Skip to main content

Comparison of methods to examine the endogenous peptides of fetal calf serum

Abstract

There is a great desire to relate the patterns of endogenous peptides in blood to human disease and drug response. The best practices for the preparation of blood fluids for analysis are not clear and also relatively few of the peptides in blood have been identified by tandem mass spectrometry. We compared a number of sample preparation methods to extract endogenous peptides including C18 reversed phase, precipitation, and ultrafiltration. We examined the results of these sample preparation methods by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-tandem mass spectrometry (MS/MS) using MALDI-TOF/TOF and electrospray ionization-ion trap. Peptides from solid-phase extraction with C18 in the range of hundreds of femtomoles per spot were detected from the equivalent of 1 μL of serum by MALDI-TOF. We observed endogenous serum peptides from fibrinogen α- and β-chain, complement C3, α-2-HS-glycoprotein, albumin, serine (or cysteine) proteinase inhibitor, factor VIII, plasminogen, immunoglobulin, and other abundant blood proteins. However, we also recorded significant MS/MS spectra from tumor necrosis factor-α-, major histocompatibility complex-, and angiotensin-related peptides, as well as peptides from collagens and other low-abundance proteins. Amino acid substitutions were detected and a phosphorylated peptide was also observed. This is the first time the endogenous peptides of fetal serum have been examined by MS and where peptides from low-abundance proteins, phosphopeptides, and amino acid substitutions were detected.

References

  1. 1

    Oleschuk, R. D., McComb, M. E., Chow, A. et al. (2000) Characterization of plasma proteins adsorbed onto biomaterials. By MALDI-TOFMS. Biomaterials 21, 1701–1710.

    PubMed  Article  CAS  Google Scholar 

  2. 2

    Weinberger, S. R., Morris, T. S., and Pawlak, M. (2000) Recent trends in protein biochip technology. Pharmacogenomics 1, 395–416.

    PubMed  Article  CAS  Google Scholar 

  3. 3

    Tammen, H., Hess, R., Uckert, S., et al. (2002) Detection of low-molecular-mass plasma peptides in the cavernous and systemic blood of healthy men during penile flaccidity and rigidity—an experimental approach using the novel differential peptide display technology. Urology 59, 784–789.

    PubMed  Article  Google Scholar 

  4. 4

    Guo, J., Yang, E. C., Desouza, L., et al. (2005) A strategy for high-resolution protein identification in surface-enhanced laser desorption/ionization mass spectrometry: Calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma. Proteomics 5, 1953–1966.

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Ardekani, A. M., Liotta, L. A., and Petricoin, E. F., 3rd. (2002) Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev. Mol. Diagn. 2, 312–320.

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Karsan, A., Eigl, B. J., Flibotte, S., et al. (2005) Analytical and preanalytical biases in serum proteomic pattern analysis for breast cancer diagnosis. Clin. Chem. 51, 1525–1528.

    PubMed  Article  CAS  Google Scholar 

  7. 7

    Marshall, J., Kupchak, P., Zhu, W., et al. (2003) Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J. Proteome Res. 2, 361–372.

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Marshall, J., Jankowski, A., Furesz, S. et al. (2004) Human serum proteins preseparated by electrophoresis or chromatography followed by tandem mass spectrometry. J. Proteome Res. 3, 364–382.

    PubMed  Article  CAS  Google Scholar 

  9. 9

    Koomen, J. M., Li, D., Xiao, L. C., et al. (2005) Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J. Proteome Res. 4, 972–981.

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Chertov, O., Biragyn, A., Kwak, L. W., et al. (2004) Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 4, 1195–1203.

    PubMed  Article  CAS  Google Scholar 

  11. 11

    Ricard-Blum, S. and Ruggiero, F. (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol. Biol. 53, 430–442.

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Eisenberg, P. R., Sherman, L. A., Schectman, K., Perez, J., Sobel, B. E., and Jaffe, A. S. (1985) Fibrinopeptide A: a marker of acute coronary thrombosis. Circulation 71, 912–918.

    PubMed  CAS  Google Scholar 

  13. 13

    Michael, I. P., Sotiropoulou, G., Pampalakis, G., et al. (2005) Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J. Biol. Chem. 280, 14,628–14,635.

    Article  CAS  Google Scholar 

  14. 14

    Orvisky, E., Drake, S. K., Martin, B. M., et al. (2006) Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics 6, 2895–2902.

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Theodorescu, D., Wittke, S., Ross, M. M., et al. (2006) Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 7, 230–240.

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Richter, R., Schulz-Knappe, P., Schrader, M., et al. (1999) Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J. Chromatogr. B Biomed. Sci. Appl. 726, 25–35.

    PubMed  Article  CAS  Google Scholar 

  17. 17

    Villanueva, J., Philip, J., Entenberg, D., et al. (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76, 1560–1570.

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Lowenthal, M. S., Mehta, A. I., Frogale, K., et al. (2005) Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin. Chem. 51, 1933–1945.

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Lopez, M. F., Mikulskis, A., Kuzdzal, S., et al. (2005) High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin. Chem. 51, 1946–1954.

    PubMed  Article  CAS  Google Scholar 

  20. 20

    Tirumalai, R. S., Chan, K. C., Prieto, D. A., Issaq, H. J., Conrads, T. P., and Veenstra, T. D. (2003) Characterization of the low molecular weight human serum proteome. Mol. Cell Proteomics 2, 1096–1103.

    PubMed  Article  CAS  Google Scholar 

  21. 21

    Marshall, J., Jankowski, A., Furesz, S., et al. (2004) Human serum proteins preseparated by electrophoresis or chromatography followed by tandem mass spectrometry. J. Proteome Res. 3, 364–382.

    PubMed  Article  CAS  Google Scholar 

  22. 22

    Craig, R. and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    PubMed  Article  CAS  Google Scholar 

  24. 24

    Adkins, J. N., Varnum, S. M., Auberry, K. J., et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell Proteomics 1, 947–955.

  25. 25

    Chan, K., Lucas, D. A., Hise, D., et al. (2004) Analysis of the human serum proteome. Clin. Proteomics 1, 101–225.

    Article  Google Scholar 

  26. 26

    Shen, Y., Kim, J., Strittmatter, E. F., et al. (2005) Characterization of the human blood plasma proteome. Proteomics 5, 4034–4045.

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Kapp, E. A., Schutz, F., Connolly, L. M., et al. (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5, 3475–3490.

    PubMed  Article  CAS  Google Scholar 

  28. 28

    Villanueva, J., Shaffer, D. R., Philip, J., et al. (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest. 116, 271–284.

    PubMed  Article  CAS  Google Scholar 

  29. 29

    Liotta, L. A. and Petricoin, E. F. Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J. Clin. Invest. 116, 26–30.

  30. 30

    Weinberger, S. R., Boschetti, E., Santambien, P., and Brenac, V. (2002) Surface-enhanced laser desorption-ionization retentate chromatography mass spectrometry (SELDI-RC-MS): a new method for rapid development of process chromatography conditions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782, 307–316.

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Omenn, G. S., States, D. J., Adamski, M., et al. (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245.

    PubMed  Article  CAS  Google Scholar 

  32. 32

    States, D. J., Omenn, G. S., Blackwell, T. W., et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol. 24, 333–338.

  33. 33

    Diamandis, E. P. (2003) Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin. Chem. 49, 1272–1275.

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Pieper, R., Gatlin, C. L., Makusky, A. J., et al. (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3, 1345–1364.

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Anderson, N. L. and Anderson, N. G. (2003) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics 2, 50.

    Article  CAS  Google Scholar 

  36. 36

    Sviridov, D., Meilinger, B., Drake, S. K., Hoehn, G. T., and Hortin, G. L. (2006) Coelution of other proteins with albumin during size-exclusion HPLC: implications for analysis of urinary albumin. Clin. Chem. 52, 389–397.

    PubMed  Article  CAS  Google Scholar 

  37. 37

    Hortin, G. L., Shen, R. F., Martin, B. M., and Remaley, A. T. (2006) Diverse range of small peptides associated with high-density lipoprotein. Biochem. Biophys. Res. Commun. 340, 909–915.

    PubMed  Article  CAS  Google Scholar 

  38. 38

    Verhaert, P., Uttenweiler-Joseph, S., de Vries, M., Loboda, A., Ens, W., and Standing, K. G. (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-light mass spectrometry: an elegant tool for peptidomics. Proteomics 1, 118–131.

    PubMed  Article  CAS  Google Scholar 

  39. 39

    Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., and Nesvizhskii, A. (2004) The need for guidelines in publication of peptide and protein identification data: working group on publication guidelines for peptide and protein identification data. Mol. Cell Proteomics 3, 531–533.

    PubMed  Article  CAS  Google Scholar 

  40. 40

    Corthals, G. L., Aebersold, R., and Goodlett, D. R. (2005) identification of phosphorylation sites using microimmobilized metal affinity chromatography. Methods Enzymol. 405, 66–81.

    PubMed  CAS  Google Scholar 

  41. 41

    Barling, P. M., Palmer, D. J., and Christie, D. L. (1986) Preparation of desulphated bovine fibrinopeptide B and demonstration of its sulphation in vitro by an enzyme system from neuroblastoma-glioma hybrid cells. Int. J. Biochem. 18, 137–141.

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Krajewski, T. and Blomback, B. (1968) The location of tyrosine-O-sulphate in fibrinopeptides. Acta. Chem. Scand. 22, 1339–1346.

    PubMed  CAS  Article  Google Scholar 

  43. 43

    Lucas, J. and Henschen, A. (1986) Identification and assay of phosphoserine and tyrosine-O-sulphate in fibrinopeptides by reversed-phase high-performance liquid chromatography. J. Chromatogr. 369, 357–364.

    PubMed  Article  CAS  Google Scholar 

  44. 44

    Maurer, M. C., Peng, J. L., An, S. S., Trosset, J. Y., Henschen-Edman, A., and Scheraga, H. A. (1998) Structural examination of the influence of phosphorylation on the binding of fibrinopeptide A to bovine thrombin. Biochemistry 37, 5888–5902.

    PubMed  Article  CAS  Google Scholar 

  45. 45

    Seydewitz, H. H., Matthias, F. R., Schondorf, T. H., and Witt, I. (1987) Increase in the degree of phosphorylation of circulating fibrinogen under thrombolytic therapy with urokinase. Thromb. Res. 46, 437–445.

    PubMed  Article  CAS  Google Scholar 

  46. 46

    Lee, Y. H., Kim, M. S., Choie, W. S., Min, H. K., and Lee, S. W. (2004) Highly informative proteome analysis by combining improved N-terminal sulfonation for de novo peptide sequencing and online capillary reverse-phase liquid chromatography/tandem mass spectrometry. Proteomics 4, 1684–1694.

    PubMed  Article  CAS  Google Scholar 

  47. 47

    Hunt, D. F., Shabanowitz, J., Yates, J. R., 3rd, Zhu, N. Z., Russell, D. H., and Castro, M. E. (1987) Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc. Natl. Acad. Sci. USA 84, 620–623.

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Bergquist, J., Palmblad, M., Wetterhall, M., Hakansson, P., and Markides, K. E. (2002) Peptide mapping of proteins in human body fluids using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev. 21, 2–15.

    PubMed  Article  CAS  Google Scholar 

  49. 49

    Ping, P., Vondriska, T. M., Creighton, C. J., et al. (2005) A functional annotation of subproteomes in human plasma. Proteomics 5, 3506–3519.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Marshall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, D., Zhu, P., Bowden, P. et al. Comparison of methods to examine the endogenous peptides of fetal calf serum. Clin Proteom 2, 67–89 (2006). https://doi.org/10.1385/CP:2:1:67

Download citation

Key words

  • Fetal calf serum
  • liquid chromatography-electrospray ionization mass spectrometry
  • matrix-assisted laser desorption/ionization time-of-flight
  • MALDI
  • ESI tandem mass spectrometry