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of large-scale identification and quantification of pro-
teins in biological specimens [1, 5]. The high sensitivity 
and specificity achievable by mass spectrometry (MS) 
make it superior to immunoassays for analysis of several 
drug types [6, 7]. MS-based clinical proteomics improve 
medical practice at the level of diagnosis, characterizing 
new targets for drug development, therapeutic interven-
tion, prognosis and digging for biomarker candidates 
[8–14]. Current proteome research has a strong empha-
sis on biomarker discovery and validation to help with 
disease diagnosis, therapy monitoring, and prognosis 
[15, 16]. During the last decades, MS-based proteomics 
has led to the discovery and identification of thousands 
of potential protein biomarkers for a number of diseases 
[17]. Depending on the information which they provide, 
biomarkers can be divided into diagnostic, prognostic, 

Introduction
Proteins are biomolecules that better bridge the gap 
between genomic information and biologic functions and 
disease phenotypes [1]. Proteins do not function in isola-
tion and major biological processes are mediated through 
protein interactions that control metabolic and signaling 
pathways, cellular processes, and organismal systems, 
hence control the chaotic networks and mechanisms 
implicated in health and diseases [2–4]. Proteomics is an 
integrated research area that is centered on the premise 
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Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory 
medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is 
continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for 
treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and 
affordable will have the greatest healthcare benefit.

This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology 
laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional 
methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, 
remarkable analytical specificity and sensitivity and low turnaround time.

Despite the achievements in the development and adoption of a number of MS-based clinical proteomics 
practices, more are expected to undergo transition from bench to bedside in the near future. The review provides 
insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the 
application of proteomics in clinical laboratories.
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and treatment predictive biomarkers [18]. A diagnos-
tic biomarker is used for early detection of the disease. 
For example, decreased expression of full length amyloid 
beta (Aβ) peptide and increased tau protein in CSF were 
reported to be the only clinically validated biomarkers for 
Alzheimer’s disease(see (Olsson et al. (2016)) for a review 
of these biomarkers) [19]. A prognostic biomarker is typi-
cally utilized to foretell the recurrence and severity of dis-
ease as well as patient’s response to treatment by a given 
drug. Recently, a study by Jang et al. (2021) identified five 
proteins, HNRNPA1, LTBP4, MRPS23, POLDIP2, and 
WBSCR16, to be prognostic biomarkers in adrenal cor-
tical carcinoma (ACC) [20]. Predictive biomarkers are 
useful tools to classify the patients into responder and 
non-responder groups [21], which are all important in 
drug design applications [22, 23]. For example, proteins 
FKBP4 and S100A9 were reported as potential predic-
tion markers of therapeutic response to neoadjuvant che-
motherapy in breast cancer patients [24]. Furthermore, 
overexpression of SHP27 was said to predict doxorubicin 
resistance [25]. Many diseases, including cancer, are reg-
ulated at the protein level, making the field of proteomics 
important. Thus, proteins are of great importance in the 
diagnosis and understanding of most diseases and patho-
logical disturbances that occur, thus having an impact on 
biomarkers. In the last decade, the US Food and Drug 
Administration (FDA) has approved a number of MS-
based in vitro diagnostic methods for pathogen identifi-
cation, newborn screening, quantification of therapeutic 
drugs in the circulation, and vitamin D assay [26].

Liquid chromatography (LC) coupled to tandem MS 
(LC-MS/MS) is the most widely used technique for the 
comprehensive identification and quantification of pro-
teins. In this technique, proteins from biological samples 
are isolated and enzymatically digested into peptides, 
most commonly with trypsin, before separation by LC 
and electrospray ionization to enter the mass spectrom-
eter. Peptide identification occurs through determina-
tion of the mass to charge ratio (m/z) of precursor ions in 
MS1 spectra, selection, and fragmentation of precursor 
ions in a collision cell, then determination of the m/z of 
the product ions generated from collision in MS2 spec-
tra. Finally, protein identification is inferred from analysis 
their respective peptide data [27, 28]. The exact identifi-
cation and quantitation of proteins are essential for a bet-
ter understanding of biological processes implicated in 
health and disease.

Precise multiplexed quantification of proteins can be 
achieved by targeted proteomic methods using multiple 
or parallel or selected reaction monitoring (MRM/PRM/
SRM). MRM rely on a triple-quadrupole (QQQ) MS to 
allow passage and analyses of only predefined targeted 
proteotypic peptides, by specifically selecting precur-
sor ions in Q1 and their specific fragment ions in Q3 as 

predefined mass to charge (m/z) values [29]. The signal 
intensities of SRM transitions (precursor/fragment ion 
pairs) of the unique peptide can be monitored over time 
and are efficient as surrogate measures of the quantity 
of a specific protein. The method has high repeatabil-
ity, reproducibility and broad dynamic range enabling 
excellent absolute and relative protein quantification 
across multiple biological samples, especially in the area 
of biomarker research [30]. These targeted proteomics 
strategies are used both in biomarker validation and in 
accurate and specific quantification of several biomarkers 
[31]. Mermelekas et al., (2015) has presented a summary 
of validated urinary biomarkers in different diseases, 
including cancer and diabetes, using SRM/MRM assays 
[31]. Jones et al., (2016) has developed MRM assay and 
quantified 187 candidate marker proteins for colorectal 
cancer (CRC) [32]. Kontostathi et al., (2019) has pre-
sented a summary of studies based on MRM targeted 
proteomic assays to discover and validate diseases spe-
cific biomarkers in plasma samples [33]. The applica-
tion of this powerful tool is limited by its relatively low 
throughput.

Data-dependent acquisition (DDA) and data-indepen-
dent acquisition (DIA), are other two discovery platforms 
used in the identification and quantification of proteins 
[34]. DDA is the most widely used approach where quan-
tification is achieved by combining DDA with stable 
isotope labeling [34]. This technique has poor reproduc-
ibility due to due to random ion sampling especially when 
assessing large number of samples [27, 35]. In DIA, for 
example, sequential windowed acquisition of all theoreti-
cal fragment ion spectra mass spectrometry (SWATH-
MS), allows comprehensive detection and quantitation of 
virtually every detectable compound in a sample, thereby 
eliminating the risk of missing a critical component and 
overcomes some of the limitations of DDA [35–38]. 
The introduction of ultrafast scanning high-resolution 
Q-TOF instruments led to the emergence of this novel 
MRM-like method, SWATH-MS based label-free quanti-
tative proteomics, which is a faster and higher through-
put alternative that can detect 30,000–40,000 peptides 
across large sets of samples [38, 39]. Instrumental param-
eters such as the size of the precursor mass windows or 
the resolution can be modified to improve protein depth 
and analytical precision in a DIA-MS method [40]. Fur-
thermore, the type of LC column and the length of sepa-
ration gradient can each alter the number of peptides 
detected and their resolution. A study by Chang et al., 
(2015) reported 30 differentially expressed proteins 
from a label-free SWATH analysis of synaptic proteome 
in between Alzheimer’s disease patients and controls 
[41]. Kim et al., (2018) developed a targeted DIA assay 
and detected candidate biomarker KRAS mutations to 
predict therapy response [42]. Anjo et al., (2017) briefly 
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summarized the clinical and fundamental researches 
based on SWATH-MS, which led to the identification of 
a number of candidate biomarkers for different diseases 
[43]. A recent review by Boys et al., (2023) presented sev-
eral studies based on DIA- and DDA-MS for the discov-
ery and validation of different biomarker categories [34].

Current developments in sample preparation methods, 
protein quantitation strategies, MS configurations and 
data analysis have all been essential to address the clini-
cal questions that advance the discovery and validation 
of clinically-relevant diseases biomarkers (Fig. 1) [17, 28, 
44]. These progresses in MS related technologies, sample 
preparation methods, labeling reagents, stable isotope 
labeling reagents and peptide synthesis technologies, and 
bioinformatics have led to identification and quantifica-
tion of several thousand proteins in one experiment with 
steadily improved sensitivity, resolution and specificity 
propelled proteomics into the clinic [12, 15, 45–47].

Sample preparation an important step in the proteomic 
characterization of clinical samples to simplify complex 
biological matrices (serum, urine, etc.), adjust analyte 

concentration(s) for the detection limit of the LC-MS/
MS, exchange the sample matrix to a simpler solvent/
water injection solution compatible with the LC method 
[28, 48]. The most commonly analyzed biofluids include 
blood (plasma, serum) and urine [49], expressed prostatic 
secretions [50], saliva [51], tears [52], cerebrospinal fluid 
(CSF) [53], and ascites [54, 55]. Rigorous and purpose-
designed standard operating procedures are required for 
the diverse types of clinical samples in a non-invasive or 
minimally invasive manner (i.e. liquid biopsies) [28, 56]. 
Furthermore, sample preparation protocols in MS-based 
clinical laboratories have to deliver the desired cost/
reportable test, practicality and robustness [48]. Antibod-
ies are often used in targeted proteomics to quantify low 
abundant peptides (on the order of pg/mL in blood) [57]. 
For clinical applications, sample preparation and LC-MS 
has to be integrated into the system [47]. One of the bar-
riers in implementing MS in clinical laboratory has been 
the challenge of interfacing MS and automated sample 
preparation instruments to laboratory information sys-
tems (LIS) for electronic order and result transmission.

Fig. 1  Current developments in Mass spectrometry-based clinical proteomics in sample preparation, MS technologies, bioinformatic tools, major advan-
tages and the challenges that have to be considered
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Formalin-fixed paraffin-embedded (FFPE) tissue rep-
resents the gold standard non-liquid matrix in clinical 
analysis, enabling the long-term storage of samples and 
the generation of large tissue banks [58, 59]. The forma-
tion of amine–thiol cross-linking and methylene bridges 
inactivate enzymatic activity, thereby stabilize the bio-
molecules within the tissue. Mass spectrometry-based 
proteomics relies on protein digestion and peptide puri-
fication. The application of this technique on FFPE tis-
sues requires reversal of chemical cross-linking and the 
removal of reagents that are incompatible with mass 
spectrometry using the appropriate protocol [60]. There 
is no a universal sample preparation protocol and the 
type of method should be optimized/selected based on 
the sample type and complexity, and the goal of the study 
[28]. Different cocktails of reagents including calibra-
tors, quality control samples and ready-to-use solvents 
are now commercially available for the cell lysis, protein 
extraction and solubilization from clinical samples, as 
revised in different papers [28, 61–63].

Electrospray ionization (ESI) continues to rely on well-
established reversed-phase nano-LC technologies, or 
combined with capillary electrophoresis [64]. Orthogonal 
peptide separation techniques using reverse-phase LC 
and strong cation exchange chromatography have grown 
in popularity amongst clinical proteomics research. Frac-
tionation of peptide pool using this approach has been 
reported to increased proteome coverage over a single-
shot experiment by up to 39% in lung cancer cell lines 
[65]. Stone, L. 2017, has described the different LC-MS/
MS sample preparation types used in clinical laboratory 
[48]. Ion mobility based separation of gas phase peptide 
ions, as in high-field asymmetric ion mobility spectrom-
etry (FAIMS) and trapped ion mobility spectrometry 
(TIMS), have been shown to reduce MS1 complexity 
and MS2 contamination from co-eluted and co-isolated 
peptides [66, 67], thereby increasing peptide detection by 
30% [68].

Some of the recent developments in clinical proteomics 
sample preparation include filter aided sample prepa-
ration (FASP) [69, 70], MStern [71], suspension trap-
ping (S-trap) [72, 73], the solid-phase-enhanced sample 
preparation (SP3) [74–77] and the in-StageTip (iST) 
[78]. Comparative studies have been performed to see 
the performance between the above listed methods [79, 
80]. Compared to in-solution digestion, the FASP-based 
methodology is efficient to remove contaminating small 
molecules and salts including SDS prior to mass spec-
trometry analysis [79, 80]. Besides, FASP requires rela-
tively high salt concentration for elution of the tryptic 
peptides, which requires a desalting procedure before 
MS analysis. Furthermore these additional handling 
steps are potentially associated with peptide losses [71]. 
The S-Traps method provide the most efficient protein 

digestion and identification in a shorter time when com-
pared to FASP and in-solution digestions [79]. The 
in-StageTip-based sample processing is performed in 
a single, enclosed volume, which eliminates the poten-
tial of contamination and sample loss [78]. The method 
based on MStern utilizes the strengths of filter-based 
sample preparation methods and overcomes their limi-
tation, without the compromising the protein identifi-
cation in improved throughput [71]. The SP3 protocol 
uses a hydrophilic interaction mechanism for removal of 
unwanted sample components. It is reported to be simple 
and efficient protocol to analyze simple and complex pro-
tein mixtures in large and very small amounts, which can 
be easily completed within ~ 30 min [81].

Further developments in the MS equipment configu-
ration have propelled clinical proteomics to the next 
level, thereby hasten the transition of MS from analyti-
cal chemistry laboratories to the clinics. This is achieved 
mainly due to the development of high- and ultrahigh 
resolution accurate-mass (HRAM) spectrometers, such 
as time of flight mass spectrometry (TOF MS), Fourier-
transform ion cyclotron resonance MS (FT-ICR MS), 
and Orbitrap (Orbital ion-trap) [82–87]. The major 
enhancements in HRAM are made to the ion source, ion 
transmission, instrument tuning (for sensitivity improve-
ments), detector adjustments, ion optics, electronics, and 
detector acquisition speed (for increased resolution). 
Advanced ionization process, operating system, and the 
required reagents including calibrators, quality control 
samples and ready-to-use solvents are now commercially 
available. Several ionization methods, such as desorp-
tion electrospray ionization (DESI) [88], probe electro 
spray ionization (PESI) [89] and rapid evaporative ioniza-
tion mass spectrometry (REIMS) [90] have been used for 
intraoperative rapid pathological diagnosis and real-time 
analysis of biological samples [47]. Overall, a number of 
achievements are made in MS fragmentation and detec-
tion techniques and MS scanning modes as described in 
Macklin et al., (2020) [28].

For example, ion mobility MS combines the separation 
of ionized molecules based on their mobility in a car-
rier buffer gas, with the high-accuracy resolving power 
of HRAM. In trapped ion mobility, the ions are MS 
trapped during ion mobility separation, which allows for 
sequential fragmentation over a series of timed millisec-
ond scans. Combining trapped ion mobility with paral-
lel accumulation-serial fragmentation (PASEF) enables 
the selection and fragmentation of multiple precursors 
in a single 50 ms run, resulting in thousands of protein 
identifications over a short run time using nanogram 
amounts of material without a decrease in sensitivity, 
ideally suited for complex, high-throughput proteomics. 
A recent advancement has been made in trapped ion 
mobility MS that combines time-of-flight and trapped 
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ion mobility MS (timsTOF) with liquid chromatography 
and improved automation software. Some of the recent 
achievements are also described below under chapter 
“Mass Spectrometry-based Clinical Pathology”.

The analysis of large and complex/heterogeneous bio-
logical data generated from MS experiments require the 
development of computational tools (new software and 
algorithms) to analyze and statistically evaluate data. In 
recent years there are also developments in tools and 
methods used to process the raw mass spectral data, 
including global and targeted identification and quan-
tification of peptides and proteins. For example, a team 
from the Max Planck Institute of Biochemistry released 
a new version of the pioneering and widely used Max-
Quant software platform, MaxQuant 2.0., for analyzing 
and interpreting data produced from MS-based pro-
teomics research [91]. Chen et al., (2020) revised a num-
ber of recently developed bioinformatics tools used in 
MS-based proteomics data analysis [92].

MS-based proteomics is implemented in clinics to 
understand the pathophysiology of several diseases that 
include infectious diseases, antimicrobial susceptibil-
ity testing, phylogenetic classification, urine toxicology 
screening, new-born metabolic screening, clinical meta-
bolic profiling and non-communicable pathological con-
ditions such as cancer, metabolic disorders, amyloidosis, 
disorders of the immune system, and characterization 
of renal diseases, reproductive diseases, blood disor-
ders and ocular diseases [46, 93, 94]. The main purpose 
of the manuscript is to discuss the major achievements, 
challenges and future prospects in MS-based clinical 
proteomics. It covers some of the recent technologies in 
clinical pathology, like MSI and emerging in vivo tech-
niques, and applications related to communicable dis-
eases caused by microbial pathogens (bacterial, viral and 
fungal diseases) and non-communicable pathological 
conditions (cancer and metabolic disorders).

Biomarker discovery workflows
Biomarker research follows a continuum that begins with 
the putative biomarker discovery, and proceeds through 
candidate prioritization, verification and validation to the 
eventual clinical application and post-implementation 
monitoring. The discovery phase requires high confi-
dence identification and simultaneous quantification of 
biomarker candidates, which gives clues about proteins 
that shows statistical significant changes in response to 
a given environmental change, drug treatment. Identi-
fication of medium to low abundance proteins without 
enrichment from complex biological samples is one of 
the biggest challenges in biomarker discovery [95]. The 
discovery phase generates 100 to 1000 s of candidates and 
the candidates that show significant differences between 
cases and controls have to be prioritized. Furthermore, 

proteins secreted or on the cell surface, acting in known 
cellular pathways or hypothesized to be deregulated in 
the diseased state are targeted for testing [96].

Alternatively, targeted proteomics approaches like 
the multiple reaction monitoring (MRM) MS/MS mul-
tiplexed assays and Stable Isotope Standard with Cap-
ture by Anti-Peptide Antibodies (SISCAPA) can be 
used to prioritize selected biomarker candidates for 
validation [97–99]. The identified and prioritized candi-
date biomarkers have to be validated in a larger sample 
size covering a broad section of patient cohorts. A high 
throughput workflow with high specificity and sensitivity 
is employed in verification phase to confirm the identifi-
cation and screen only fewer but higher quality leads into 
the costly validation phase. The validation phase assesses 
the biomarker performance characteristics in real clinical 
practice, and determines the range of conditions under 
which the biomarker will deliver high-quality, reliable 
and reproducible research data necessary for the effec-
tive use of biomarkers [96]. The MS-based biomarker 
research and development approach may solve several 
vexing issues with the conventional immunoassays; accu-
racy, selectivity, specificity and multiplexing (MS can 
measure > 100 peptides at a very little incremental cost 
per added analyte) [100, 101]. Besides, the MS-based 
approach performs a direct measurement of analytes 
with wide dynamic range [101].

Recently, a fully automated, clinically validated HPLC-
MS/MS in MRM mode has been reported for identifica-
tion and quantification of wild-type and variant amyloid 
β (Aβ) peptides in cerebrospinal fluid of alzheimer’s dis-
ease (AD) [102]. Examples of target analytes and clinical 
areas are summarized by van der Gugten, J. Grace, (2020) 
[101]. Chambers et al., (2014) and N. Leigh Anderson 
(2010) have presented a list of FDA approved or cleared 
cancer biomarkers based on targeted proteomics [100, 
103]. Some of the FDA approved MS-based protein bio-
markers are shown in Table 1 below.

Clinical proteomics has the ability to delineate the 
functional units of a cell, more likely driving the pheno-
typic differences of a disease. Despite the recent advances 
in the area of technology development/standardization 
and bioinformatics to enable confident identification 
of molecular disease signatures, major roadblocks have 
been impeding an efficient transition of protein candi-
dates in to clinical biomarker with only few biomarkers 
have been approved by the FDA over the last two decades 
[108]. This is in contrast with over a thousand claimed 
biomarker candidates reported in scientific literature for 
cancer alone, indicating a discrepancy between discovery 
and validation. Several resources are available for deter-
mining development processes and acceptability cri-
teria for specific LC–MS/MS assays, and many of them 
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are general recommendations or are specific to research 
applications that may not translate clinically [109].

Several barriers attributable to this discrepancy has 
been identified, including a lack of high quality, well-
annotated biospecimens, measurement inconsistency 
and a lack of reproducibility within and across proteomic 
platforms (analytical challenges), difficulty in verifying 
biomarker candidates before large-scale clinical trials 
using immunoassays, uncertainty of how to successfully 
develop and validate a method that meets guidelines 
required by the regulatory agency, lack of publicly acces-
sible, high-quality affinity reagents, reference materials, 
and data sets for data mining, hypotheses generation, and 
experimental validation prior to clinical validation, lack 
of standardized data analysis, instrumentation/automa-
tion challenges, standardization and harmonization of 
MS methods and visualization tools and lack of appro-
priate statistical and experimental study design [108, 
109]. An improved understanding of the challenges and 
strategies in each stage of the pipeline is fundamental 
for accelerating the pace of biomarker development and 
facilitating the implementation of novel clinical tests. 
Successful application of proteomics in clinics requires 
implementation of standards and metrics to ensure that 
observed changes are reflective of true disease biology, 
followed by proper large-scale validation.

Application of mass spectrometry-based clinical 
proteomics
Comparative proteomics in medical research
Most clinical proteomic studies rely on determination 
of differences in relative protein abundance in two or 
more conditions in a quantitative or qualitative manner 
[110–112]. For example, in expression proteomics-based 
biomarker discovery, biomarkers are detected through 
comparison of protein expression profile between normal 
samples vs. disease samples like body fluids and tumor 
tissues [21]. In general, comparative proteomics aims to 
analyze proteome changes in response to development, 
disease, or environment in a two-step process involving 
protein fractionation and protein identification by mass 
spectrometry [113]. The choice of MS instrument var-
ies depending on the clinical application. For example, 
triple quadrupole mass spectrometers coupled to liquid 

chromatography are often used for quantitative analy-
sis of most of the small molecules for newborn screen-
ing, therapeutic drug monitoring, vitamin D, and steroid 
assays, while matrix-assisted laser desorption/ioniza-
tion (MALDI) combined with time-of-flight (TOF) mass 
analyzer is generally used for clinical microbiology and 
[26, 114]. Furthermore, SRM and PRM performed on 
high-resolution hybrid quadrupole-Orbitrap (Q-OT) or 
time-of-flight instruments are routinely used for targeted 
quantification of proteins in a complex biological matrix 
[115, 116].

Mass spectrometry-based clinical pathology
More recently, mass spectrometry-based assays are 
becoming more popular in clinical diagnostic laborato-
ries and have emerged as a promising tool for modern 
pathology [46]. Technological advancements that aid its 
practicality in pathology and clinical diagnostics include 
the cocktail of variations in the mass spectrometer con-
figurations, for example, as in mass spectrometry imag-
ing (MSI), emerging in vivo techniques, paper spray 
ionization mass spectrometry (PSI-MS) and MS minia-
turization [117, 118]. In contrast with other established 
analytical assays, mass spectrometry-based assays offers 
high analytical specificity and sensitivity, improved diag-
nostic accuracy, low sample cost and multiplexing oppor-
tunities as it can identify and quantify multiple analytes 
in a high-throughput manner from complex samples, 
such as pathology specimens [46, 119–121]. Further-
more, it analyzes tissues directly without the need of 
time-consuming multiple staining and microscopy steps; 
significantly reducing the time to diagnosis or even it can 
be used to guide intraoperative tumor excision [121]. 
Furthermore, significant progresses have been made in 
the use of MS-based clinical pathology for the identifi-
cation and confirmation of localization of renal protein 
deposits, thereby, help in diagnosing of amyloidosis and 
characterization of renal diseases [46].

Mass spectrometry imaging (MSI)
Mass spectrometry imaging (MSI) is an emerging ana-
lytical technique that has revolutionized biomedical and 
pharmacological investigations and allows simultaneous 
detection and visualization of the spatial distribution 

Table 1  Examples of LC-MS/MS- based FDA approved tests in clinical laboratory
Technology Identification Sample Diseases Year Ref.
HPLC-MS/MS (MRM) Wild-type (wt) amyloid β (Aβ) Cerebrospinal fluid 

/ FFPE
Alzheimer’s disease (AD) 2020 [102]

VITEK-MS (VITEK 2 ) Microbes and AMR profile Microbial sample Infectious diseases 2013 [104]

Bruker MALDI Biotyper CA System Gram-negative and gram-positive 
bacteria and yeast

Bacterial sample Infectious diseases 2013 [105, 
106]

OVA1, in vitro diagnostic multivariate 
index assay (SELDI-TOF-MS)

CA 125, TTR, ApoA1, β-2 micro-
globulin, TF

Serum Ovarian cancer 2009 [107]
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of biomolecules across the tissue specimens in a label-
free untargeted manner for multiplex analysis [26, 122]. 
Desorption Electrospray Ionization (DESI) and MALDI 
are the most common ionization techniques used in 
MSI [123–125]. MSI combines the advantages of micro-
scopic techniques and discovery-based approaches while 
enabling spatiotemporal analysis of complex biological 
samples with multiplex detection [126]. Imaging experi-
ments are carried out by first scanning the tissue surface 
in 2D, then recording the mass spectral data pixel-by-
pixel, which are then plotted to create the ion images 
[26].

The results can be displayed as single or multiple ion 
images producing molecular histology-like datasets. The 
information gained from MS and visualization of spatial 
distributions in thin sample sections makes MSI a valu-
able tool for biological specimen characterization, which 
provides a better understanding of the molecular basis 
and mechanism of diseases with relation to tissue mor-
phology [46, 122]. Today, the scientific community uses 
a variety of MSI methods to investigate the distribution 
of proteins, peptides, and small-molecule metabolites in 
various biological models.

Today MSI has emerged as a valuable tool with several 
clinical applications in the context of disease character-
ization, drug development, biomarker discovery, diagno-
sis, and prognosis [125–128]. For instance, MSI can be 
used in biomarker discovery, to determine the location 
of the biomarker in the tissue section for differentiating 
between cancer and healthy specimens, tumour typing 
and disease staging, assessing tumor margins from exci-
sion biopsies, intraoperative tumour excision, drug local-
ization, potential therapeutic targets, therapy prediction 
and diagnosing a number of other diseases [46, 123, 124, 
129–133]. Thus, it is evident that MSI is making a stron-
ger impact on the clinical decision-making process. The 
majority of human studies employing MSI focused on 
cancer and the effectiveness of this technology in other 
diseases (renal, infectious, skin, fertility, transplanta-
tion, and metabolic diseases) needs to be assessed in the 
future [26, 123].

Until recently, MSI in cancer had been performed 
exclusively on fresh frozen tissues. It was believed that 
proteins were inaccessible from the FFPE tissues. Opti-
mized protocols has been developed to overcome the 
limitations and equal number of proteins can be identi-
fied from both fresh frozen and FFPE tissues, with each 
sample type having unique advantages and limitations 
as revised [127, 134, 135]. Proteolytic digestion can be 
done directly on fresh frozen samples, without the need 
for prior retrieval steps. However, fresh samples require 
rapid freezing to inhibit endogenous enzymatic degra-
dation. It also requires additional careful cleanup steps 
to remove other biomolecules that may interrupt the 

detection of peptides. Using the FFPE samples, on the 
other hand, very large sample banks can be developed 
and stored at room temperature for indefinite periods 
of time without loss of morphological information. The 
challenge with FFPE samples is formation of methylene 
bridges and protein cross-linking caused by the formalin 
fixation, which makes proteins inaccessible to proteolytic 
digestion and must be reversed prior to further prepa-
ration steps using the widely used heat-induced antigen 
retrieval method.

The current state and further challenges of routinely 
implementing MSI in the clinical pathology laboratory 
are presented by experts in the field [133, 136]. Over-
all, MSI has high sensitivity, chemical specificity, fairly 
high spatial resolution, and the ability to detect multi-
plex molecular information. This makes MSI a powerful 
medical imaging tool that could be useful as an adjunct to 
histology for disease diagnosis [26].

Emerging in vivo techniques
Current MSI-based methods requires sample preparation 
steps, have relatively higher turnaround time and limited 
application in the assessment of processed tissue speci-
mens. For the proper implementation of MSI for routine 
clinical use, there is a technological demand for direct, 
real-time and rapid analysis of unprocessed samples at 
atmospheric pressure with a simpler sample preparation, 
simpler instrumentation. These improvements made the 
MSI-based in vivo analysis as an attractive and feasible 
choice. More than 40 ambient ionization techniques, 
including Rapid evaporative ionization MS (REIMS), 
have now been described in the literature since the last 
decades [117, 133, 137]. REIMS was originally devel-
oped and integrated to routine clinical use for accurate 
identification of tumor tissues during surgery [138–141]. 
A number of REIMS-based non-destructive methods 
have been developed with high sensitivity and specific-
ity to analyze and identify tissue samples in vivo and ex 
vivo without sample preparation and in real time [46, 
142]. These include REIMS-associated endoscopy (iEn-
doscope), MasSpec Pen and the intelligent knife (iKnife) 
[46, 117, 139, 140, 142, 143].

Mass spectrometry-based proteomics in diseases diagnosis
Diagnosis of infectious diseases
In the last decades, the field of microbiology has bene-
fited from continued technological advances in MS and 
proteomics-based technologies which are increasingly 
used to characterize the molecular details of pathogen-
host interactions and provide insights into the biological 
basis of infectious diseases [144–147]. MS-based clinical 
proteomics-based proteomics have been used for rapid 
identification and typing of viral, bacterial and fungal 
pathogens [4, 148–150]. In the microbiology laboratory, 
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the development of MALDI-TOF allowed for the rapid 
microbial identification and strain typing, epidemiologi-
cal studies, detection of biological warfare agents, detec-
tion of water- and food-borne pathogens, and detection 
of antibiotic resistance [4, 121, 148, 151, 152]. Further-
more, MS could be combined with machine learning 
algorithms to provide surveillance of airborne pathogens.

Proteomics has immense potential in characterizing 
protein profiles of pathogens to find a deeper knowledge 
of dysregulations in infection disorders, bacterial resis-
tance and virulence – and monitoring the emergence 
and spread of microbial pathogens, achieve a deeper 
insight into pathogenesis, develop therapeutic techniques 
and identify new targets for future drugs [4, 153–158]. 
In 1996, Holland et al. showed the first MS-based pro-
tein profiles from whole cell bacteria that could be used 
to differentiate various species [159, 160]. Automated, 
standardized protocols and software packages for the 
analysis of bacterial MS data are available, which can be 
easily adapted by microbiology laboratories using either 
academic or commercial protocols [149, 161]. Data-
base upgrades and sample enrichment are essential ele-
ments to refine the MS-based proteomics and increase 
its power [162]. For example, the company claimed that 
MALDI Biotyper CA System can identify 210 species or 
species groups, covering a library of 280 clinically impor-
tant bacteria and yeast species, and representing more 

than 98% of the typical bacterial identification workflow 
of clinical microbiology laboratories. The applications of 
proteomics in clinical laboratory setting is summarized 
in Fig.  2, modified from Greco, T. M., & Cristea, I. M. 
(2017) [144].

Diagnosis of bacterial infections
One of the analytical challenges in clinical microbiol-
ogy is rapid, unambiguous identification of microor-
ganisms and the distinction from closely related species 
[163]. As a result, frequently additional methods are 
required to verify a tentative identification. MS-based 
methods relay on sequence-based identification, where 
identification of the species is supported by multiple dis-
criminative peptide sequences that allows unambiguous 
identification of all infectious agents in the database used 
to interpret the obtained MS data [163, 164]. The micro-
bial identification by MS has revolutionized the way the 
pathogenic microbes are identified from the culture of 
human specimens [165]. This device intercepts charac-
teristic proteome fingerprints of a pathogen and matches 
them against the reference library spectra for identifica-
tion with a comparable accuracy to that of a nucleic acid 
sequencing methods, but with better speed, easy opera-
tion, robustness, and cost-effectiveness [26, 165].

MS-based proteomic techniques have identified two 
secreted serodiagnostic antigens, in vitro by common 

Fig. 2  Overview of proteomic strategies and their application in infectious diseases research, modified from Greco, T. M., & Cristea, I. M. (2017)[144]
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Mycobacterium tuberculosis clinical isolates, which are 
potential candidates for a kit-based serum screening test 
[121, 166]. Many studies have demonstrated that MS-
based proteomics can detect blood stream infections in 
shorter time and better accuracy that the conventional 
diagnostic methods [104, 167–171]. Guembe et al. (2014) 
has also reported that MALDI-TOF MS can perform bet-
ter than conventional culture methods in diagnosis of 
catheter-related bloodstream infections [172]. Further-
more, liquid chromatography coupled to tandem MS 
(LC-MS/MS) is applied in a multitude of important diag-
nostic niches of laboratory medicine [163, 164, 171, 173, 
174]. It has been shown that diagnostics based on this 
method required minimal processing time and identified 
multiple uropathogens from urine samples [173–179]. 
Culture based diagnosis of infectious diarrhea in labo-
ratory is a costly and time-consuming process requiring 
3–5 days for detection and identification of enteric bac-
terial pathogens in the stool samples. Diagnosis of infec-
tious diarrhea based on MS shorten the turnaround time 
of the test to 30  min [180]. Early diagnosis is critically 
important in diseases like bacterial meningitis, which is 
a neurological emergency. MALDI-TOF MS has been 
used for direct detection of the bacteria causing men-
ingitis in cerebrospinal fluids [181–184]. Singhal et al., 
(2015) has presented the list of bacterial pathogens in 
which MALDI-TOF MS was effectively used for identi-
fication and strain typing [148]. The clinical application 
of MALDI-TOF MS in china was first approved in 2012 
[148, 185]. The two FDA-approved systems, Vitek MS 
and MALDI Biotyper, are proven to deliver rapid, accu-
rate, automated, high throughput and cost-effective iden-
tification of bacteria and yeast with a library size of 572 
and 406 strains, respectively [148, 186, 187].

Rapid diagnosis antimicrobial resistance is critical for 
the selection of optimal antibiotic treatments and bet-
ter outcome of infection. MS-based proteomic have 
been proposed for rapid detection of antimicrobial resis-
tance [188, 189]. Florio et al., (2020) has reviewed sev-
eral MALDI-TOF MS-based methods that have been 
proposed for rapid detection of antimicrobial resistance 
[189]. Aleshukina et al., (2022) has identified promising 
markers of resistance for Pseudomonas aeruginosa and 
Staphylococcus aureus using a MALDI-TOF MS-based 
approach [190]. Furthermore, Weis et al., (2022) has 
shown the applicability of MALDI-TOF mass spectra-
based machine learning approach in predicting antimi-
crobial resistance in clinically important pathogens [191]. 
Finally, Charretier & Schrenzel have discussed the practi-
cality of MS to identify antimicrobial resistance mediated 
by horizontal gene transfers or by mutations that affect 
the quantity of a gene product, and the challenges to 
identify resistance mediated by target mutations in bac-
terial pathogens [192].

Diagnosis of viral infections
The use of MS in virology is still limited due to the rela-
tively low protein content of viruses, higher molecu-
lar weight of viral proteins and a probable carryover of 
debris of the cell substrate in which viruses are cultured 
in vitro [193]. Despite the challenges, MALDI-TOF MS 
has been used in virology for viral identification and 
genotyping, subtyping, and epidemiological studies [148]. 
For example, several studies have proved the potential of 
the technique in the diagnosis of various viral pathogens 
like influenza viruses, enteroviruses, human papilloma 
viruses (HPVs), herpes virus, and hepatitis virus with a 
better sensitivity and lower limit of detection [194–198]. 
Proteomic analysis of sera from patients with severe 
acute respiratory syndrome (SARS) has identified higher 
concentrations of truncated forms of Alpha-1 antitryp-
sin in the sera of SARS patients compared with healthy 
controls [199]. Some MS platforms have been shown to 
detect 60 HBV variants with accuracy and low detection 
limits [200]. Later, Peng et al., (2013) and Calderaro et al., 
(2014) have proved the application of the technique in 
identification and typing of human enteroviruses associ-
ated with hand, foot and mouth diseases and poliovirus, 
respectively [201–203].

MS-based proteomics has also been used for studying 
emerging and re-emerging viral infections like HIV-1, 
CCHFV, ZIKV, and DENV, coronaviruses (MERS-CoV 
and SARS-CoV) as well as the recent SARS-CoV-2 pan-
demic [156]. Recent studies have shown the effective-
ness of MS-based of protein biomarkers with the aid of 
machine learning algorithms for the diagnosis of SARS-
CoV-2 with an accuracy of 93.9% [117, 204–207]. The 
development of direct sampling ionization MS using 
paper spray systems and robotic handler minimize the 
time spent for sample preparation steps to allow rapid 
diagnosis of hundreds of SARS-CoV-2 samples with in 
a day in large clinical sample cohorts [208, 209]. Several 
academic laboratories and industrial partners have estab-
lished a Cov-MS consortium to translate the technology 
from analytical laboratories to clinics [210]. The Cov²MS 
assay was developed to diagnose SARS-CoV-2 nasopha-
ryngeal swabs, saliva and blood plasma with a higher 
sensitivity and proved to be reproducible across different 
laboratories [211, 212]. The assay can be used to moni-
tor dozen pathogens in pooled patient samples for early 
warning system for impending epidemics and pandemics 
and subsequent rapid development of vaccines and diag-
nostics [212, 213].

This will provide essential insights in investigation of 
disease pathogenesis and markers which may serve as 
potential diagnostic tools, antiviral drug and vaccine tar-
gets [156, 214, 215]. Finally, some studies have been con-
ducted and proved the efficacy of MS-based proteomics 
to be a sensitive and rapid method for the detection of 
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drug resistance against antivirals, for example, resistance 
to ganciclovir in cytomegaloviruses [216].

Diagnosis of fungal infections
The molecular diagnostic methods based on 18 S rRNA 
and the internal transcribed spacer regions 1 and/or 2 
(ITS 1/2) are labor-intensive and time-consuming [217, 
218]. MS-based fungal identification has moved at a 
slower pace than in bacteria, due to their inherent biolog-
ical complexity and co-existence of different fungal phe-
notypes in the same organism [219]. Furthermore, fungal 
proteomics require standardized protocols/parameters 
like culture media, quantity/type of colony material and 
incubation time and cells might require additional treat-
ment along with beating with beads to disrupt strong 
cell walls [148, 220]. Limited work has been reported on 
the use of MALDI-TOF MS in fungal strain typing or to 
determine antifungal drug susceptibility [218].

MS-based clinical proteomics is proved to be a rapid 
and accurate technique for the identification of both 
diagnostic biomarkers for fungal infections and thera-
peutic targets, strain typing, taxonomy and to deter-
mine antifungal drug susceptibility [148, 218, 221–223]. 
Amiri-Eliasi and Fenselau (2001) have reported the first 
application of the technique for identification and char-
acterization of single-celled fungus, Saccharomyces cere-
visiae [224]. Later, several researchers have reported 
MS-based proteomics to be a reliable and time-saving 
approach for identification of various yeast species in 
bloodstream infections [225–227], and in detection of 
various human fungal pathogens, as revised in Singhal 
et al., (2015) [148]. Direct MALDI TOF- MS analysis of 
aliquots from positive blood cultures allowed rapid and 
accurate identification of the main Candida species, thus 
obviating the need for sub-culturing on specific media 
[228]. Recent studies have optimized MALDI-TOF-based 
proteomics to identify filamentous fungi at the species 
level, provided that an appropriate database is available 
[229–234]. The protocols have been optimized for rou-
tine diagnosis of filamentous fungi and dermatophytes 
only after 2010 [230–233, 235–241]. Commercial prod-
ucts available in Europe and America for routine diagno-
sis of fungal infections include, Saramis, Vitek MS, the 
Andromas MS, and the Bruker MALDI Biotyper. The 
performance of each technique is tested by several publi-
cations, as reviewed by Normand et al., (2017) [106, 229].

Prediction of antimycotic resistance in fungi by MS 
has not advanced as much as it has, in predicting resis-
tance bacteria, might be due to absence of drug degrad-
ing enzymes [148]. A few species Candida (C. glabrata or 
C. krusei and C. parapsilosisis) have been reported to be 
intrinsically resistant to azoles and echinocandins respec-
tively [242]. Species-specific resistance has been reported 
in many molds and zygomycetes [243, 244]. Therefore, 

antimycotic resistance in fungi may be predicted sim-
ply by identification of the inflicting fungal species by 
MALDI-TOF MS [242].

Mass spectrometry based proteomics in cancer diagnosis
Cancer is the second leading cause of death after cardio-
vascular disease and poses a major problem to healthcare 
systems globally [245–247]. Current research focuses on 
the biomarker discovery and validation to enhance early 
detection, discovery of biological pathways, integrations 
with available genomics/transcriptomics profiles, appro-
priate classification of risk groups, treatment selection, 
therapy monitoring and prognosis in oncology clinic, 
which resulted in a gradual reduction in cancer mortality 
rates [15, 28, 245–247]. Despite the major achievements 
of genomic studies in cancer prognostics, treatment and 
diagnostics, it only provides a static image in the process 
of carcinogenesis [14]. Clinical research based on genom-
ics and transcriptomics have identified numerous cancer-
driving genes. The major limitation of transcriptomics 
dataset is that molecular differences between cancer 
cases and healthy controls or different stages of cancers 
is positively, but weakly, correlated with protein expres-
sion, which makes it difficult to directly translate to our 
understanding of disease biology [28, 62, 248–250]. On 
the other hand, proteins are ideal predictors of disease 
progression as they are directly involved in most biologi-
cal processes and also the active targets of most cancer 
therapeutics [28, 251, 252]. This discordance arises due to 
the high dynamic and complex nature of proteome reg-
ulation [28]. For example, protein expression is affected 
by alternative splicing, SNP’s, transcript degradation, 
protein-protein interactions and degradation rates and 
post-translational modifications (PTMs) and requires an 
accurate detection technique to be used in clinical setting 
[28, 253, 254].

The diversity in cancer subtypes and their metastatic 
potential in progression of malignant cancers pose a 
challenge in the development of successful therapeu-
tics [255–257]. For example, several studies have shown 
over 30 different of ovarian cancer subtypes, each of 
which arise from a different cell and has its own unique 
proteome [258–260]. This makes cancer diagnosis and 
prognosis beyond the scope of microscopic examination 
[261].

Proteomics has been introduced more than a decade 
ago to study more the dynamic molecular entities 
involved in cancer development and to reveal novel bio-
markers of diseases. Most studies in oncoproteomics 
field focused on protein expression profiling across dif-
ferent biological groups with the aim to identify bio-
markers that can be used for detection, stratification or 
prognosis of cancer and cancer therapies [14]. Accord-
ing to National Cancer Institute (NCI), a biomarker is a 
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biological molecule found in blood, other body fluids, or 
tissues that provides an indication of a normal or abnor-
mal physiological process, or the state of disease [28]. 
For example, during cancer progression, qualitative and 
quantitative changes in protein profiles occur both in 
tissues, blood and other body fluids [262]. Thus, clinical 
proteomics may provide the most accurate reflection of 
the tumour’s physiological state [28]. Despite the little 
impact of oncoproteomics on patient management and 
clinical decision-making to date, the search for cancer-
related biomarkers with proteomics has major potential 
to improve risk assessment, early detection/diagnosis, 
prognosis, pharmacodynamics, recurrence and predic-
tion - treatment selection and monitoring [14].

A collaborative research by the National Cancer Insti-
tute’s Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) performed an integrated large-scale prote-
ogenomic analysis to understand the molecular basis of 
different cancer types, including colorectal, breast and 
ovarian cancer [263]. The milestones and several NCI-
sponsored research outputs from CPTAC participating 
partner institutions between 2009 and 2021 are published 
in their website https://proteomics.cancer.gov/resources/
milestones-and-publications. The Proteomics Stan-
dards Initiative from the Human Proteome Organization 
(HUPO-PSI) has released recommendations concerning 
minimal information about a proteomics experiment to 
increase independent reproducibility of published data 
and the NCBI has taken a lead role in this standardiza-
tion process [15, 264, 265]. Furthermore, the Early Detec-
tion Research Network was established for streamlined 
discovery and evaluation of promising biomarkers and 
technologies [15]. Liquid chromatography-mass spec-
trometry (LC/MS) is a widely used technique for the 
discovery of sensitive and specific biomarkers associated 
with cancer [254]. This technology enables quantitative 
analysis of proteins using either label-based or label-free 
approaches [262, 266]. The label-free and label-based 
(using isobaric labeling, such as isobaric tags for relative 
and absolute quantification reagents, (iTRAQ) and tan-
dem mass tag reagents, (TMT)) approaches have been 
widely used in cancer biomarker discovery and validation 
[267]. For example, a recent label-free quantitative pro-
teomics study by Gautam et al., (2022) identified 16 pro-
tein biomarkers, including C-reactive protein, Carbonic 
anhydrase-1, and Fibronectin as putative biomarkers of 
oral squamous cell carcinoma (OSCC) [268]. Moulder et 
al., (2017) and Westbrook et al., (2014) presented many 
candidate protein biomarkers discovered in multiple 
diseases using isobaric labeling approaches [269, 270]. 
Proteomics-based technology can identify key informa-
tion like protein targets and signaling pathways related 
to drug resistance, growth and metastasis of cancer cells 
[262].

MS-based proteomics have been applied to study many 
cancer types, including prostate [271, 272], breast [273–
275], melanoma [276, 277], lung [278–280], ovarian [281, 
282], and oropharyngeal carcinoma [283]. Furthermore, 
dedicated oncoproteomic reviews have been published 
for several malignancies, including colorectal cancer [44], 
breast cancer [284], prostate cancer [285], head and neck 
cancer [286], and lung cancer [287]. Clinical proteomic 
studies compare the proteomic profiles from cancerous 
tissue samples with “healthy” controls from the same 
patient or between patients with varying stages of cancer 
to identify potential diagnostic and prognostic biomark-
ers, respectively. In both cases, a number of differentially 
expressed candidate proteins will be identified and path-
way analysis give insight in to how these proteins are 
associated with tumorigenesis, proliferation, metastasis 
and other cancer-driving processes [28].

In one of the pioneering clinical proteomic stud-
ies, Petricoin et al.,(2002) used surface-enhanced laser 
desorption-ionization time-of-flight mass spectrometry 
(SELDI-TOF MS) for diagnosing ovarian cancer [288]. 
OVA1 was the first clinically approved biomarker dis-
covered using SELDI-TOF MS in 2009 [289]. Macklin et 
al., (2020) highlighted several clinical proteomic studies 
in different cancer phenotypes [28]. A comparative pro-
teome analysis of breast tumors arising from BRCA1-
deficient mouse models and -proficient triple-negative 
breast cancer (TNBC) identified differentially regulated 
nuclear protein complexes involved in homologous 
recombination (HR)-dependent DNA repair pathways 
and chromatin remodeling [290]. The proteome changes 
were indicative for a rescue mechanism for the loss of 
HR repair. This study clearly illustrates how in-depth 
proteomics coupled to analysis of protein functions and 
networks can yield a potential diagnostic and prognos-
tic signature in BRCA1-deficient breast tumors [1, 290]. 
Liu et al., (2014) performed one of the largest and most 
comprehensive clinical proteomics studies and identified 
a prognostic signature that foretell diseases recurrence in 
TNBC patients, with high sensitivity, specificity, and pos-
itive predictive value [1, 291].

Several proteomics studies have also been performed 
to uncover the metastatic potential seen in cancer. A 
study by Obradović et al., (2019) revealed an increase 
in the levels stress hormone during breast cancer pro-
gression that causes an increased activity of the gluco-
corticoid receptor (GR) at distant metastatic sites, and 
ultimately reducing the survival rate [292]. Elevated 
expression levels of the kinase ROR1 is one of the mul-
tiple metastatic processes activated by the increased GR 
activity. Depletion of ROR1 resulted in reduced metasta-
sis and extended the survival rate in preclinical models, 
which is in support to this study [262]. Similarly, Lignitto 
et al., (2019) reported an increased expression of BACH1, 

https://proteomics.cancer.gov/resources/milestones-and-publications
https://proteomics.cancer.gov/resources/milestones-and-publications
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a pro-metastatic transcription factor, in lung adenocarci-
noma [293].

Treatment resistance and development of specific and 
effective molecular targeted therapies are still the chal-
lenges in cancer treatment [262]. Proteomic markers are 
also shown to be used in guiding the selection of appro-
priate cancer drugs and drug targets, paving the way 
towards personalized medicine [294]. A study by Large 
et al., (2019) showed microtubule-associated protein 
2 (MAP2) to be a potential biomarker for gemcitabine 
resistance in two cohorts of pancreatic ductal adenocar-
cinoma (PDAC) patients [295]. Furthermore, the group 
found that gemcitabine-resistant PDAC cells are sensitive 
to taxane-based treatment. Studies have shown that dif-
ferent cancer cells that are resistant to anti-cancer agents 
exhibit a unique protein expression and molecular mech-
anisms correlated to the poor survival rate of patients 
(revised by Kwon et al., (2021)) [262].

Proteomics has also been employed in the diagnosis of 
brain cancer. A study by Gupta et al., (2019) revealed that 
the transcription factor YBX1 was overexpressed in glio-
blastoma (GBM, WHO Grade IV), a potential regulator 
involved in tumor metastasis [296]. Another proteomic 
study reported that the level of CDH18, a novel tumor-
suppressor, and its downstream targets were downregu-
lated in patients with glioma than in healthy tissue [297]. 
A recent study demonstrated that two proteins, chitinase-
3-like protein 1 (CHI3L1) and glial fibrillary acidic pro-
tein (GFAP), to be a potential CSF Biomarkers for glioma 
patients [298]. Kalinina et al., (2011) presented a compre-
hensive list of important findings on glioma proteomics 
[299]. Furthermore, Kwon et al., (2021) presented list of 
representative proteomic biomarkers against different 
cancer types including liver, pancreas, ovary, breast, lung, 
myeloid leukemia [262].

Target verification and validation are the major hur-
dles for the translation of potential biomarkers iden-
tified from oncoproteomic data it to the clinic [44]. 
Although hundreds of potential cancer biomarker can-
didates can be found in literature, only a limited amount 
of these ‘interesting’ biomarker candidates are approved 
by the Food and Drug Administration (FDA), as revised 
by Maes et al., (2015), and ultimately translated into a 
clinical test [14, 300, 301]. For example, FDA approved 
human epididymis protein 4 (HE4) in 2009, a highly 
sensitive and specific marker for epithelial ovarian can-
cer as compared to CA-125, the ‘gold standard’ ovarian 
cancer detection [302]. HE4 is found to be overexpressed 
in a number of tumours and currently used to monitor 
the recurrence and progression of epithelial ovarian can-
cer [261]. Most of the FDA-approved tumor markers are 
blood-based markers and complement on the regular 
imaging modalities in discriminating between malignant 
and benign states [303]. Most of the currently available 

cancer screenings tests usually lack sensitivity and/or 
specificity and the quest to find protein biomarkers able 
to perform early cancer diagnosis, is still ongoing [304]. 
Most of the blood-based tumor markers are helpful for 
disease staging and monitoring as they are only efficient 
to detect late-stage tumors in patients with an estab-
lished disease to monitor disease recurrence or reduc-
tion [300]. However, most of the biomarkers are not 
cancer-type specific [305]. For example, elevated levels 
of carcinoembryonic antigen (CEA) in blood is not spe-
cific to for CRC nor for malignancy and abnormal levels 
of CEA expression is also demonstrated in other cancer 
types and also in different inflammatory diseases [306]. 
Advanced blood-based protein markers rely on ‘panels 
of multiple biomarkers’ rather than single proteins for 
improved diagnostic accuracy [307, 308]. Besides, FDA 
has approved blood-based protein markers in tissues and 
other non-invasive matrices, such as urine or feces [14]. 
The findings are more often validated by antibody-based 
techniques in a larger independent cohort or imple-
mented in clinical trials.

Mass spectrometry-based proteomics in the diagnosis of 
inherited metabolic disorders
Metabolic diseases are those that result from deficiency 
of enzymatic activities in the catabolism of amino acids, 
carbohydrates, or lipids [93, 309]. The method is a pow-
erful tool to enhance newborn screening for more than 
50 different metabolic disorders in one rapid test, as 
opposed to the conventional enzyme- or immunoassays, 
which required one test to detect one disorder [26, 310]. 
Furthermore, MS-based method have been reported 
to be a cost-effective approach for newborn screening 
[311]. Impairment at the level of protein synthesis, stabil-
ity, degradation, and signaling, all of which can play cru-
cial roles in disease development, can be studied using 
proteomics technologies [312]. Expression proteomics, 
structural proteomics, and functional proteomics are 
promising approaches in the search for diagnostic bio-
markers and therapeutic targets in these diseases [313, 
314]. In the last decade, SWATH-MS has emerged as 
powerful analytical systems designed for simultaneous 
detection and quantification of proteins differentially 
expressed between healthy controls and multiple inher-
ited metabolic disorders [315]. An organ-specific disease 
sampling can provide a more reliable source of potential 
diagnostic and therapeutic biomarkers than serum since 
organ-specific proteins released from diseased tissue are 
often diluted or degraded once they enter systemic circu-
lation [316–318].

Recent studies have shown the potential of LC-MS/
MS-based proteomics approaches in the investigation of 
several rare genetic metabolic disorders including lyso-
somal storage diseases, peroxisomal disorder, amino acid 
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metabolism, and inborn errors of metabolism, as sum-
marized in Chantada-Vázquez et al., (2022) [312]. Several 
studies have been conducted to look for different bio-
marker categories for lysosomal storage diseases [319]. 
For example, SELDI-TOF based proteomics revealed 
apolipoprotein ApoCI to be differentially expressed in 
mucopolysaccharidosis (MPS) patients compared to con-
trols. Proteomics has also been used to analyze muta-
tions directly at the protein level, as shown in Gaucher 
disease [319]. Furthermore, chitotriosidase protein (ChT) 
has been used as a biomarker for monitoring Gaucher 
disease [320]. Despite several advancements in pro-
teomic technologies, only limited studies are performed 
to explore the different biomarker categories associated 
to inborn errors of metabolism. In conclusion, the avail-
ability of detection technology including the MS is likely 
to significantly improve existing newborn screening tests 
will prove to be beneficial for the future generations.

Conclusion and future perspective
Although MS is still underutilized in various clinical 
settings, it is becoming a method of choice increasingly 
implemented in clinical laboratories with its multiplex-
ing capacity, remarkable sensitivity and specificity, and 
potential for real-time in vivo analysis, which is often not 
produced by other analytical techniques [26, 46].

It is widely used in reference methods development, 
therapeutic drug monitoring, toxicology, endocrinology, 
pediatrics, immunology and microbiology to identify and 
quantify biomolecules in a variety of biological speci-
mens. This new era of various screening programs, new 
treatments, and detection technology will prove to be 
beneficial for the future generations [310]. Furthermore, 
the pros and cons of these methods should be compared 
with traditional methods. Other desirable and practical 
features to be considered include high capital acquisition 
costs, requirement of skilled personnel, lack of automa-
tion, lack of direct bidirectional interface between MS 
instruments and laboratory information system, lack of 
standardization, and regulatory requirements [46, 321]. 
Operational factors such as standardized workflow, turn-
around time, and comprehensive bio-computational data 
analysis and storage should also be considered.

The manufacturers and clinical MS community pur-
sued significant progress in regard to regulatory require-
ments [322, 323], standardization of methods [324, 325], 
automation in instrumentation and data analysis [326, 
327], and flat file interface to laboratory information 
systems to facilitate seamless order-to-result workflows 
[328]. Despite the remarkable promise, one of the major 
limitations of the clinical MS to date is the identification 
biomarkers at a very early stage. So far, most of clinical 
proteomics studies have been conducted when the dis-
ease is well manifested [26]. Over all, future technological 

and instrumentation advancements, development of soft-
ware packages and machine learning algorithms will pro-
pel novel clinical applications of MS to the forefront [26, 
46].

Expert opinion
The continual improvement and development of new 
ionization methods, instrumentation and techniques, and 
bioinformatics tools led to the emergence of novel appli-
cations of MS-based proteomics. These instrumental and 
methodological advances have revolutionized the appli-
cation of MS-based proteomics in the clinical research, 
in the context of early disease diagnosis and characteriza-
tion, drug development, biomarker discovery, and pre-
dicting prognosis and drug resistance analysis.

Proteomics based method is preferred over conven-
tional methods mainly for its multiplexing capacity, 
remarkable analytical sensitivity and specificity, relatively 
shorter turnaround time, low sample cost and potential 
for real-time in vivo analysis. Furthermore, the emer-
gence of improved sample preparation and protein quan-
tification techniques combined with the appropriate data 
analysis pipeline involving machine learning algorithms 
will identify diseases specific signatures. These achieve-
ments will hasten the transition of MS to becoming a 
standard component of routine analysis and are expected 
to become the mainstay of clinical practice.

MSI is one of the emerging advancements in the field 
widely used for untargeted investigation of spatial distri-
bution of biomolecules in different samples. The acqui-
sition of images with high spatial resolution may reduce 
the pixel-by-pixel sampling speed, thereby increasing 
the overall image acquisition and analysis time. This 
strategy is implemented in clinical diagnostics, bio-
marker discovery and drug development. Another area 
where MS-based proteomics could play a role is in clini-
cal microbiology laboratory, as a tool for both infectious 
diseases research and diagnostic purposes. In particu-
lar, its multiplexing capacity, specificity, sensitivity and 
low turnaround time will improve the quality of both 
clinical and epidemiological data. The method is crucial 
in for identification and typing of emerging microbial 
pathogens, antibiotic resistance analysis, exploring host-
pathogen interaction and pathogenesis and formulat-
ing accurate treatment plans in time thereby controlling 
infectious diseases effectively.

The practices in oncology clinic have now been trans-
formed through continuous discovery and validation 
of cancer biomarker, which are critically important 
in early diagnosis, risk stratification, and monitoring 
patient response to treatment. Oncoproteomics is more 
likely to reflect the comprehensive changes implicated 
in tumorigenesis than genomics and transcriptomics. 
This approach is already opening new avenues for the 
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identification of novel biomarkers for early detection, 
targeted therapies, disease monitoring, and drug devel-
opment, thereby advancing the implementation of per-
sonalized medicine.

Metabolic diseases are among the most serious medical 
problems that modern societies face. It includes a broad 
spectrum of biochemical alterations caused by cellular 
(genetic) defects and/or environmental factors which 
affects the structure and function of proteins involved 
in cellular metabolic pathways, thereby contribute to the 
pathogenesis of metabolic diseases. In this context, pro-
teomic analysis has emerged as an indispensable tool to 
elucidate the complex molecular basis of various patho-
physiological processes and protein dynamics through 
identification, quantification and structure characteriza-
tions of hundreds of proteins from a single complex bio-
logical sample. Metabolites and proteins are attractive 
diagnostic and therapeutic biomarkers in metabolic dis-
eases since their concentration (deficiency or accumula-
tion) is implicated in disease pathways.

The size and mobility of the MS systems are also the 
challenges in the transition of MS technique in on-site 
scenarios, such as ambulances and outdoors for POC 
diagnosis. The emergence new equipment like the min-
iature MS systems fill the gap by direct sampling in 
their native environment without pretreatment, thereby 
reducing turnaround time and the roles of skilled opera-
tors (mainly in sample preparation). Further progress 
in these areas will continue to provide researchers with 
new insights and technologies that will benefit the gen-
eral population. The technology is rapidly advancing and 
could be amenable to automation, user-friendly protocols 
that would translate well to the clinic. The advantages 
and limitations MS-based clinical proteomics over tra-
ditional methods need to be established and communi-
cated among clinical laboratory technicians, researchers, 
and other potential users of these novel methods.

For the proper clinical implementation of all these 
achievements, operational factors and other desir-
able practical features such as automation, standard-
ized protocols and software packages, machine learning 
algorithms, comprehensive bio-computational data anal-
ysis and storage should also be considered. These recent 
developments with others will advance the translation of 
MS from analytical chemistry to clinical labs to provide 
POC service and personalized treatment for patients in 
future. Furthermore, as these instrumentation and tech-
nologies become more automated, accessible and afford-
able with certain MS platforms already well-entrenched 
in research or clinical laboratories, clinical proteomics 
has a great future ahead for improving disease diagno-
sis, prognosis, monitoring and prediction of therapeutic 
outcome.
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