenase, C-terminal”. This implied that compared with 
individuals from non-longevous region with an exceed-
ing FUN level, the proteins/enzymes containing the 
above domains in the plasma of offsprings of Bama lon-
gevous families with normal FUN level were significantly 
changed.

According to KEGG pathway analysis, 21 KEGG path-
ways were clustered, among them, the top four enriched 
KEGG pathways were cell cycle, salmonella infection, 
regulation of actin cytoskeleton and platelet activation 
(Fig.  4C and Additional file  9: Table  S8). Additionally, 
KEGG pathways which related to carbohydrate metabo-
lism include glycolysis/gluconeogenesis, pyruvate metab-
olism and propanoate metabolism.

In order to better understand the interaction among 
the DEPs, protein-protein interaction (PPI) network 
analysis by using STRING database and Cytoscape soft-
ware was subsequently constructed. It obviously revealed 
that at least three crosstalk signaling clusters which 
extremely related to regulation of blood glucose were dis-
played in the complex PPI network, including carbohy-
drate metabolism, phosphatidylinositol 3-kinase (PI3K) 
-Akt signaling pathway and glucagon signaling pathway 
related proteins (Fig. 5).

Validation of proteomics results with luminex liquid 
suspension chip detection
To validate proteomics results of TMT, we selected four 
proteins involved in different pathways or biological pro-
cesses, including SPARC, CD163, PARK7 and IGFBP-1 
to be validated by human magnetic Luminex screen-
ing assay. All of these proteins were significantly up or 
down regulated (fold change > 1.2 or < 0.83, and p < 0.05). 
As shown in Fig.  6, consistent with the TMT-based 
proteomics results, plasma levels of CD163 were sig-
nificantly lower in Bama participants (with normal FUN 
level, group B) as compared to that in participants from 
non-longevity area (with exceeding standard FUN level, 
group A). Whereas plasma levels of SPARC, PARK 7, and 
IGFBP-1 increased notably in Bama individuals com-
pared with controls. ROC curves were constructed using 
the validation data, area under the ROC curve (AUC) 

Fig.1  Basic statistics of mass spectral data results. A Results of the LC–MS/MS for the proteins. B The volcano plot shows the up- (red) or down 
regulated (blue) proteins between group A and group B
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values of SPARC, CD163, Park7, and IGFBP1 were 0.801 
(95% CI 0.696–0.905, p < 0.0001), 0.869 (95% CI 0.786–
0.951, p < 0.0001), 0.858 (95% CI 0.770–0.947, p < 0.0001), 
and 0.734 (95% CI 0.619–0.849, p = 0.001), respectively.

Discussion
Ageing and longevity are one of the main concerns all 
over the world. In recent years, proteomics technology 
was widely used to identify age related plasma proteins, 
which can provide new clues about the mechanisms of 
aging process. Previous proteomic studies showed that 
most of age-relevant proteins were enriched in insulin-
like growth factor (IGF) signaling, mitogen-activated pro-
tein kinases (MAPK), hypoxia-inducible factor 1 (HIF1), 
cytokine signaling, Forkhead Box O (FOXO) metabolic 
pathways, folate metabolism, advance glycation end 
products (AGE), and receptor AGE (RAGE) metabolic 
pathway [13]. Till now, few studies have focused on the 
relationship between blood glucose regulation and lon-
gevity. Regulation of blood glucose balance is part of the 
regulation of life activities. It is an important condition 

for maintaining homeostasis. When the body’s blood glu-
cose regulation is out of balance many diseases such as 
diabetes mellitus can be caused. According to the previ-
ous studies, we speculate that the longevity population 
may have some advantages in blood glucose regulation. 
In this study, we utilized TMT-based proteomics method 
to analyze the differences of plasma proteomics profiles 
between non-longevity area participants (with exceed-
ing standard FUN level) and offsprings of longevous 
families (with normal FUN level). In total, we identified 
155 DEPs (non-longevity area participants vs. offsprings 
of longevous families, 132 down-regulated and 23 up-
regulated). According to bioinformatics analysis, several 
DEPs were enriched in glycolysis/gluconeogenesis, pyru-
vate metabolism, propanoate metabolism, fructose and 
mannose metabolism, pentose phosphate pathway, gluca-
gon signaling pathway, PI3K-Akt signaling pathway, etc. 
(Additional file  8: Table  S7). These are involved in pro-
cesses of metabolism of carbohydrate and regulation of 
blood glucose concentration.

Fig. 2  Annotations of the differentially expressed proteins. A biological processes, B cellular components, C molecular functions, and D 
Wolfpsort-based subcellular localization prediction
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Regulation of carbohydrate metabolism related proteins
Carbohydrate metabolism can be divided into catabo-
lism and anabolism, mainly including aerobic oxidation, 
glycolysis, pentose phosphate pathway, gluconeogen-
esis andetc. It is well known that many enzymes play 
important roles in carbohydrate metabolism processes, 
such as aerobic oxidation enzymes in glycolysis and pen-
tose phosphate pathway (e.g., triosephosphate isomer-
ase (TPI), glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), enolase (ENO), phosphoglycerate kinase 
(PGK), pyruvate kinase (PK), fructose-bisphos-phate 

aldolase (ALDO), L-lactate dehydrogenase (LDH), malate 
dehydrogenase (MDH), glucose phosphate isomerase 
(GPI), transaldolase (TALDO), and enzymes in gluco-
neogenesis (e.g., MDH, PK, LDH) [14–16]. In the pre-
sent study, both aerobic oxidation enzymes (ALDOA, 
TPI1, GAPDH, PGK1, ENO1, GPI and TALDO1) and 
gluconeogenesis-related enzymes (MDH1, PKM, LDHA, 
and LDHB) were up-regulated in the samples from Bama 
longevity hotspot. These results suggested that compared 
with the high FUN population in non-longevity areas, the 
offsprings of longevous families in Bama improved both 

Fig. 3  COG analysis of the differentially expressed proteins. The different function DEPs (participants with exceeding standard FUN level from 
non-longevity area/Bama participants with normal FUN level fold-change > 1.2 or < 0.83) were classified according to GOC database



Page 8 of 12Zhang et al. Clinical Proteomics           (2022) 19:45 

Fig. 4  Enrichment analysis of the differentially expressed proteins. A GO term enrichment analysis of the DEPs. B Protein domain prediction 
enrichment analysis of the DEPs. C KEGG pathway enrichment analysis of the DEPs

Fig. 5  The protein–protein interaction network analysis of the DEPs. The functional interactions of all the 155 DEPs (participants with exceeding 
standard FUN level from non-longevity area/Bama participants with normal FUN level fold-change > 1.2 or < 0.83) were analyzed by using STRING 
database Cytoscape software
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the catabolism of carbohydrate (gluconeogenesis) and 
the anabolism of carbohydrate (aerobic oxidation, glycol-
ysis, pentose phosphate pathways and etc.), thus promot-
ing the metabolic process of glucose.

Regulation of the production and utilization of blood 
glucose
The production and utilization of blood glucose are reg-
ulated by hormones such as insulin and glucagon. Insu-
lin can suppress blood glucose levels by promoting the 
transformation of bloodstream glucose into glycogen, 
fat and other non-sugars, and inhibiting glucose produc-
tion from the liver [17]. Glucagon is the counter-regula-
tory hormone to the hypoglycemic effects of insulin, and 
thus the increased plasma glucagon levels will result in 
increased hepatic glucose production by suppression of 
glycogenesis and glycolysis, and stimulating of glycogen-
olysis and gluconeogenesis [18].

The metabolic functions of insulin are mainly exerted 
by PI3K- Akt pathway in insulin cell signaling. The PI3K- 
Akt pathway mediates many of the metabolic actions of 
insulin via phosphorylation of key metabolic substrates 
such as glycogen synthase kinase-3 for glycogen syn-
thesis [19–21]. Several researches have demonstrated 
that 14-3-3 isoforms (i.e., 14-3-3 Ɛ/YWHAE, 14-3-3 β/
YWHAB, 14-3-3 γ/YWHAG, 14-3-3 η/YWHAH, 14-3-3 
θ /YWHAQ, 14-3-3 ζ/YWHAZ, and 14-3-3 σ/SFN) inter-
act with effectors (e.g., IRS-1, Raf-1, AS160/TBD1C4, 

and FOXO1) in the insulin signaling pathway and in glu-
cose metabolism [20, 22–25]. Lim GE et al. found insu-
lin sensitivity decreased in an YWHAZ gene knockout 
mice model [26, 27]. In present study, the result showed 
that the most conspicuously enriched protein domain 
was 14-3-3 domain, YWHAZ, YWHAB, YWHAG and 
YWHAE were higher in samples of offsprings from Bama 
longevity hotspot (with normal FUN level) than in non-
longevity area participants (with exceeding standard 
FUN level), which indicated that compared with non-
longevity area participants (with exceeding standard 
FUN level), insulin plays a stronger role in Bama partici-
pants (with normal blood glucose).

As a major Ca2+ binding protein in non-muscle cells, 
calmodulin (CaM) is activated by Ca2+ and then under-
goes a conformational change which allowing it to acti-
vate numerous downstream targets [28]. In humans, 
CaM is encoded by three genes (CALM1, CALM2, and 
CALM3) [29]. Glucagon is secreted from pancreaticα-
cells in response to low levels of blood glucose, and 
intracellular Ca2+ activity is required for glucagon secre-
tion [30]. Many studies support the hypothesis that the 
glucagon receptor type 1 (GR1)/phospholipase C (PLC)/
inositol-3, 4, 5-triphosphate (IP3)/Ca2+/CaM pathway is 
the predominant or exclusive signal for glucagon in vivo 
most of the time [31, 32]. Epstein et  al. found glucagon 
was expressed increasingly in islet cells in a mouse model 
of islet β-cell CaM overexpression [33]. Similarly, in the 

Fig. 6  Verification of differentially expressed proteins by human magnetic Luminex screening assay. A SPARC, B CD163, C Park 7, and D IGFBP1. 
Data represent the mean ± SEM for group A (participants with exceeding FUN level from non-longevity area) and group B (Bama participants with 
normal FUN level). E ROC curve analysis of SPARC, CD163, Park7, and IGFBP1 to discriminate participants with an exceeding standard FUN level from 
participants with normal FUN level
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present study, we found that CALM3 was up-regulated in 
the samples from Bama longevity hotspot (Fig. 5), which 
suggests the regulation of glucagon in Bama participants 
(with normal blood glucose) is stronger than that in non-
longevity area participants (with exceeding standard 
FUN level).

Regulation of inflammatory response related proteins
Type 2 diabetes was an inflammatory condition, which 
associated with increasing levels of acute phase inflam-
matory reactants in serum [34–38]. In our study, several 
inflammatory reactant proteins, e.g., C—reactive protein 
(CRP), serum amyloid A-2 protein (SAA2), complement 
factor H (CFH), scavenger receptor cysteine-rich type 1 
protein M130 (CD163), and lipopolysaccharide-binding 
protein (LBP) were down-regulated in the samples from 
Bama longevity hotspot, while serum amyloid A-4 pro-
tein (SAA4) and plasma serine protease inhibitor (SER-
PINA5) were up-regulated. Among these proteins, CRP 
and serum amyloid A (SAA) are important representative 
acute phase inflammatory proteins. It is reported that 
CRP significantly increased in the presence of inflamma-
tion and the elevated CRP level was associated with insu-
lin resistance and an increased risk of diabetes [39–41]. 
As another important acute inflammation protein, SAA 
helps to link the complex network of cells and proteins 
mediating inflammation. The SAA gene family con-
tains four genes, namely SAA1, SAA2, SAA3 and SAA4. 
SAA1 and SAA2 are acute-phase proteins, while SAA3 
is a non-translated pseudogene and SAA4 protein is not 
induced during the acute phase response of inflamma-
tion [42–44]. Our proteomic result revealed that CRP 
and SAA2 are higher in non-longevity areas participants 
(with exceeding standard FUN level) than in offsprings 
of longevous families (with normal FUN level), which is 
consistent with the aforementioned reports.

Besides the aforementioned proteins, some other pro-
teins including SPARC, PARK 7, and IGFBP-1 were 
significantly down-regulated, whereas pantetheinase 
(VNN1) was significantly up-regulated in non-longevity 
area participants (with exceeding standard FUN level) 
(Figs.  5, 6, and Supporting Additional file  3: Table  S2). 
Consistent with our result, it is reported that the SPARC 
levels were decreased in islets with diabetes and SPARC 
deficiency could lead to DM in SPARC null mice [45, 46]. 
On the contrary, Wu et al. reported that plasma SPARC 
levels were significantly increased in T2DM patients, and 
Xu et al. found that increased plasma SPARC levels were 
relevant to insulin resistance and dyslipidemia in gesta-
tional diabetes patients [47, 48]. Therefore, more studies 
are still needed for further validation of the mechanism 
of SPARC on glycemic control. Furthermore, DJ-1 gene 
(PARK7) was found to be down-regulated in pancreatic 

islets of patients with type 2 diabetes mellitus (T2DM) 
[49], and a low serum concentration of IGFBP-1 is asso-
ciated with gestational diabetes mellitus (GDM), unfa-
vorable metabolic profile, glucose intolerance and risk 
of diabetes mellitus [50, 51], which are similar to our 
results. In addition, consistent with our results, some 
studies reported blood levels of VNN1 were increased in 
diabetic patients, and VNN1 increased the expression of 
gluconeogenic genes and hepatic glucose output, which 
led to hyperglycemia in a diabetic mice model [52, 53]. 
Further research is needed to reveal the glycemic control 
mechanism of these DEPs.

Conclusion
In summary, the present study investigated the global 
plasma proteomic changes of non-longevity area partici-
pants (with exceeding standard FUN level) and offspring 
of longevous families (with normal FUN level). The 155 
identified DEPs were annotated in 33 GO functional 
groups, 18 COG categories, and 21 KEGG pathways. 
The DEPs related to metabolism of carbohydrate were 
mainly involved in glycolysis/gluconeogenesis, pyruvate 
metabolism and propanoate metabolism. Based on PPI 
network analysis, we found carbohydrate metabolism, 
PI3K-Akt signaling pathway, glucagon signaling pathway 
and inflammatory response were the crosstalk signaling 
clusters which contained most of the blood glucose reg-
ulation related DEPs. In addition to the common diabe-
tes markers reported, we found that YWHAZ, YWHAB, 
YWHAG, YWHAE, CALM3, CRP, SAA2, PARK 7, 
IGFBP1 and VNN1 can be used as potential biomark-
ers for predicting abnormal blood glucose levels. Our 
research can give a better understanding on the poten-
tial mechanism of blood glucose regulation in longevity 
population and on the potential evaluation of candidate 
biomarkers or therapeutic targets of glycemic control.
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