
Cancer Biomarker Discovery via Targeted Profiling
of Multiclass Tumor Tissue-Derived Proteomes

Longhai Zhou & Ming Cai & Xuefeng Bruce Ling &

Qiang Wang & Kenneth Lau & Jiagang Jack Zhao &

James Schilling & Liangbiao Chen

Published online: 10 November 2009
# Humana Press 2009

Abstract
Introduction Tumor-derived proteins and naturally occur-
ring peptides represent a rich source of potential cancer
markers for multiclass cancer distinction.
Materials and Methods In this study, proteomes/pepti-
domes derived from primary colon cancer, kidney cancer,
liver cancer, and glioblastoma were analyzed by liquid
chromatography coupled with mass spectrometry to iden-
tify multiclass cancer discriminative protein and peptide
candidates. Spectral counting and peptidomic analyses
found two biomarker panels, one with 12 proteins and the

other with 53 peptides, both capable of multiclass cancer
detection and classification.
Results and Discussion Shed from tumor tissues through
apoptosis/necrosis, cell secretion, or tumor-specific degra-
dation of extracellular matrix proteins, these proteins/
peptides are likely to enter into circulation and, therefore,
have the potential to be configured into practical serological
diagnostic and prognostic utilities.
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Introduction

Due to their common availability and the potential of
immediate translation of found biomarkers into serological
clinical utilities, plasma and serum from cancer patients
have been extensively analyzed by novel proteomic
profiling technology leading to many candidate markers.
However, few of these candidate biomarkers have been
validated with the desired sensitivity and specificity to
allow early cancer detection and prognostic of clinic
outcomes [1]. The best single cancer biomarkers may have
already been discovered, so future cancer biomarker
utilities most likely will be biomarker panels with multiple,
less sensitive, and specific biomarkers, in combination with
biostatistics modeling, to devise predictive algorithms to
achieve required sensitivity and specificity for cancer
diagnosis and prognosis [2].

We have followed a cancer tissue-targeted proteomic
approach [3], aiming to ultimately discover low, abundant,
while cancer-specific proteins in plasma or serum. The
rationale is that tumor-derived proteins, secreted by cancer
cells or shed from the cancer microenvironment, can
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eventually enter the bloodstream and that these proteins’
serological abundance could be assessed in combination
with a biostatistics model for cancer prediction. We reason
that, targeted analysis of these proteins, trapped in the
source tumor tissues just prior to their release in circulation,
can result in the discovery of even lower abundance, tissue
specific, and circulating biomarkers. Therefore, conditioned
media derived from primary tumor tissues, expected to
enrich with these potential biomarkers, are targeted for
proteomic profiling analysis.

In this study, we assayed condition media derived from
four tumor types—colon cancer (CC), kidney cancer (KC),
liver cancer (LC), and glioblastoma (BC). The mass
spectrometric-based proteomic profiling analysis found a
biomarker panel of 12 proteins having differential abun-
dance between different tumor types. In addition, we
performed comprehensive peptidomic analysis to overlay
and compare all the mass spectrometric spectra from
various tumor samples for differential tumor-derived mark-
er signals. We have identified a panel of 53 biomarkers,
including both tryptic peptides and non-tryptic peptides,
capable of discriminating between these cancer types.

Materials and Methods

Samples Tissue specimens were obtained with the approval
of the Committee on the Ethical of Research involving
Human Subjects from the Affiliated Hospital of Chinese
PLA General Hospital. The total 20-case samples contained
three colon cancer, six kidney cancer, three liver cancer,
four glioblastoma, two ureteral cancer patients, and normal
organ samples from one kidney and one liver cancer
patients and were histologically confirmed by two inde-
pendent pathologists. Following surgical resection, tumor
tissues were cut into small pieces with sterile scissors and
rinsed with PBS several times and placed in 50-ml conical
tubes containing defined medium [Dulbecco’s modified
Eagle medium (DMEM/F12) supplemented with growth
factor cocktail, which includes basic FGF 20 ng/ml, EGF
20 ng/ml, insulin 7 μg/ml, and transferin 15 μg/ml, plus
penicillin 500 units/ml and streptomycin 500 µg/ml]
overnight at 4°C. Following centrifugation for 10 min at
2,000 rpm, the tissue media were desalted through the
PD-10 column (GE health care) pre-equilibrated with
0.01% NH4OH, then lyophilized and stored at −80°C.

Preparation of Tumor-Derived Protein Samples The frozen
pellets were sonicated and dissolved in 7 M urea and 2 M
thiourea and 25 mM ammonium bicarbonate for 2 h. The
resulting protein extracts were desalted using Pierce zeba
desalt spin columns. Each sample’s total protein content
was quantified by Pierce BCA protein assay reagent. The

desalted samples were diluted with 25 mM ammonium
bicarbonate to the same protein concentration 0.5 µg/µl.
For reduction, 50 µg protein of each sample was incubated
with 10 µl 5 mM DTT at 50°C for 30 min.

LCMS and MSMS analysis For alkylation, iodoacetamide
was added to a final concentration of 15 mM. After
incubating at room temperature in the dark for 30 min,
1 µg trypsin was added to each sample to digest at 37°C
overnight; 1.5 µl 50% TFA in water was added to terminate
the reaction. The total volumes of the digests were
subsequently dried to ∼70 µl in a SpeedVac. Trypsin-
digested samples were diluted, 1:10 in 0.1% v/v formic
acid, and loaded online to an analytical C18 column
(75 µm, 12 cm). Peptides from each tumor sample were
eluted using a linear gradient of H2O/CH3CN (95:5, 0.1%
formic acid buffer A) to H2O/CH3CN (70:30, 0.1% formic
acid buffer B) at 300 nl/min over 70 min using a 2D
Eskigent nano HPLC, Spark autosampler system. Each
tumor sample’s full mass spectrometry (MS) scan (from
400 to 1,600m/z) acquired on an LTQ FTMS (Thermo, San
Jose, CA, USA) was followed by five MS/MS events using
data-dependent acquisition where the first most intense ion
from a given MS scan was subjected to CID followed by
the second to fifth most intense ions. Protein identification
was performed by searching Swiss-Prot protein database
using Thermal BioWorks™ software and SEQUEST®
algorithm (Thermo, San Jose, CA, USA). Peptide identi-
fications were considered acceptable if they passed the
thresholds determined acceptable for human plasma by
Qian et al. [4] and passed an additional filter of a
PeptideProphet score of at least 0.7 [5]. The PeptideProphet
score is representative of the quality of the SEQUEST™
identification and is based on a combination of XCorr,
delCn, Sp, and a parameter that measures the probability
that the identification occurred by random chance. Pepti-
deProphet scores are normalized to a 0 to 1 scale, with 1
being the highest confidence value.

Spectral Counting Analysis Quantification of proteins in
different samples was done by means of spectral counting
using Scaffold software (Proteome Software, Portland, OR,
USA). From the MS/MS protein identifications, a separate
list of proteins was created for each sample, and the lists
were then compared to find differential expressed proteins.
For any given protein, the relative abundance between
samples was estimated by the comparative analysis of the
normalized spectrum counts of the identified tryptic
peptides.

Peptidomic Data Analysis Our approach, which is com-
monly referred to as ion mapping [6, 7], first selects
biomarker candidate MS peaks on the basis of discriminant
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analysis and then targets them for MS/MS sequencing
analysis to obtain protein identification. The peak finding
and comparative analysis were performed as described in
previous work [8, 9].

Results and Discussion

In this study (outlined in Supplementary Fig. 1), we
collected a total of 16 primary tumor samples from three
colon cancer, six kidney cancer, three liver cancer, four
glioblastoma cancer patients, and tumor adjacent tissue
counterparts from one kidney and one liver cancer patients.
To extract tumor-derived proteins/peptides trapped in the
tumor tissue, tissue specimens were rinsed and cut into
small pieces and kept at 4°C overnight in defined medium
such that tissue-derived and extracellular matrix-derived
proteins and peptides can be released. After tryptic
digestion, the peptides from the conditioned media were
fractionated through C18 reverse-phase HPLC and later
analyzed by an LTQ FT MS.

A total of 1,807 proteins were identified from control
and tumor samples after SEQUEST™ analysis against the
Swiss-Prot human database. Protein identification results,
e.g., protein hits of different tryptic peptides of the same
protein precursor, of all tumor samples were integrated
using probabilistic protein identification algorithms imple-
mented in the Scaffold software. Spectrum counts were
analyzed from the number of MS/MS spectra identified
corresponding to each protein normalized to account for
protein length or expected number of tryptic peptides. For
any given protein, the relative abundance between samples
was estimated by the comparative analysis of the normal-
ized spectrum counts. The box-whisker graphs in Fig. 1
illustrate the spread of the distribution of the spectrum

counts for each identified protein, using a “box” (25~75%)
and “whiskers” to break down data by percentile. The
results show that 12 proteins, including albumin (ALB),
serotransferrin (TF), aplipoprotein A1 (APO A1), Vimentin
(VIM), immunoglobulin heavy constant gamma 1(IGHG1),
glial fibrillary acidic protein (GFAP), alpha 1 antitrypsin
(A1AT), hemoglobin beta (HBB), orosomucoid 1 (AGP1,
alias ORM1), pyruvate kinase type M2 (PKM2, alias M2-
PK), keratin 8 (KRT8), and keratin 19 (KRT19), appeared
to have differential abundance in colon, kidney, liver, and
brain tumors. The remaining 1,795 proteins’ abundance
was largely undifferentiated in the compared tumors.
Examination of the 12 differentially expressed proteins
found that they can be divided into five groups of
expression patterns (Fig. 1). In group1, GFAP was the only
protein of higher abundance in brain tumor than that in colon,
kidney, and liver tumors. In contrast, the remaining 11
proteins were all of lower abundance in brain than those in
the other three tumors. PKM2, KRT8, and KRT19 (group 2)
were found to be highly expressed in colon cancer and were
largely unexpressed in kidney, liver, and brain tumor types.
HBB and APO A1 (group 3) had more abundance in kidney
tumor than in colon, liver, and brain tumor types. VIM,
AGP1, and A1AT (group 4) were found to be more
expressed in colon tumor, then kidney tumor, then liver
tumor, and least in brain tumor. TF and ALB (group 5) were
more abundant in colon and liver tumor than those in kidney
and brain tumors.

Literature review has found that most, if not all, of these
12 proteins can be readily detected in the circulation and
have been previously found by others to have diagnostic or
prognostic values in various assayed tumors. In renal cell
carcinoma, VIM staining has been identified as an
independent predictor of poor prognosis, and increased
VIM staining correlated with worse survival [10]. ALB,
GFAP, and VIM have been discovered by proteomic

Fig. 1 Mass spectrometric spectral counting analysis qualitatively evaluates the relative abundance of the tumor-derived proteins in colon (CC),
kidney (KC), liver (LC), and brain (BC) tumors
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profiling as molecular indicators of diagnostic or prognostic
value for gliomas [11]. A1AT levels have been found to
increase significantly in the sera of patients with gastroin-
testinal cancers, correlating with the stage and severity of
the gastric and colorectal cancers [12]. IGHG1 has been
shown to be one of the serum “factors” secreted by the
epithelial cancers in lung, liver, colon, and breast to protect
the neoplastic cells from the lymphocyte reactivity [13].
PKM2 has been shown as a very useful biomarker for early
detection of various tumors [14]. Examination of KRT 8,
18, and 19 revealed a consistent pattern of expression with
respect to tumor grade. mRNA expression for KRT 8 was
significantly higher in node-positive compared with node-
negative disease stages [15]. Serum AGP1 profiles can
provide prognostic information in patients with glioblasto-
ma multiforme [16]. Very few studies examined HBB gene
expression in tumor, and our finding that it is up-regulated
in kidney tumor is intriguing. Nevertheless, interrogation of
the NCBI GEO database (dataset record GDS505) [17]
revealed that HBB, indeed, at the gene expression level, up-
regulated in renal clear cell carcinoma (Supplementary
Fig. 2). Therefore, our findings of these 12 proteins’
differential abundance in various cancers are consistent

with previous analyses that these 12 proteins, to be
validated, indeed have differential significance in various
tumors and are all of potential serological biomarker
candidates. However, it is important to point out that the
circulating proteins found by others, albeit sharing the same
protein precursors with the ones we discovered in the tumor
conditioned media, most likely are protein isoforms and have
been post-translationally processed further by clipping/cleav-
age and modifications such as glycosylation. The post-
translational modification or proteolytic enzymes may be
themselves biomarkers indicative of cancer pathophysiology
[18]. Immunological, enzymatic, or mass spectrometry-based
methods are needed to characterize these potentially novel
biomarker activities and evaluate their potential clinical
utilities in cancer management. In this study, our current
focus is the analysis of the relative protein quantifications
between cancer types and the potential clinical utilities of the
differential abundance for diagnostic and prognostic appli-
cations. The characterizations of protein modification activ-
ities, suggested by the literature review, will be followed up
after validation studies.

In addition to the identity-based spectral counting
analysis, we have also performed a comprehensive analysis

Fig. 2 Analysis of the 53-peptide biomarker panel. Left panel With
the 53-feature peptide biomarker panel, the predicted discriminant
probabilities of the CC, KC, LC, and BC classes for each sample were
calculated from the linear discriminant analysis. The maximum
estimated probability for each of the wrongly classified samples is

marked with a red arrow. Right panel Unsupervised two dimensional
clustering of all CC, KC, LC, and BC samples and the corresponding
53 peptide biomarkers. Heat map reveals relative abundance of these
53 peptide biomarkers in the CC, KC, LC, and BC tumor categories
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comparing all MS scans to discover differential tryptic and
non-tryptic peptide biomarkers. The non-tryptic peptides
are likely to be the result of the tumor-specific degradation
of extracellular matrix proteins by proteases and exopepti-
dase released from cancer cells [18]. A total of 28,000
unique peak features with distinct m/z and HPLC fraction
have resolved. The samples were utilized as a training set
(CC, n=3; KC, n=6; LC, n=3; BC, n=4) for predictor
discovery by a nearest shrunken centroid algorithm [19]
with all the features in the data set. As shown in
Supplementary Fig. 3, internal 4-fold cross-validation and
linear discriminant analysis selected a 53-feature panel as
the peptide biomarker panel with predictive utility for
follow-up analysis.

The peptide panel included both tryptic peptides: a
disintegrin and metalloproteinase domain 8 (ADAM8), oro-
somucoid 2 (AGP2, alias ORM2), immunoglobulin kappa
constant (IGKC), MKI67 (FHA domain) interacting nucleolar
phosphoprotein (MKI67IP), tyrosine 3-monooxygenase/tryp-
tophan 5-monooxygenase activation protein zeta polypeptide
(YWHAZ), and non-tryptic peptides: ankyrin repeat and
SOCS box-containing 13 (ASB13), Cyclin-J, glycoprotein
Ib (platelet) alpha polypeptide (GP1BA), immunoglobulin
superfamily, member 8 (IGSF8), RUN and FYVE domain
containing 4 (RUFY4), transient receptor potential cation
channel subfamily M member 6 (TRPM6), and zinc finger
and SCAN domain containing 4 (ZSCAN4), capable of
discriminating between the colon, kidney, liver, and brain
tumors. Figure 2 (left panel) displays the linear discrimina-
tive analysis predictive probabilities where tumor samples
have robust separation between the highest and next highest
probability, demonstrating that most of the samples were
correctly classified into CC, KC, LC, and BC tumor
categories using the 53-peptide panel. With the maximum
estimated probability marked with a red arrow, only one of
the KC samples was wrongly classified. Consistent with
these findings, unsupervised clustering (Fig. 2, right panel)
based upon the 53-peptide biomarker panel was able to
largely cluster, according to their diagnosis, and only one of
the brain tumor was clustered within the colon cancer
samples.

Significant degree of shared gene expression exists
between tumors and their normal tissue counterparts.
Expression analysis comparing different tumors may risk
uncovering tissue differentiation markers indicative of
lineage differentiation, which is irrelevant to oncogenic
process. This prompted us to investigate whether our 53-
peptide biomarker panel indeed captured the “molecular
portraits” of the assayed cancers rather than those of their
paired normal tissues. We have performed two comparisons
of either the kidney or liver tumor tissues and the adjacent
normal tissue counterparts isolated from the same patient.
In both kidney and liver cases, samples of the tumor or

adjacent normal tissue counterpart from the same patient
(Fig. 3) cluster together. However, in both cases of the
kidney and liver, expression profiles between the tumor and
adjacent normal tissue counterpart were clearly different.
Therefore, our 53-peptide biomarker panel can discriminate
and cluster different tumor types in both supervised and
unsupervised clustering analyses and can delineate tumor
from the adjacent normal tissue. However, it is important to
interpret data with caution due to the small sample size of
various assayed tumor tissues. Prospective validation
studies with sufficient sample size of enough analytic
power are essential to substantiate these peptides’ role in
cancer diagnosis.

Peptides within the 53-peptide biomarker panel have
been subjected to extensive protein identification efforts via
LTQ FT MS/MS and database searches upon both the
tryptic and non-tryptic peptide fingerprinting analyses. Of
the 53 peptide features (Supplementary Table 1), 18 were
positively identified where five peptides are non-tryptic and
13 are tryptic. Tryptic peptides of ALB, APOA1, and KRT8
were found in the 53-peptide biomarker panel, where the
quantification analysis results of these peptides are in line
with those obtained from previous spectral counting

Fig. 3 Comparative analysis and heat map plot of the relative
abundance of the 53 peptide biomarkers in either the kidney or liver
tumor tissue and their corresponding adjacent normal tissue counter-
part isolated from the same patient
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analysis: Three different tryptic ALB peptides were
identified to have higher abundance in colon and liver
cancer categories; one tryptic KRT8 peptide was identified
to have higher abundance in colon cancer samples; one
tryptic APO A1 was identified to have higher abundance in
kidney cancer. Tryptic peptides from ADAM8, AGP2,
IGKC, KRT18, MKI67IP, and YWHAZ were also found.
However, their parent proteins were shown to be undiffer-
entiated by spectral counting analysis. Non-tryptic peptides
from ASB13, Cyclin-J, GP1BA, IGSF8, RUFY4, TRPM6,
and ZSCAN4 were found to be part of the 53-peptide
biomarker panel. Based on our current experience there are
three reasons for failure to obtain the peptide sequences of
the remaining peptide biomarkers: (1) Peptides are too low in
abundance in the original samples for successful MS/MS. (2)
Peptides appear to have adequate signals in MS mode but do
not produce a sufficient number of product ions in MS/MS to
allow definitive protein identification. (3) Peptides produce
MS/MS spectra that appear to be adequate but cannot be
interpreted by the currently available software. In some
instances we are able to solve these by manual interpretation.
We have found a significant number of post-translational
modifications of tumor-derived peptides that complicate
automated spectral interpretation. Future efforts will utilize a
two- or three-dimensional HPLC purification prior to MS/MS
analysis to increase the sample load and/or the purity of the
peptide since peptide ionization efficiency can be related to
the purity of the sample.

As shown in Supplementary Fig. 4, we hypothesize that
cancer microenvironment, in the similar fashion as that seen
in serum [18], can generate and shed naturally occurring but
tumor-specific peptides. Comprehensive peptidomic analysis
identified a panel of 53 peptide biomarkers, including both
tryptic and non-tryptic peptides, capable of discriminating
between these tumors. Concerns have been raised regarding
the serum naturally occurring peptide biomarker discovery
efforts: One major consideration of the serum peptidome
discovery [18, 20, 21] is that most, if not all, of the peptide
biomarkers are derived from a low number of plasma high-
abundance proteins; due to the substantial endogenous
endoproteolytic and exoproteolytic enzymatic activity, serum
peptidome content can be influenced by sample collection
and, therefore, could give rise to artifacts [22]. However, our
tumor-derived peptidomic analysis did not suffer from those
above issues concerning serum peptidomic analysis. There-
fore, we believe that the tumor-derived peptidomic patterns
should represent genuine difference between various tumors
and their normal tissue counterparts. Future prospective
studies of these tumor-derived biomarkers, either by
antibody-based or quantitative mass spectrometry-based
approach, can optimize them into practical clinical utilities
for serological diagnosis and prognosis.
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