Skip to main content

Proteomic analysis of urinary fibrinogen degradation products in patients with urothelial carcinomas

Abstract

Despite many years of research efforts and continued progress in the identification of urine markers for detection of bladder cancer, none of the markers described to date has been able to replace cystoscopy and urine cytology, the current gold standards for diagnosis. Here, we present a comprehensive gel-based proteomic study in which we have analyzed the presence and origin of fibrinogen (FG) and its degradation products (FDPs) in the urine of patients with and without urothelial carcinoma (UCs), with the aim of evaluating the potential of two-dimensional (2D) gel FDP profiling for detecting bladder cancer. A total of 151 urine samples collected from patients with Ucs of varying degrees of atypia and stages of invasion were compared with a control group consisting of 34 healthy volunteers with no clinical history of bladder cancer. The level and degree of degradation of FG in the urine were determined by 2D gel Western blotting in combination with enhanced chemilumenscence detection. Elevated levels of urine FG/FDPs were found in 99% of patients bearing superficial tumors, in 97% of the cases with early invasive disease, and in 96% of patients with highly invasive tumors. 2D gel profiling of urine FG/FDPs showed that the FG chains exhibited differential susceptibility to in situ proteolysis, with the α-chain being the most susceptible and the γ-chain the most resistant. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified peptide sequence regions in several of the most representative and common FDPs, which can be of value for producing novel specific antibodies to detect FG/FDPs in the urine. In addition, we present evidence indicating that FG is not produced by normal or malignant urothelium, although it is present both in the stroma of malignant tissue and tumor lesions. Taken together, the data indicate that increased levels of FG/FDPs amounts in the urine are a characteristic feature of bladder cancer, and emphasize the value of 2D gel profiling of urine FG/FDPs for detecting low-grade, noninvasive UCs.

References

  1. Freidell, G. H., Nagy, G. K., and Cohen, S. M. (1983) Pathology of human bladder cancer and related lesions, in The Pathology of Bladder Cancer, vol. 1 (Bryan, G. T. and Cohen, S. M., eds.), CRC Press, Boca Raton, FL, pp. 11–42.

    Google Scholar 

  2. Pauli, B. U., Alroy, J., and Weinstein, R. S. (1983) The ultrastructure and pathobiology of urinary bladder cancer, in The Pathology of Bladder cancer, vol. 2 (Bryan, G. T. and Cohen, S. M., eds.), CRC Press, Boca Raton, FL, pp. 41–140.

    Google Scholar 

  3. Shokeir, A. A. (2004) Squamous cell carcinoma of the bladder: pathology, diagnosis and treatment. BJU Int. 93, 216–220.

    Article  PubMed  CAS  Google Scholar 

  4. Mostofi, F. K., Davis, C. J., Jr., and Sesterhenn, I. A. (1990) Current understanding of pathology of bladder cancer and attendant problems. J. Occup. Med. 32, 793–796.

    Article  PubMed  CAS  Google Scholar 

  5. Stein, J. P., Grossfeld, G. D., Ginsberg, D. A., et al. (1998) Prognostic markers in bladder cancer: a contemporary review of the literature. J. Urol. 160, 645–659.

    Article  PubMed  CAS  Google Scholar 

  6. Mostofi, F. K. (1973) Proceedings: testicular tumors. Epidemiologic, etiologic, and pathologic features. Cancer 32, 1186–1201.

    Article  PubMed  CAS  Google Scholar 

  7. Donat, S. M. (2003) Evaluation and follow-up strategies for superficial bladder cancer. Urol. Clin. North Am. 30, 765–776.

    Article  PubMed  Google Scholar 

  8. Messing, E. M., Young, T. B., Hunt, V. B., et al. (1995) Comparison of bladder cancer outcome in men undergoing hematuria home screening versus those with standard clinical presentations. Urology 45, 387–396.

    Article  PubMed  CAS  Google Scholar 

  9. Chopin, D. K. and Gattegno, B. (2002) Superficial bladder tumors. Eur. Urol. 42, 533–541.

    Article  PubMed  Google Scholar 

  10. Brown, F. M. (2000) Urine cytology. It is still the gold standard for screening?. Urol. Clin. North Am. 27, 25–37.

    Article  PubMed  CAS  Google Scholar 

  11. Rife, C. C., Farrow, G. M., and Utz, D. C. (1979) Urine cytology of transitional cell neoplasms. Urol. Clin. North Am. 6, 599–612

    PubMed  CAS  Google Scholar 

  12. Cajulis, R. S., Haines, G. K., 3rd., Frias-Hidvegi, D., McVary, K., and Bacus, J. W. (1995) Cytology, flow cytometry, image analysis, and interphase cytogenetics by fluoresce in situ hybridization in the diagnosis of transitional cell carcinoma in bladder washes: a comparative study. Diagn. Cytopathol. 13, 214–223.

    Article  PubMed  CAS  Google Scholar 

  13. Pode, D., Golijanin, D., Sherman, Y., Lebensart, P., and Shapiro, A. (1998) Immunostaining of Lewis X in cells from voided urine, cytopathology and ultrasound for noninvasive detection of bladder tumors. J. Urol. 159, 389–392.

    Article  PubMed  CAS  Google Scholar 

  14. Ramakumar, S., Bhuiyan, J., Besse, J. A., et al. (1999) Comparison of screening methods in the detection of bladder cancer. J. Urol. 161, 388–394.

    Article  PubMed  CAS  Google Scholar 

  15. Konety, B. R. and Getzenberg, R. H. (2001) Urine based markers of urological malignancy. J. Urol. 165, 600–611.

    Article  PubMed  CAS  Google Scholar 

  16. Han, K. R., Pantuck, A. J., Belldegrun, A. S., and Rao, J. Y. (2002) Tumor markers for the early detection of bladder cancer. Front Biosci. 7, 19–26.

    Google Scholar 

  17. Eissa, S., Kassim, S., and El-Ahmady, O. (2003) Detection of bladder tumours: role of cytology, morphology-based assays, biochemical and molecular markers. Curr. Opin. Obstet. Gynecol. 15, 395–403.

    Article  PubMed  Google Scholar 

  18. Glas, A. S., Roos, D., Deutekom, M., Zwinderman, A. H., Bossuyt, P. M., and Kurth, K. H. (2003) Tumor markers in the diagnosis of primary bladder cancer. A systematic review. J. Urol. 169, 1975–1982.

    Article  PubMed  Google Scholar 

  19. Lokeshwar, V. B. and Soloway, M. S. (2002) Urine based markers of urological malignancy J. Urol. 167, 1406–1407.

    Article  PubMed  Google Scholar 

  20. Simon, M. A., Lokeshwar, V. B., and Soloway, M. S. (2003) Current bladder cancer tests: unnecessary or beneficial? Crit. Rev. Oncol. Hematol. 47, 91–107.

    PubMed  Google Scholar 

  21. Ozen, H. and Hall, M. C. (2000) Bladder cancer. Curr. Opin. Oncol. 12, 255–259.

    Article  PubMed  CAS  Google Scholar 

  22. Dey, P. (2004) Urinary markers of bladder carcinoma. Clin. Chim. Acta. 340, 57–65.

    Article  PubMed  CAS  Google Scholar 

  23. Halachmi, S., Linn, J. F., Amiel, G. E., Moskovitz, B., and Nativ, O. (1998) Urine cytology, tumour markers and bladder cancer. Br. J. Urol. 82, 647–654.

    PubMed  CAS  Google Scholar 

  24. Topsakal, M., Karadeniz, T., Anac, M., Donmezer, S., and Besisik, A. (2001) Assessment of fibrin-fibrinogen degradation products (Accu-Dx) test in bladder cancer patients. Eur. Urol. 39, 287–291.

    Article  PubMed  CAS  Google Scholar 

  25. Schmetter, B. S., Habicht, K. K., Lamm, D. L., et al. (1997) A multicenter trial evaluation of the fibrin/fibrinogen degradation products test for detection and monitoring of bladder cancer. J. Urol. 158, 801–805.

    Article  PubMed  CAS  Google Scholar 

  26. Wajsman, Z., Williams, P. D., Greco, J., and Murphy, G. P. (1978) Further study of fibrinogen degradation products in bladder cancer detection. Urology 12, 659–661.

    Article  PubMed  CAS  Google Scholar 

  27. McCabe, R. P., Lamm, D. L., Haspel, M. V., et al. (1984) A diagnostic-prognostic test for bladder cancer using a monoclonal antibody-based enzyme-linked immunoassay for detection of urinary fibrin(ogen) degradation products. Cancer Res. 44, 5886–5893.

    PubMed  CAS  Google Scholar 

  28. Misra, K., Chowhan, J. S., Gupta, R. L., and Sagreiya, K. (1985) Diagnostic role of urine cytology and fibrinogen degradation products in carcinoma of bladder. Indian J. Cancer 22, 145–151.

    PubMed  CAS  Google Scholar 

  29. Ewing, R., Tate, G. M., and Hetherington, J. W. (1987) Urinary fibrin/fibrinogen degradation products in transitional cell carcinoma of the bladder. Br. J. Urol. 59, 53–58.

    Article  PubMed  CAS  Google Scholar 

  30. Tsihlias, J. and Grossman, H. B. (2000) The utility of fibrin/fibrinogen degradation products in superficial bladder cancer. Urol. Clin. North Am. 27, 39–46.

    Article  PubMed  CAS  Google Scholar 

  31. Johnston, B., Morales, A., Emerson, L., and Lundie, M. (1997) Rapid detection of bladder cancer: a comparative study of point of care tests. J. Urol. 158, 2098–2101.

    Article  PubMed  CAS  Google Scholar 

  32. Siemens, D. R., Morales, A., Johnston, B., and Emerson, L. (2003) A comparative analysis of rapid urine tests for the diagnosis of upper urinary tract malignancy. Can. J. Urol. 10, 1754–1758.

    PubMed  Google Scholar 

  33. Sobin, L. H. (1978) The WHO histological classification of urinary bladder tumours. Urol. Res. 6, 193–195.

    Article  PubMed  CAS  Google Scholar 

  34. Celis, J. E., Gromov, P., Cabezon, T., et al. (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarked and therapeutic target discovery. Mol. Cell Proteomics 3, 327–344.

    Article  PubMed  CAS  Google Scholar 

  35. Celis, J. E., Trentemølle, S., and Gromov, P. (2006) Gel-based proteomics: high-resolution two-dimensional gel electrophoresis of proteins isoelectric focusing (IEF) and nonequilibrium pH gradient electrophoresis (NEPHGE), in Cell Biology. A Laboratory Handbook, vol. 4, (Celis, J. E., Carter, N., Hunter, T., Shotton, D., Simons, K., and Small, J. V., eds.), Academic Press, San Diego, CA, pp. 165–174.

    Google Scholar 

  36. Gromova, I. and Celis, J. E. (2006) Protein detection in gels by silver staining: a procedure compatible with mass-spectrometry, in Cell Biology. A Laboratory Handbook, vol. 4 (Celis, J. E., Carter, N., Hunter, T., Shotton, D., Simons, K., and Small, J. V., eds.), Academic Press, San Diego, CA.

    Google Scholar 

  37. Celis, J. E. and Gromov, P. (2000) High-resolution two-dimensional gel electrophoresis and protein identification using western blotting and ECL detection. EXS 88, 55–67.

    PubMed  CAS  Google Scholar 

  38. Hermanson, G. T., Krishna Mallia A., and Smith, P. K. (1992) Immobilized affinity ligand techniques. Academic Press, San Diego, CA pp. 224–226.

    Google Scholar 

  39. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

  40. Pieper, R., Gatlin, C. L., McGrath, A. M. et al. (2004) Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4, 1159–1174.

    Article  PubMed  CAS  Google Scholar 

  41. Celis, J. E., Gromova, I., Moreira, J. M., Cabezon, T., and Gromov, P. (2004) Impact of proteomics on bladder cancer research. Pharmacogenomics 5, 381–394.

    Article  PubMed  CAS  Google Scholar 

  42. Marshall, T. and Williams, K. M. (1998) Clinical analysis of human urinary proteins using high resolution electrophoretic methods. Electrophoresis 19, 1752–1770.

    Article  PubMed  CAS  Google Scholar 

  43. Waller, K. V., Ward, K. M., Mahan, J. D., and Wismatt, D. K. (1989) Current concepts in proteinuria. Clin. Chem. 35, 755–765.

    PubMed  CAS  Google Scholar 

  44. Brown, L. F., Dvorak, A. M., and Dvorak, H. F. (1989) Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and to many other types of disease. Am. Rev. Respir. Dis. 140, 1104–1107.

    PubMed  CAS  Google Scholar 

  45. Simpson-Haidaris, P. J. and Rybarczyk, B. (2001) Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann. NY Acad. Sci. 936, 406–425.

    Article  PubMed  CAS  Google Scholar 

  46. Wajsman, Z., Merrin, C. E., Chu, T. M., Moore, R. H., and Murphy, G. P. (1975) Evaluation of biological markers in bladder cancer. J. Urol. 114, 879–893.

    PubMed  CAS  Google Scholar 

  47. Brown, L. F., Van de Water, L., Harvey, V. S., and Dvorak, H. F. (1988) Fibrinogen influx and accumulation of cross-linked fibrin in healing wounds and in tumor stroma. Am. J. Pathol. 130, 455–465.

    PubMed  CAS  Google Scholar 

  48. Dvorak, H. F., Nagy, J. A., Berse, B., et al. (1992) Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann. NY Acad. Sci. 667, 101–111.

    Article  PubMed  CAS  Google Scholar 

  49. O'Brien, T., Cranston, D., Fuggle, S., Bicknell, R., and Harris, A. L. (1995) Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res. 55, 510–513.

    PubMed  Google Scholar 

  50. Crew, J. P., O'Brien, T., Bicknell, R., Fuggle, S., Cranston, D., and Harris, A. L. (1999) Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. J. Urol. 161, 799–804.

    Article  PubMed  CAS  Google Scholar 

  51. Brown, L. F., Berse, B., Jackman, R. W., et al. (1993) Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am. J. Pathol. 143, 1255–1262.

    PubMed  CAS  Google Scholar 

  52. Stohrer, M., Boucher, Y., Stangassinger, M., and Jain, R. K. (2000) Oncotic pressure in solid tumors is elevated. Cancer Res. 60, 4251–4255.

    PubMed  CAS  Google Scholar 

  53. Boucher, Y., Leunig, M., and Jain, R. K. (1996) Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266.

    PubMed  CAS  Google Scholar 

  54. Gaffney, P. J. and Dobos, P. (1971) A structural aspect of human fibrinogen suggested by its plasmin degradation. FEBS Lett. 15, 13–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Gromov.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gromov, P., Moreira, J.M.A., Gromova, I. et al. Proteomic analysis of urinary fibrinogen degradation products in patients with urothelial carcinomas. Clin Proteom 2, 45–65 (2006). https://doi.org/10.1385/CP:2:1:45

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CP:2:1:45

Keywords