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Abstract 

Background  Halting progression of chronic kidney disease (CKD) to established end stage kidney disease is a major 
goal of global health research. The mechanism of CKD progression involves pro-inflammatory, pro-fibrotic, and vascu‑
lar pathways, but pathophysiological differentiation is currently lacking.

Methods  Plasma samples of 414 non-dialysis CKD patients, 170 fast progressors (with ∂ eGFR-3 ml/min/1.73 m2/year 
or worse) and 244 stable patients (∂ eGFR of − 0.5 to + 1 ml/min/1.73 m2/year) with a broad range of kidney disease 
aetiologies, were obtained and interrogated for proteomic signals with SWATH-MS. We applied a machine learning 
approach to feature selection of proteins quantifiable in at least 20% of the samples, using the Boruta algorithm. Bio‑
logical pathways enriched by these proteins were identified using ClueGo pathway analyses.

Results  The resulting digitised proteomic maps inclusive of 626 proteins were investigated in tandem with avail‑
able clinical data to identify biomarkers of progression. The machine learning model using Boruta Feature Selection 
identified 25 biomarkers as being important to progression type classification (Area Under the Curve = 0.81, Accu‑
racy = 0.72). Our functional enrichment analysis revealed associations with the complement cascade pathway, which 
is relevant to CKD as the kidney is particularly vulnerable to complement overactivation. This provides further evi‑
dence to target complement inhibition as a potential approach to modulating the progression of diabetic nephropa‑
thy. Proteins involved in the ubiquitin–proteasome pathway, a crucial protein degradation system, were also found 
to be significantly enriched.
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Conclusions  The in-depth proteomic characterisation of this large-scale CKD cohort is a step toward generating 
mechanism-based hypotheses that might lend themselves to future drug targeting. Candidate biomarkers will be 
validated in samples from selected patients in other large non-dialysis CKD cohorts using a targeted mass spectro‑
metric analysis.

Keywords  Chronic kidney disease (CKD) Progression, Proteomics, SWATH-MS, Complement cascade pathway, 
Proteasome pathway, Biomarkers

Background
Chronic kidney disease (CKD), characterised by pro-
gressive damage to the kidney due to a variety of pro-
inflammatory, pro-fibrotic and renal circulatory insults 
[1], is an increasing public health problem that affects a 
large proportion of the adult population worldwide [2]. 
The increasing incidence of CKD is mainly driven by the 
increase in the prevalence of obesity, diabetes mellitus, 
hypertension and ageing [3]. Although precise calcula-
tion of the burden is difficult due to the lack of symptoms 
until disease is advanced [4], recent studies have calcu-
lated the global prevalence of CKD to be 13.4% (95% 
confidence interval 11.7–15.1%) [5]. In 2017, CKD was 
estimated to be the 12th leading cause of death glob-
ally, causing around 1.2 million deaths that year [6]. This 
death toll and the large increase of patients with end-
stage kidney disease (ESKD) needing renal replacement 
therapy (RRT), cause substantial financial burden for 
even the wealthiest countries [5]. In England, around 2% 
of the National Health Service’s budget is spent on the 
0.1% of the population who have ESKD, and the overall 
cost of treating CKD was previously estimated to be £1.4 
billion/year [7].

Due to the significant health burdens for patients and 
the costs incurred by already stressed health-care sys-
tems, halting or slowing progression of CKD towards 
ESKD is a major goal for clinicians, researchers, patient 
groups and industry worldwide. Mechanistic compo-
nents are thought to include pro-fibrotic, pro-inflamma-
tory, and vascular pathways, but the understanding of 
temporal pathophysiology is limited in most CKD aetiol-
ogies and current treatments are non-specific, with het-
erogeneity in terms of response and outcome.

In the past few decades, extensive research has been 
carried out to explore potential mechanisms responsible 
for the development of renal diseases and the progres-
sion of renal fibrosis and progressive nephron loss, but 
still, the underlying mechanisms of CKD progression 
are not fully understood. In most renal diseases, differ-
entiation of patients at risk of more rapid progression 
of renal dysfunction is limited to crude markers such as 
estimated glomerular filtration rate (eGFR) and albumi-
nuria, as encapsulated in tools such as the Kidney Fail-
ure Risk Equation (KFRE). The identification of more 

precise progression biomarkers (especially if mechanis-
tically important) would help target earlier treatments 
and reduce the burden of complications in patients with 
CKD.

In this study, we proposed to investigate whether pro-
teomic signatures can be derived, since the development 
of biomarkers that associate with different rates of pro-
gression would transform the ability to trial emerging 
therapies such as novel anti-fibrotic agents, or mecha-
nism-based anti-inflammatory agents, and thereby intro-
duce new agents into clinical care.

Materials and methods
Study population
The Salford Kidney Study (SKS), is a longitudinal, pro-
spectively collected, ongoing observational study with 
full ethical permission that has recruited and followed-up 
patients with non-dialysis dependent CKD (NDD-CKD) 
in the United Kingdom since March 2002  [25, 28]. This 
large NDD-CKD cohort consists of > 3500 patients that 
have provided their informed consent when admitted to 
the nephrology inpatient centre at Salford Royal Hospi-
tal or referred to nephrology outpatient clinics [8, 26]. 
The participants in the current study were ≥ 18  years at 
the time of consent with (eGFR) < 60  ml/min/1.73  m2 
who had not started renal replacement therapy (RRT). 
Detailed phenotypic, co-morbidity and laboratory data 
is collected for each patient at baseline and at annual 
review in routine clinic visits. Patients are followed until 
discharge, death, or withdrawal from the study [8, 27]. At 
each visit, samples including EDTA whole blood, serum 
and citrate plasma were collected, centrifuged and bio-
banked at  −80  °C in the local Biological Repository for 
future biomarker and genomic research.

GFR slope calculation and patient selection
Serum creatinine at routine clinic visits was measured 
using a calibrated Jaffe method traceable to an isotope 
dilution mass spectrometry reference measurement 
procedure. This permits the GFR to be estimated using 
the CKD-EPI equation, and CKD-EPI eGFR values were 
used to calculate GFR slopes (∂ eGFR) in this study. Cal-
culation of the ∂ eGFR for each patient involved use of 
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ordinary least-squares linear regression to all outpatient 
eGFR values during study follow-up; only patients with 
at least 4 eGFR values over 2 years were included in the 
study [9].

Patients were defined as having fast progression if a ∂ 
eGFR of < − 3 ml/min/1.73  m2/year (in other words, los-
ing more than 3  ml/min/1.73  m2/year) was observed. 
Stable patients were defined as having a ∂ eGFR of 
− 0.5 to + 1 ml/min/1.73  m2/year [10]. In this study only 
patients with a linear form of progression (consistent 
decline of eGFR slope) were included. To achieve this, 
each patient’s eGFR-time slopes were visually reviewed 
by two researchers independently, a methodology that 
has been employed before [8]. In addition, the 95% confi-
dence interval was also calculated for each patient’s delta 
GFR. The smaller the interval, the greater the degree of 
a consistent linear pattern, and this provided a quantita-
tive measure of eGFR linearity [8]. Patients were included 
from several renal disease groups: diabetic nephropathy, 
hypertensive nephropathy, autosomal dominant polycys-
tic kidney disease (ADPKD), glomerulonephritis, but also 
those patients with ‘other’ CKD and unknown cause of 
CKD.

Sequential window acquisition of all theoretical fragment 
ion spectra (SWATH) analysis
Plasma samples were prepared as described by KA [11]. 
Briefly, major plasma proteins were removed using Top 
12 Abundant Protein Depletion Spin columns (Pierce 
Biotechnology, UK). Amicon Ultra-0.5 Centrifugal Filter 
Devices (Merck-Millipore, UK) were used to concentrate 
the eluate and for buffer exchange. Protein concentration 
was measured using a BCA protein assay kit (Thermo 
Fisher, UK) with a multi-mode plate reader Spectramax 
i3 (Molecular Devices, UK) at 562  nm wavelength. The 
depleted plasma was denatured, reduced and alkylated 
in 25  mM ammonium bicarbonate containing 5  mM 
dithiothreitol (GE Healthcare, UK), 50  mM iodoaceta-
mide (Sigma Aldrich, UK) and 1% sodium deoxycholate 
(Sigma Aldrich, UK). Modified sequencing-grade trypsin 
(Promega, UK) was added and digestion was performed 
overnight at 37 °C. The samples were concentrated using 
a MiVac vacuum centrifuge GenevacTM (Thermo Fisher 
Scientific, UK). Lyophilised peptide samples were recon-
stituted in loading buffer containing 2% (v/v) acetoni-
trile, 0.1% (v/v) formic acid, 100 fmol/μl PepCalMix (MS 
Synthetic Peptide Calibration Kit, AB Sciex UK Ltd, UK) 
and 10 × index retention time (iRT) standards (Biognosys 
AG, Switzerland). After reconstitution, 10  μl of sample 
(containing 8 µg of total protein) was injected for chro-
matographic separation. In parallel with individual study 
samples, a pool of study samples and a commercially 

sourced plasma sample (BioIVT, UK) were processed to 
access efficiency in depletion/digestion.

Samples were analysed by SWATH-MS with a micro-
flow LC–MS system comprising an Eksigent nanoLC 
400 autosampler and an Eksigent nanoLC 425 pump 
coupled to a AB Sciex 6600 Triple-TOF mass spec-
trometer with a DuoSpray Ion Source. The system was 
configured for trap-elute analysis in which sample was 
injected from the autosampler (8  °C) onto a trap col-
umn (YMC-Triart C18; length: 5 mm; ID: 0.5 mm; par-
ticle size: 3  µm; pore size: 120  Å) with loading buffer 
mobile phase (10 μl min−1, 3 min, 2% acetonitrile, 0.1% 
formic acid) then eluted through an analytical column 
(YMC-Triart C18; length: 150 mm; ID: 0.3 mm; particle 
size: 3  µm; pore size: 120  Å; 30  °C) with the required 
analytical gradient into the mass spectrometer source. 
The system was controlled by Analyst software v1.7.1 
and Eksigent control software v4.2 (AB Sciex, The 
Netherlands).

Reverse-phase chromatography was performed at 30 °C 
with a flow rate of 5  μl/min over a 120-min gradient. 
Mobile phase A contained 100% LC/MS water with 0.1% 
(v/v) formic acid and mobile phase B contained 100% 
acetonitrile with 0.1% (v/v) formic acid. Samples were run 
as duplicate injections with blanks between each sample. 
For SWATH-MS analysis samples were eluted with an 
analytical gradient (3–40% acetonitrile, 0.1% formic acid) 
and a mass spectrometry method with a total duty cycle 
of 2.8  s comprising a TOF MS1 scan that was acquired 
over the mass range (m/z) 400–1250 followed by 100 
SWATH-MS scans (m/z 100–1500) with variable m/z 
isolation widths, collision energy and collision energy 
spread. The voltage of spray was set at 5500  V. Mass 
spectrometry compatible K562 human protein extract 
digest (Promega, UK), pooled study sample and com-
mercial plasma digest were used to monitor instrument 
performance during the study. SWATH-MS analysis 
was performed with specific mass spectrometric condi-
tions, including isolation window size, overlap and total 
cycle time [29], that enabled protein-relative quantifica-
tion of over 900 proteins. SWATH-MS data was searched 
using openSWATH (v2.0.0) against a large plasma spec-
tral library (generated at Stoller Centre) with peptide 
matches scored using pyProphet (v0.18.3) and search 
results aligned using the TRIC algorithm from MSpro-
teomicstools. Downstream analysis was performed in R 
(version 3.5) with transitions filtered based on m-score, 
as determined by pyProphet, at a threshold of 0.01. The 
Bioconductor (release 3.5) packages SWATH2Stats and 
MSstats were used for summarisation and normalisation, 
with a minimum of one proteotypic peptide per protein 
required for quantification.
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The resulting SWATH map was investigated with refer-
ence to clinical data in order to identify potential blood-
borne biomarkers of rapid CKD progression versus stable 
CKD. Proteins present in at least 20% of the samples were 
retained for the biomarker analysis in our study.

Statistical and data analysis
Statistical tests and downstream analysis using machine 
learning approaches for discovery (Random Forest and 
Boruta Feature Selection) were performed using the 
computing environment R (version 4.1.0) and additional 
software packages including limma, Biobase and Uni-
protR were obtained via the Bioconductor project (pack-
ages release 3.13). Proteomic data was log2 transformed 
to stabilise the variance and reduce heteroscedasticity. 
Negative values in initial data (resulting from log trans-
formation of values < 1) were omitted from the analyses 
and missing values were replaced by zeros. For hypoth-
esis testing, the t-test was used to identify differentially 
expressed proteins between the two patient groups (a 
p-value < 0.05, after multiple testing corrections was con-
sidered statistically significant). Fold changes between 
our stable CKD and rapid progressor groups were cal-
culated for each protein using the ‘limma’ package in R 
(Bioconductor packages release 3.13). The caret pack-
age (version 6.0.89) and a random seed of 89 was used to 
create an index with 65% of data to create a training set 
and stratify the partition by the progressor type. Feature 
selection was undertaken using the Boruta algorithm 
[30], which has recently been applied to SWATH-MS 
data [12] and has shown to be effective in permutation-
based feature selection [13]. The Boruta R package (ver-
sion 7.0.0) was deployed with a random seed of 734, the 
parameter ntree set to 500 and the parameter maxRuns, 
which specifies maximum runs that the algorithm will 
iterate, set to 4000. After feature selection made by the 
Boruta algorithm, a random forest model was built. 
Accuracy was used to select the optimal model using the 
largest value. The cumulative AUC for the addition of 
each biomarker, in order of its Boruta importance, was 
calculated using the Cstat function from the DescTools 
package (version 0.99.43).

Enrichment testing using the list of potential biomark-
ers identified by the Boruta algorithm was performed 
using the Database for Annotation, Visualisation and 
Integrated Discovery (DAVID version 6.8) and ClueGo 
(version 2.5.7), a plug-in feature in Cytoscape (version 
3.8.2). The following databases were used: GO Biological 
Process, GO Molecular Functions, GO Immune System 
Process, KEGG pathways, Reactome Pathways, and Wiki 
Pathways. Only pathways or functions with adjusted 
p-value < 0.05 (calculated using a two-sided hypergeo-
metric test and Bonferroni step down correction) and a 

minimum of two proteins per pathway were considered. 
Pathway enrichment/depletion analysis was undertaken 
in a two-sided hypergeometric test using Bonferroni step 
down correction, and a minimum level of 4 was used for 
GO Tree Interval and minimum 2 genes per GO Term/
Pathway selection. The list of biomarkers identified by 
RF were also used to run the DAVID functional annota-
tion tool. The default Human gene list was used as back-
ground. The biological and molecular relevance of each 
predictor was estimated statistically and was adjusted 
for multiple-testing correction by Benjamini–Hochberg 
procedure.

Results
Demographic information
The population for our study consisted of 414 patients 
with a broad range of kidney disease aetiologies (Table 1) 
from the SKS cohort that were divided into 170 fast 
progressors and 244 stable patients using the eGFR 
slope analysis described in the “Materials and methods” 
section.

Most of the patients in the study were Cauca-
sian (94% in the rapid progression group and 98% in 
the stable progression group), and with a p-value of 
2.333E−10, there was a significant mean age differ-
ence between our rapid and stable patients (mean age 
of rapid patients = 55.6  years old vs. mean age of sta-
ble patients = 65.17, see Additional file  1: Fig.  S1). As 
shown in Table  1, there were significant differences 
between rapid progressors and stable CKD in terms of 
∂ eGFR (− 4.75 vs. + 0.09  ml/min/1.73  m2/year), urine 
PCR (85 vs. 18  g/mol), and eGFR at study entry (32 vs. 
25  ml/min/1.73  m2/year) but number of eGFR values 
per patient (26 vs. 24) were similar. A higher proportion 
of rapid progressors compared to stable CKD patients 
developed ESKD (65% vs. 10%) but fewer died before 
ESKD (11% vs. 27%).

Clinical features such as age, baseline creatinine and 
eGFR measurements were not accurate predictors of 
CKD progression, and whilst urine protein:creatinine 
ratio (PCR) was confirmed to have good discrimina-
tory ability for the progression group in our cohort 
(AUC = 0.813, sensitivity = 0.431, specificity = 0.938), we 
analysed the proteomic signals in the plasma samples of 
our patients with the objective of gaining new insights 
into the pathophysiological processes involved in CKD 
and its progression.

A proteomic signature of CKD progression
We employed proteomics to quantify a total of 943 pro-
teins that were identified in all 617 samples from 414 
unique patients. After analysing the missing values in the 
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dataset, 626 proteins were found to be measurable in at 
least 20% of the samples (consisting of 66.38% of the orig-
inal data) and were used for downstream analysis.

An initial differential expression analysis identified 
a total of 20 proteins (Additional file  1: Table  S1) that 
exhibited significant differences between the rapid pro-
gressor and stable CKD groups (adjusted p-values < 0.05). 
Using the Boruta Feature Selection algorithm, 25 proteins 

were confirmed as important and are presented in order 
of their cumulative AUC in Table 2. Between these two 
approaches we found an overlap of 11 proteins which 
included: Afamin (AFM),  T-complex protein 1 subunit 
delta (CCT4), Complement component C6 (C6), Coiled-
coil domain-containing protein 25 (CCDC25), Tran-
sthyretin (TTR), Syntaxin-binding protein 1 (STXBP1), 
Kallistatin (SERPINA4), Proteasome subunit beta type-5 

Table 1  Clinical profile of patients enrolled in the study

414 patients with a broad range of kidney disease aetiologies (including diabetic nephropathy, hypertensive nephropathy, autosomal dominant polycystic kidney 
disease, glomerulonephritis, other CKD and unknown cause CKD) were defined as having fast progression if a ∂ eGFR of < − 3 ml/min/1.73 m2/year (in other words, 
losing more than 3 ml/min/1.73 m2/year) was observed. Stable patients were defined as having a ∂ eGFR of − 0.5 to + 1 ml/min/1.73 m2/year [10]

Rapid progressors Stable patients

Number of patients 170 244

Age mean, years 55.6 65.2

Age median (with interquartile ranges), years 54.7 (46.1–66.0) 66.9 (56.7–76.5)

Male gender, n (%) 92 (54) 167 (68)

White, n (%) 159 (94) 238 (98)

Systolic blood pressure median (with IQR), mmHg 142 (130–152) 136 (122–147)

Diastolic blood pressure median (with IQR), mmHg 80 (71–88) 73 (66–81)

Hypertension, n (%) 162 (95) 228 (93)

Diabetes, n (%) 49 (29) 82 (34)

Smoking, n (%) 105 (62) 153 (63)

Myocardial infarction, n (%) 8 (5) 22 (9)

Heart failure, n (%) 7 (4) 12 (5)

Stroke, n (%) 7 (4) 8 (3)

Peripheral vascular disease, n (%) 8 (5) 12 (5)

ACEi/ARB, n (%) 129 (76) 163 (67)

Statin, n (%) 101 (59) 165 (68)

Years follow-up median (with IQR) 4.8 (3.6–6.3) 6.5 (5.0–9.1)

Primary renal disease

Diabetic nephropathy, n (%) 37 (22) 46 (19)

ADPKD, n (%) 43 (25) 4 (2)

Hypertensive nephropathy, n (%) 15 (9) 24 (10)

Glomerulonephritis, n (%) 23 (14) 42 (17)

Other, n (%) 39 (23) 89 (36)

Unknown, n (%) 13 (8) 39 (16)

Laboratory results—median (with IQR)

eGFR (ml/min/1.73 m2) 32 (23–41) 25 (18–33)

ΔGFR (ml/min/1.73 m2/year)  − 4.75 (− 6.33 to − 3.70) 0.09 (− 0.24 to + 0.50)

eGFR results per patient, n 26 (17–37) 24 (16–40)

Bicarbonate (mmol/l) 22.0 (20.1–24.0) 22.8 (20.8–24.7)

Haemoglobin (g/l) 121 (113–131) 127 (117–137)

Calcium (mmol/l) 2.29 (2.19–2.38) 2.28 (2.20–2.36)

Phosphate (mmol/l) 1.14 (1.01–1.27) 1.06 (0.93–1.21)

Albumin (g/l) 42 (40–45) 44 (42–46)

uCPR (g/mol) 85 (22–294) 18 (9–38)

Outcomes

ESRD, n (%) 111 (65) 24 (10)

Death prior to ESRD, n (%) 18 (11) 66 (27)
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(PSMB5), Biglycan (BGN), Immunoglobulin heavy con-
stant mu (IGHM) and Retinoic acid receptor responder 
(RARRES2), see Fig. 1c.

In order to compare the predictive performance of 
the potential biomarkers identified by our two analysis 
approaches, a random forest model was generated with 
each of the two proteomic signatures. Figure  1a shows 
the Receiver Operating Characteristic (ROC) curves for 
each of our models. The machine learning classification 
model generated with the 25 potential biomarkers iden-
tified by the Boruta feature selection algorithm provided 
an Area Under the Curve value of 0.81, and with an accu-
racy of 0.72 (sensitivity = 0.63, specificity = 0.78, Fig. 1a).

As an additional step, we also analysed how our 
25-protein signature behaved within the top primary 
renal disease subgroups in our cohort. The first and main 
subgroup included any patient with diabetic nephropathy 
(type 1 and 2 DM) with the majority (90%) of the patients 
having DM type 2. Our second subgroup included dif-
ferent forms of glomerulonephritis (IgA Nephropa-
thy, Membranous nephropathy and Focal segmental 

glomerulosclerosis). The rest of the primary renal dis-
ease aetiology subgroups were not included in the anal-
ysis due to class imbalance (e.g., in ADPKD, there were 
43 progressors versus only 4 with stable CKD) and lack 
of sufficient data. In the two main subgroups, the best 
performance of our potential signature was obtained 
when used to predict the progressor type for the patients 
with diabetic kidney disease as the CKD aetiology 
(AUC = 0.68), and to a slightly lesser degree for the pre-
diction of disease progression in the glomerulonephritis 
group (AUC = 0.67) (Figs. 2, 3).

Functional enrichment analysis reveals role 
for complement and coagulation pathways
In order to identify functional pathways associated 
with our proteomic signatures, and therefore iden-
tify mechanisms that may correlate with progression 
of CKD, pathway enrichment analysis was carried out. 
Statistically significantly enriched pathways identi-
fied by the Database for Annotation, Visualisation and 
Integrated Discovery (DAVID) and ClueGo functional 

Table 2  List of protein biomarkers identified using Boruta Feature Selection with their log2 fold change, median permutation 
importance; p-values and cumulative AUC shown

The eight proteins that were found to be part of a specifical biological pathway after functional enrichment analysis have been italicized

Protein Name Log2 fold change Median 
importance

Differential 
expression p-value

Differential expression 
Adj p-value

Cumulative AUC​

P50991 CCT4 1.92 12.3  < 0.001 0.008 0.67

P43652 AFM  − 0.26 7.955  < 0.001 0.001 0.684

Q86WR0 CCDC25 2.349 8.078 0.001 0.043 0.688

P02766 TTR​  − 0.309 7.403  < 0.001 0.002 0.701

Q01581 HMGCS1 0.128 7.071 0.734 0.908 0.704

P13671 C6  − 0.137 6.177 0.001 0.043 0.711

Q8NC51 SERBP1 0.849 6.902 0.018 0.153 0.711

P04220 IGHM 2.28 5.791  < 0.001 0.007 0.746

Q99969 RARRES2  − 2.464 5.4  < 0.001 0.001 0.749

Q02790 FKBP4  − 1.389 4.687 0.004 0.074 0.759

P28074 PSMB5  − 2.63 4.624  < 0.001 0.007 0.76

P13667 PDIA4 0.784 4.575 0.035 0.199 0.762

P08670 VIM  − 1.91 4.236 0.004 0.076 0.765

P21810 BGN 1.647 4.193  < 0.001 0.02 0.777

P02745 C1QA  − 0.175 4.155 0.003 0.07 0.78

P20851 C4BPB  − 0.526 4.114 0.032 0.194 0.786

P40227 CCT6A 1.277 3.888 0.086 0.31 0.786

P52566 ARHGDIB 0.555 3.656 0.18 0.458 0.787

Q15746 MYLK  − 1.492 3.709 0.004 0.07 0.787

P61764 STXBP1  − 2.397 3.52  < 0.001 0.02 0.793

P20618 PSMB1 0.17 3.417 0.825 0.955 0.794

Q96HR3 MED30 0.524 3.33 0.123 0.369 0.795

P29622 SERPINA4  − 0.159 2.808 0.001 0.043 0.804

P22105 TNXB 0.284 3.05 0.371 0.642 0.806

P31943 HNRNPH1 1.624 2.99 0.014 0.135 0.806
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enrichment conducted on the Boruta-identified proteins 
are presented in Additional file 1: Table S4. Both methods 
derived data that inferred the involvement of the comple-
ment cascade pathway as a putative pathogenic mediator 
of progressive renal disease; proteins in the complement 
cascade were significantly enriched (Term p-value cor-
rected with Bonferroni step down = 1.45E−03). Using 
ClueGO tool and ontology source WikiPathways 
(13.05.2021) the proteasome pathway was also found to 
be statistically significant (Term p-value corrected with 
Bonferroni step down = 2.55E−03) (Fig. 4).

Discussion
Current prediction of risk of CKD progression is crude, 
the most relevant traditional biomarker being albumi-
nuria/proteinuria, which has limitations and provides 
minimal mechanistic insight. By looking at individual 
proteins that differentiate rapid progression from stable 
CKD new insights can be gained into the pathophysi-
ological processes involved in deteriorating kidney 
function. This study has found some unique proteomic 
associations that differentiate CKD patients with more 
rapid progression from those with stable disease, 
importantly this is seen across a wide range of renal dis-
ease aetiologies. Although the differentiating proteins 
differ from those determined in other recent studies, 
the largest of which was by Grams et al. [14] that inves-
tigated CKD progression in the Atherosclerosis Risk in 
Communities Study (ARIC), this is not unexpected as 

the evaluated populations and study endpoints were 
not the same. In the latter, which was a study of almost 
9500 people in the general US population (i.e., not pri-
marily CKD) with median follow up of 14.4  years and 
of which 18% were self-reported black, the end points 
of the study were 50% decline in eGFR or ESKD devel-
opment [14], differing from our endpoint of ∂ eGFR. 
In ARIC, the proteins associated with this renal end-
point were TNF receptor superfamily members 1A and 
1B, trefoil factor 3, and b-trace protein, and these were 
then validated in two CKD cohorts, but the ethnic mix 
of these two US cohorts was markedly different to the 
SKS in which 96% of the patients were white.

Our study determined that the proteins which were 
differentially present in rapid CKD progression com-
pared to those with stable eGFR were clustered mainly 
in the complement cascade and proteasome pathway. 
These findings are relevant since complement activa-
tion is known to occur in the kidney during the pro-
gression of many diverse renal diseases and could 
contribute to the chronic inflammation in which fibro-
sis occurs [15]. Impairment of proteasome function has 
also been reported to lead to CKD [16] and multiple 
studies have explored the role of intracellular protein 
degradation in CKD [17] (Additional file 2). 

We compared the predictive value of our proteomic 
signature and Urinary Protein-to-Creatinine Ratio. 
Our proteomic signature performs almost as good as 
uPCR when distinguishing the stable and the rapid 

Fig. 1  a ROC Curves showing the performance of the models built with the biomarkers identified by our Differential Expression Analysis 
and Random Forest with Boruta Feature Selection algorithm. The ROC curve for Boruta gives us the best AUC (0.81). b Overlap between the two 
sets of biomarkers (Differential Expression Analysis using limma and Random Forest model using Boruta Feature Selection. c Table with the 11 
overlapping biomarkers coloured by significance (p value < 0.05) (Significant proteins: CCDC25, CCT4, AFM, SERPINA4, C6, TTR)
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progressors (AUC 0.79 vs. 0.81 respectively), but it is 
when we use both together that we get the best predic-
tive performance (AUC 0.85).

The complement cascade pathway and CKD
The complement cascade system, which consists of more 
than 30 proteins, serves as one of the first lines of defence 
for host protection against infection and for maintaining 
host hemostasis [31]. Although traditionally it has been 
regarded as an important part of the immune system, 
compelling evidence has shown that uncontrolled com-
plement activation is also a pivotal pathogenic mediator 
of renal diseases in humans, and that it contributes to 
the damage that occurs during chronic renal progression 

through various mechanisms including direct pro-
inflammatory and fibrogenic activity. It has been known 
for a long time that there is an association between the 
complement system and certain renal diseases. Uncon-
trolled complement activation leads to the generation 
of multiple effector compounds including C3a, C5a and 
MAC, which are detrimental to the host and contribute 
to progressive glomerulosclerosis and interstitial fibrosis.

There is growing evidence indicating that comple-
ment activation may contribute to the susceptibility and 
progression of diabetic nephropathy, the leading cause 
of CKD worldwide. However, further work is required 
to fully define the role of the complement system in 
clinical disease progression [15], since the presence of 

Fig. 2  a Boxplot of Boruta importance among proteins found to be significant by the Boruta algorithm. b Cumulative AUC for Boruta-identified 
biomarkers calculated from logistic regression analysis
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inflammation and upregulation of the renin–angioten-
sin–aldosterone system will also stimulate activation of 
the complement system.

There is a foundation for considering targeting com-
plement as a potential approach to modulating the pro-
gression of diabetic nephropathy, and products that 
attenuate over activity of the complement system are 
now either available for use in nephrology (e.g. eculi-
zamab) or under development. Inhibition of comple-
ment has the potential to abrogate disease progression 
and improve patient health. Nevertheless, a major effort 
is still required to understand the role of the comple-
ment pathway in the progressive loss of renal function, 

and to develop inhibitors that can be applied to treat 
more patients effectively in routine clinical practice.

The ubiquitin–proteasome pathway and its association 
to CKD
The proteasome is a large multi-catalytic protease that 
degrades poly-ubiquitinated proteins to small pep-
tides [18]. This protein-destroying apparatus plays a 
pivotal role in protein quality control [19] and involves 
many essential cellular functions, such as inflammatory 
responses, regulation of cell cycle, immune response, 
stress signalling, DNA repair and apoptosis [20]. In 

Fig. 3  Violin plots. Distribution of the 25 confirmed proteins that form our core proteomic signature from Boruta Algorithm for our two progression 
groups
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order to be degraded by the proteasome, proteins need 
to be tagged with Ubiquitin (Ub), a 76 amino acid regu-
latory protein found in nearly all eukaryotic organisms. 
The failure or dysregulation of the ubiquitin–proteasome 
pathway (UPP) prevents the degradation of misfolded 
proteins, leading to the disruption of normal cellular 

functions and even causing cell death [21]. Decreased 
proteasome function has been linked to many diseases 
such as immunological disorders, neurodegenerative 
[22] and cardiovascular diseases, cancer and inflam-
matory diseases. UPP has been identified to be signifi-
cantly activated in patients with CKD [23], and it has 

Term Ontology Source Term 
PValue

Term PValue 
Corrected with 

Bonferroni step down

Associated Genes 
Found

Regulation of activated PAK-
2p34 by proteasome mediated 

degradation

REACTOME_Pathways_13.
05.2021 

(ID R-HSA:211733) 3.01E-03 3.91E-02 [PSMB1, PSMB5]

Cross-presentation of soluble 
exogenous antigens 

(endosomes)

REACTOME_Pathways_13.
05.2021

(ID R-HSA:1236978) 2.89E-03 3.76E-02 [PSMB1, PSMB5]

Proteasome
KEGG_13.05.2021
(ID KEGG:03050) 2.55E-03 3.31E-02 [PSMB1, PSMB5]

RHOBTB GTPase Cycle

REACTOME_Pathways_13.
05.2021

(ID R-HSA:9706574) 1.48E-03 1.93E-02 [CCT6A, VIM]

Complement Activation
WikiPathways_13.05.2021

(ID WP:545) 5.83E-04 7.58E-03 [C1QA, C6]

Folding of actin by CCT/TriC

REACTOME_Pathways_13.
05.2021

(ID R-HSA:390450) 1.15E-04 1.49E-03 [CCT4, CCT6A]

Complement cascade

REACTOME_Pathways_13.
05.2021

(ID R-HSA:166658) 1.12E-04 1.45E-03
[C1QA, C4BPB, 

C6]

Regulation of Complement 
cascade

REACTOME_Pathways_13.
05.2021

(ID R-HSA:977606) 5.95E-05 7.73E-04
[C1QA, C4BPB, 

C6]

Fig. 4  Functionally grouped networks of enriched pathways using tool ClueGo
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been concluded that decreased proteasome function of 
podocytes leads to apoptosis, which results in CKD [16]. 
Our study provides further evidence of the relationship 
between proteasome impairment and CKD and high-
lights the importance of regulating a defective UPP in the 
treatment of CKD.

Nonetheless, this work is limited by the following con-
siderations. The proteomic signatures were assessed in 
patients who had a wide range of eGFR, and it is pos-
sible that signals will vary according to the point in the 
CKD progression pathway of individual patients. Also, 
the proteomic findings only represented associations of 
rapid progression or stable CKD; demonstration of their 
mechanistic importance requires extensive further stud-
ies, including a consideration of complement pathway 
action in renal biopsy tissue acquired at different stages 
of the CKD progression [15]. The SKS population was 
also of predominantly white ethnicity and hence the gen-
eralisability of our proteomic findings to other cohorts 
remains to be determined. Some of these limitations can 
be addressed by replicating the methodology in further 
cohorts with more diverse ethnic backgrounds and focus-
ing on differences between patients at different stages of 
the CKD pathway.

Our study of CKD progression is exploratory and lim-
ited to plasma proteomic profiling. Previous studies of 
renal disease have used different approaches including 
analysis of proteomics in plasma only, urine only, or both 
[24]. Although urinary proteomic analysis would include 
proteins released from damaged nephrons (glomeruli 
and tubules), ongoing processes in the interstitium and 
other areas of the kidney might not be properly captured, 
hence our decision to focus only on plasma analysis.

Additionally, although we have performed internal vali-
dation on test data, our machine learning models devel-
oped here remain to be validated in independent external 
samples, something that would need to be addressed 
in future work. Nevertheless, the in-depth proteomic 
characterisation of this large-scale CKD cohort is a step 
forward in generating mechanism-based hypotheses 
that might then lend themselves to future drug target-
ing. Candidate proteomic biomarkers will be validated 
in samples from selected patients in other large CKD 
cohorts using a targeted mass spectrometric analysis.

Abbreviations
ACEi	� Angiotensin-converting enzyme inhibitors
ADPKD	� Autosomal Dominant Polycystic Kidney Disease
ARB	� Angiotensin receptor blockers
AUC​	� Area Under the Curve
CKD	� Chronic Kidney Disease
DM	� Diabetes Mellitus
eGFR	� Estimated glomerular filtration rate
ESKD	� End Stage Kidney Disease
KFRE	� Kidney Failure Risk Equation

NDD-CKD	� Non-dialysis Dependent CKD
PCR	� Protein-Creatinine Ratio
RRT​	� Renal replacement therapy
SKS	� Salford Kidney Study
SWATH-MS	� Sequential Window Acquisition of all Theoretical fragment ion 

Mass Spectra

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12014-​023-​09405-0.

Additional file 1. Fig. S1: Box plot comparison between rapid and stable 
patients and their mean age. Fig. S2: ROC Curves for the model built to 
test performance of our potential biomarkers in patient primary disease 
cause subgroups (Diabetes and Glomerulonephritis). Fig. S3: Box plot 
comparison between rapid and stable patients and the levels of Comple‑
ment 6 protein. Fig. S4: Volcano Plot showing differentially expressed pro‑
teins. Table S1: Differential expression analysis results. Table S2: Primary 
disease causes code and number of patients. Table S3: p-values of T-test 
to determine if there is a significant difference between the means of our 
two progression type groups. Table S4: Functional Annotation Chart for 
enrichment analysis with the Database for Annotation, Visualisation and 
Integrated Discovery (DAVID).

Additional file 2. Log2 Proteinidentification and quantification data for all 
individual samples

Acknowledgements
This work was funded by the Medical Research Council (MRC) Grant MR/
R013942/1 “NURTuRE: changing the landscape of renal medicine to foster a 
unified approach to stratified medicine”. We would like to thank everyone who 
took the time to provide valuable input throughout this study.

Author contributions
PK devised the clinical study. PK, ADW and NG devised the full workflow for 
the study. IBJ, IA gathered and collated data whilst CRRM and NG performed 
major data analysis. All authors read and approved the final manuscript.

Funding
The Stoller Biomarker Discovery Centre was funded by the Medical Research 
Council (MR/M008959/1). This study was funded by the Precision Medicine 
grant MR/R013942/1 “NURTuRE: changing the landscape of renal medicine to 
foster a unified approach to stratified medicine” from the Medical Research 
Council in the UK. The funders had no role in study design, data collection and 
analysis, decision to publish, or preparation of the manuscript. 

Availability of data and materials
 The datasets used and/or analysed during the current study are available from 
the corresponding author on request; these, as well as scripts used for analysis 
are also available from https://​github.​com/​carlo​srami​rezme​dina/​CKD_​Prote​
omics_​Data_​Analy​sis. All protein identification and log2 protein quantification 
data for all individual samples can be found in Supplementary File #2.   

Declarations

Consent for publication
All consents obtained prior to publication.

Competing interests
Prof. Kalra received speaker and/or advisory board fees from Astra Zeneca, 
Napp, Bayer, GSK, Boehringer Ingelheim, Vifor, Pharmacosmos, Novonordisk. 
Prof. Saleem performs consultancy work for: Travere; Confo therapeutics; Pure‑
spring Therapeutics. All other authors report no competing interests regarding 
this manuscript.

Author details
1 Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, 
The University of Manchester, Manchester, UK. 2 Salford Royal Hospital, 

https://doi.org/10.1186/s12014-023-09405-0
https://doi.org/10.1186/s12014-023-09405-0
https://github.com/carlosramirezmedina/CKD_Proteomics_Data_Analysis
https://github.com/carlosramirezmedina/CKD_Proteomics_Data_Analysis


Page 12 of 12Ramírez Medina et al. Clinical Proteomics  (2023) 20:19

Northern Care Alliance NHS Foundation Trust, Salford, UK. 3 Division of Cardio‑
vascular Sciences, The University of Manchester, Manchester, UK. 4 Bristol Renal 
and Children’s Renal Unit, Bristol Medical School, University of Bristol, Bristol, 
UK. 5 School of Veterinary Medicine, Faculty of Health and Medical Sciences, 
University of Surrey, Guildford GU2 7XH, UK. 6 School of Health Sciences, 
Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 
7XH, UK. 

Received: 13 October 2022   Accepted: 14 March 2023
Published: 20 April 2023

References
Jha G-G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY-M, Yang C-W. 

Chronic kidney disease: global dimension and perspectives. Lancet (Br 
Ed). 2013;382(9888):260–72. https://​doi.​org/​10.​1016/​S0140-​6736(13)​
60687-X.

Romanova Y, Laikov A, Markelova M, Khadiullina R, Makseev A, Hasanova M, 
Rizvanov A, Khaiboullina S, Salafutdinov I. Proteomic analysis of human 
serum from patients with chronic kidney disease. Biomolecules (Basel). 
2020;10(2):257. https://​doi.​org/​10.​3390/​biom1​00202​57.

Islam TM, Fox CS, Mann D, Muntner P. Age-related associations of hyperten‑
sion and diabetes mellitus with chronic kidney disease. BMC Nephrol. 
2009;10(1):17–17. https://​doi.​org/​10.​1186/​1471-​2369-​10-​17.

Drawz P, Rosenberg ME. Slowing progression of chronic kidney disease. Kidney 
Int Suppl. 2013;3(4):372–6. https://​doi.​org/​10.​1038/​kisup.​2013.​80.

Lv JC, Zhang L-X. Prevalence and disease burden of chronic kidney 
disease. Renal Fibrosis Mech Ther. 2019. https://​doi.​org/​10.​1007/​
978-​981-​13-​8871-2_1.

Carney EF. The impact of chronic kidney disease on global health. Nat Rev 
Nephrol. 2020;16(5):251–251. https://​doi.​org/​10.​1038/​s41581-​020-​0268-7.

Kerr M, Bray B, Medcalf J, O’Donoghue DJ, Matthews B. Estimating the financial 
cost of chronic kidney disease to the NHS in England. Nephrol Dial 
Transpl. 2012;27(Suppl_3):iii73–80. https://​doi.​org/​10.​1093/​ndt/​gfs269.

Ali I, Chinnadurai R, Cornea G, Intorcia M, Kalra PA. The role of patiromer: 
comparing OPAL-HK data with untreated real-world patients in the 
United Kingdom—a retrospective, propensity-matched analysis. PLoS 
ONE. 2020;15(8):e0237467–e0237467. https://​doi.​org/​10.​1371/​journ​al.​
pone.​02374​67.

Levey AS, Greene T, Schluchter MD, Cleary PA, Teschan PE, Lorenz RA, Molitch 
ME, Mitch WE, Siebert C, Hall PM. Glomerular filtration rate measurements 
in clinical trials. modification of diet in renal disease study group and the 
diabetes control and complications trial research group. J Am Soc Neph‑
rol. 1993;4(5):1159–71. https://​doi.​org/​10.​1681/​ASN.​V4511​59.

Stringer S, Sharma P, Dutton M, Jesky M, Ng K, Kaur O, Chapple I, Dietrich T, 
Ferro C, Cockwell P. The natural history of, and risk factors for, progressive 
chronic kidney disease (CKD): the Renal Impairment in Secondary care 
(RIISC) study; rationale and protocol. BMC Nephrol. 2013;14(1):95–95. 
https://​doi.​org/​10.​1186/​1471-​2369-​14-​95.

McGurk KA, Dagliati A, Chiasserini D, Lee D, Plant D, Baricevic-Jones I, Kelsall J, 
Eineman R, Reed R, Geary B, Unwin RD, Nicolaou A, Keavney BD, Barton 
A, Whetton AD, Geifman N. The use of missing values in proteomic data-
independent acquisition mass spectrometry to enable disease activity 
discrimination. Bioinformatics. 2020;36(7):2217–23. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​btz898

Ortea I, Ruiz-Sánchez I, Cañete R, Caballero-Villarraso J, Cañete MD. Identifica‑
tion of candidate serum biomarkers of childhood-onset growth hormone 
deficiency using SWATH-MS and feature selection. J Proteomics. 
2018;175:105–13. https://​doi.​org/​10.​1016/j.​jprot.​2018.​01.​003.

Acharjee A, Larkman J, Xu Y, Cardoso VR, Gkoutos GV. A random forest based 
biomarker discovery and power analysis framework for diagnostics 
research. BMC Med Genomics. 2020;13(1):178–178. https://​doi.​org/​10.​
1186/​s12920-​020-​00826-6.

Grams M, Surapaneni A, Chen J, Zhou L, Yu Z, Dutta D, Welling P, Chatterjee N, 
Zhang J, Arking D, Chen T, Rebholz C, Yu B, Schlosser P, Rhee E, Ballantyne 
C, Boerwinkle E, Lutsey P, Mosley T, Feldman H, Dubin R, Ganz P, Lee 
H, Zheng Z, Coresh J. Proteins associated with risk of kidney function 
decline in the general population. JASN. 2021;32(9):2291–302. https://​doi.​
org/​10.​1681/​ASN.​20201​11607.

Fearn A, Sheerin NS. Complement activation in progressive renal disease. 
World J Nephrol. 2015;4(1):31–40. https://​doi.​org/​10.​5527/​wjn.​v4.​i1.​31.

Makino SI, Shirata N, Trejo JAO, Yamamoto-Nonaka K, Yamada H, Miyake T, Mori 
K, Nakagawa T, Tashiro Y, Yamashita H, Yanagita M, Takahashi R, Asanuma 
K. Impairment of proteasome function in podocytes leads to CKD. J Am 
Soc Nephrol. 2021;32(3):597–613. https://​doi.​org/​10.​1681/​ASN.​20191​
01025.

Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the 
ubiquitin proteasome system and its clinical impact. Pediatric Nephrol 
(Berlin). 2008;23(4):527–35. https://​doi.​org/​10.​1007/​s00467-​007-​0594-z.

Glickman MH, Ciechanover A. The ubiquitin–proteasome proteolytic pathway: 
destruction for the sake of construction. Physiol Revi. 2002;82(2):373–428. 
https://​doi.​org/​10.​1152/​physr​ev.​00027.​2001.

Hoeller D, Dikic I. How the proteasome is degraded. Proc Natl Acad Sci PNAS. 
2016;113(47):13266–8. https://​doi.​org/​10.​1073/​pnas.​16165​35113.

Guo H, Tadi P. Biochemistry, ubiquitination; 2022. Retrieved 24 March 2022, 
from https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK55​6052/.

Thibaudeau TA, Anderson RT, Smith DM. A common mechanism of protea‑
some impairment by neurodegenerative disease-associated oligom‑
ers. Nat Commun. 2018;9(1):1097–1097. https://​doi.​org/​10.​1038/​
s41467-​018-​03509-0.

McNaught KSP, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the 
ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci. 
2001;2(8):589–94. https://​doi.​org/​10.​1038/​35086​067.

Zhang YQ, Feng B, Yuan F-H. Effect of chronic renal failure medium on the 
ubiquitin–proteasome pathway of arterial muscle cells. Mol Med Rep. 
2013;7(3):1021–5. https://​doi.​org/​10.​3892/​mmr.​2013.​1269.

Jia L, Zhang L, Shao C, Song E, Sun W, Li M, Gao Y. An attempt to understand 
kidney’s protein handling function by comparing plasma and urine 
proteomes. PLoS ONE. 2009;4(4):e5146–e5146. https://​doi.​org/​10.​1371/​
journ​al.​pone.​00051​46.

Ali I, Kalra P. Risk prediction in chronic kidney disease. Curr Opin Nephrol 
Hyper. 2019;28(6):513–8. https://​doi.​org/​10.​1097/​MNH.​00000​00000​
000553.

Ali I, Chinnadurai R, Ibrahim ST, Kalra PA. Adverse outcomes associated 
with rapid linear and non-linear patterns of chronic kidney disease 
progression. BMC Nephrol. 2021;22(1):82–82. https://​doi.​org/​10.​1186/​
s12882-​021-​02282-5.

Ibrahim ST, Chinnadurai R, Ali I, Payne D, Rice GI, Newman WG, Algohary E, 
Adam AG, Kalra PA. Genetic polymorphism in C3 is associated with pro‑
gression in chronic kidney disease (CKD) patients with IgA nephropathy 
but not in other causes of CKD. PLoS ONE. 2020;15(1):e0228101. https://​
doi.​org/​10.​1371/​journ​al.​pone.​02281​01

Chinnadurai R, Clarke NW, Kalra PA. Associations of urological malignancies 
with renal progression and mortality in advanced chronic kidney disease: 
a propensity-matched cohort study. BMC Nephrol. 2020;21(1):202–202. 
https://​doi.​org/​10.​1186/​s12882-​020-​01859-w.

Geary B, Walker MJ, Snow JT, Lee DCH, Pernemalm M, Maleki-Dizaji S, 
Azadbakht N, Apostolidou S, Barnes J, Krysiak P, Shah R, Booton R, Dive 
C, Crosbie PA, Whetton AD. Identification of a Biomarker Panel for Early 
Detection of Lung Cancer Patients. J of Proteome Res. 2019;18(9):3369–
3382. https://​doi.​org/​10.​1021/​acs.​jprot​eome.​9b002​87.

Stephens D, Diesing M. A comparison ofsupervised classification methods for 
the prediction of substrate type using multibeam acoustic and legacy 
grainsize data. PloS One. 2014;9(4):e93950–e93950. https://​doi.​org/​10.​
1371/​journ​al.​pone.​00939​50.

Chen SF, Chen M. Complement Activation in Progression of Chronic Kidney 
Disease. Adv Exp Med Bio. 2019;1165:423–441. https://​doi.​org/​10.​1007/​
978-​981-​13-​8871-2_​20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/S0140-6736(13)60687-X
https://doi.org/10.1016/S0140-6736(13)60687-X
https://doi.org/10.3390/biom10020257
https://doi.org/10.1186/1471-2369-10-17
https://doi.org/10.1038/kisup.2013.80
https://doi.org/10.1007/978-981-13-8871-2_1
https://doi.org/10.1007/978-981-13-8871-2_1
https://doi.org/10.1038/s41581-020-0268-7
https://doi.org/10.1093/ndt/gfs269
https://doi.org/10.1371/journal.pone.0237467
https://doi.org/10.1371/journal.pone.0237467
https://doi.org/10.1681/ASN.V451159
https://doi.org/10.1186/1471-2369-14-95
https://doi.org/10.1093/bioinformatics/btz898
https://doi.org/10.1093/bioinformatics/btz898
https://doi.org/10.1016/j.jprot.2018.01.003
https://doi.org/10.1186/s12920-020-00826-6
https://doi.org/10.1186/s12920-020-00826-6
https://doi.org/10.1681/ASN.2020111607
https://doi.org/10.1681/ASN.2020111607
https://doi.org/10.5527/wjn.v4.i1.31
https://doi.org/10.1681/ASN.2019101025
https://doi.org/10.1681/ASN.2019101025
https://doi.org/10.1007/s00467-007-0594-z
https://doi.org/10.1152/physrev.00027.2001
https://doi.org/10.1073/pnas.1616535113
https://www.ncbi.nlm.nih.gov/books/NBK556052/
https://doi.org/10.1038/s41467-018-03509-0
https://doi.org/10.1038/s41467-018-03509-0
https://doi.org/10.1038/35086067
https://doi.org/10.3892/mmr.2013.1269
https://doi.org/10.1371/journal.pone.0005146
https://doi.org/10.1371/journal.pone.0005146
https://doi.org/10.1097/MNH.0000000000000553
https://doi.org/10.1097/MNH.0000000000000553
https://doi.org/10.1186/s12882-021-02282-5
https://doi.org/10.1186/s12882-021-02282-5
https://doi.org/10.1371/journal.pone.0228101
https://doi.org/10.1371/journal.pone.0228101
https://doi.org/10.1186/s12882-020-01859-w
https://doi.org/10.1021/acs.jproteome.9b00287
https://doi.org/10.1371/journal.pone.0093950
https://doi.org/10.1371/journal.pone.0093950
https://doi.org/10.1007/978-981-13-8871-2_20
https://doi.org/10.1007/978-981-13-8871-2_20

	Proteomic signature associated with chronic kidney disease (CKD) progression identified by data-independent acquisition mass spectrometry
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Materials and methods
	Study population
	GFR slope calculation and patient selection
	Sequential window acquisition of all theoretical fragment ion spectra (SWATH) analysis
	Statistical and data analysis

	Results
	Demographic information
	A proteomic signature of CKD progression
	Functional enrichment analysis reveals role for complement and coagulation pathways

	Discussion
	The complement cascade pathway and CKD
	The ubiquitin–proteasome pathway and its association to CKD

	Acknowledgements
	References


