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Abstract 

Background: Outer membrane vesicles (OMVs) of Acinetobacter baumannii are cytotoxic and elicit a potent innate 
immune response. OMVs were first identified in A. baumannii DU202, an extensively drug‑resistant clinical strain. 
Herein, we investigated protein components of A. baumannii DU202 OMVs following antibiotic treatment by proteog‑
enomic analysis.

Methods: Purified OMVs from A. baumannii DU202 grown in different antibiotic culture conditions were screened for 
pathogenic and immunogenic effects, and subjected to quantitative proteomic analysis by one‑dimensional electro‑
phoresis and liquid chromatography combined with tandem mass spectrometry (1DE‑LC‑MS/MS). Protein compo‑
nents modulated by imipenem were identified and discussed.

Results: OMV secretion was increased > twofold following imipenem treatment, and cytotoxicity toward A549 
human lung carcinoma cells was elevated. A total of 277 proteins were identified as components of OMVs by imipe‑
nem treatment, among which β‑lactamase OXA‑23, various proteases, outer membrane proteins, β‑barrel assembly 
machine proteins, peptidyl‑prolyl cis–trans isomerases and inherent prophage head subunit proteins were signifi‑
cantly upregulated.

Conclusion: In vitro stress such as antibiotic treatment can modulate proteome components in A. baumannii OMVs 
and thereby influence pathogenicity.
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Introduction
Acinetobacter baumannii is a major Gram-negative bac-
terial pathogen that causes nosocomial infections such as 
ventilator-associated pneumonia, bacteraemia and uri-
nary tract infections [1]. Like most Gram-negative bac-
teria, A. baumannii secretes outer membrane vesicles 
(OMVs), as first demonstrated using the A. baumannii 

DU202 multidrug-resistant (MDR) clinical strain that is 
cytotoxic and elicits a potent innate immune response 
in the host [2–4]. Various peculiar biological functions 
of A. baumannii OMVs have been elucidated. Vaccina-
tion of whole A. baumannii OMVs alone or in combi-
nation with biofilm-associated protein (Bap) effectively 
protects against A. baumannii infection and elevates 
innate immunity [5–7]. Furthermore, the plasmid-borne 
blaoxa-24 gene has been transferred into the carbapenem-
susceptible A. baumannii ATCC 17978 strain using 
carbapenem-resistant A. baumannii OMVs as a vehi-
cle for horizontal gene transfer [8]. Therefore, elucida-
tion of the biological roles of the protein components of 
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OMVs is important for understanding their relevance to 
pathogenicity.

Numerous physiological and environmental factors 
are known to influence OMV secretion in Gram-neg-
ative bacteria. For example, OMV secretion is much 
more pronounced in enterotoxigenic Escherichia coli 
than nonpathogenic wild-type or mutant strains [9, 10]. 
Additionally, antibiotics such as gentamicin, polymyxin, 
d-cycloserine and mitomycin C increase secretion of 
OMVs from Pseudomonas aeruginosa and Shigella dys-
enteriae [11–13], and high temperature, oxidizing agents 
and nutrients also act as stimulatory factors for OMV 
production [14].

In the A. baumannii DU202 MDR clinical strain, pro-
teomic variation in the membrane-associated protein 
fraction, especially among outer membrane proteins and 
transporters, has been correlated with antibiotic stress 
following treatment with imipenem and tetracycline [15]. 
This indicates that proteomic variation in OMVs pro-
duced by A. baumannii DU202 may occur under specific 
antibiotic conditions.

In the present study, we found that the production of 
A. baumannii DU202 OMV was increased by imipenem 
treatment, and became more cytotoxic toward cultured 
host cells. We recently reported the complete genome 
of A. baumannii DU202 [16], and here we used this 
resource to perform proteogenomic analysis of protein 
components of OMVs following antibiotic treatment. 
Bacterial OMVs play important role as potent bacterial 
virulence factors [17] and a high incidence of resistance 
to imipenem has been reported for clinical A. bauman-
nii strains in hospitals [18, 19]. This suggests that OMVs 
produced under imipenem treatment might be crucial to 
infection; hence their characterization may be clinically 
important.

Methods
Bacterial strain and growth conditions
Acinetobacter baumannii DU202 cells were cultured in 
Luria-Bertani (LB) broth to late exponential phase (opti-
cal density of 1.0 at 600  nm) for OMV preparation. LB 
broth was supplemented with imipenem or tetracycline 
(50 µg/ml) as required.

Isolation and purification of A. baumannii OMVs
OMVs of A. baumannii DU202 were purified from bac-
terial culture supernatants as described previously [2]. 
Briefly, bacterial cells were removed by centrifugation 
at 6000×g for 30  min and supernatants were filtered 
through a 0.2 µm vacuum filter to remove residual cells 
and cellular debris. OMVs were ultra-filtrated and con-
centrated using a QuixStand Benchtop System (GE 
Healthcare, USA) with a 500 kDa hollow fibre membrane 

(GE Healthcare). Collected OMVs were precipitated by 
ultracentrifugation at 150,000×g for 3 h at 4 °C, and pel-
lets containing OMVs were suspended in 0.5–1.0  ml of 
phosphate-buffered saline (PBS). OMV solution was fur-
ther purified by sucrose gradient centrifugation (2.5, 1.6 
and 0.6 M sucrose) at 200,000×g for 20 h at 4 °C. Sucrose 
was removed from each layer by ultracentrifugation at 
150,000×g for 3 h at 4 °C, and purified OMVs were used 
for sterility tests and stored at − 80 °C until needed.

Transmission electron microscopy (TEM)
Transmission electron microscopy (TEM) of OMVs 
was performed as described previously [20]. Briefly, 
OMV fractions were diluted with PBS, centrifuged at 
150,000×g for 3 h, resuspended in PBS, applied to 400-
mesh copper grids, stained with 2% uranyl acetate and 
visualized on a TEM instrument (FEI, USA) operating at 
120 kV.

Sodium dodecyl sulphate–polyacrylamide gel 
electrophoresis (SDS–PAGE) and in‑gel digestion
Sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis (SDS–PAGE) and in-gel digestion were 
performed as previously described [21]. The protein 
concentration of purified OMVs was determined using a 
modified BCA assay kit (Thermo Fisher Scientific). Pro-
tein components of OMVs (15 µg) were separated by 12% 
SDS–PAGE and divided into eight fractions according to 
molecular weight. Sliced gels were destained in destain-
ing solution (10  mM ammonium bicarbonate and 50% 
acetonitrile). After drying, gels were incubated with 
reducing solution (10  mM dithiothreitol and 100  mM 
ammonium bicarbonate) at 56  °C, and iodoacetamide 
(55 mM) was added to alkylate cysteine residues of disul-
phides. Gels were washed in 2–3 volumes of distilled 
water and dried in a speed vacuum concentrator. After 
immersing dried gels in 100  µl of 50  mM ammonium 
bicarbonate, 7–8  µl of trypsin solution (0.1  µg/µl) was 
added and samples were incubated at 37 °C for 12–16 h. 
After tryptic digestion, samples were transferred into a 
new tube and 50  mM ammonium bicarbonate followed 
by 50% acetonitrile containing 5% trifluoroacetic acid 
(TFA) was added to recover tryptic peptide mixtures. The 
resulting peptide extracts were pooled and lyophilised.

Proteome analysis by liquid chromatography combined 
with tandem mass spectrometry (LC‑MS/MS)
Tryptic peptide mixtures were dissolved in sample buffer 
(0.1% formic acid and 0.02% acetic acid) and loaded onto 
a 2G-V/V trap column (Waters, USA). Concentrated 
peptides were directed onto a 10  cm × 75  μm (i.d.) C18 
reversed-phase column at a flow rate of 300  nl/min. 
HPLC conditions and search parameters for tandem 
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mass spectrometry (MS/MS) analysis were applied as 
described previously [20]. All MS and MS/MS spec-
tra obtained using the LTQ-Velos ESI ion trap mass 
spectrometer were acquired in data-dependent mode 
(Thermo Fisher Scientific, USA). For protein identifica-
tion, nano liquid chromatography (LC)-MS/MS spectra 
were searched using MASCOT version 2.4 (Matrix Sci-
ence, UK) using protein sequences from the genome of A. 
baumannii DU202. The exponentially modified protein 
abundance index (emPAI) was generated using MAS-
COT (Matrix Science) [22]. MS/MS analysis of each sam-
ple was performed at least in triplicate.

Analysis of OMV production following treatment 
with stressor molecules
Treatment with stressor molecules was performed s 
described previously [11, 23]. Briefly, pre-cultures of A. 
baumannii DU202 were inoculated into 250  ml of LB 
broth and grown to mid-log phase  (OD600 ~ 0.5) at 30 °C 
with vigorous shaking (180 rpm). Cells were harvested by 
centrifugation at 6000×g for 30 min and resuspended in 
250 ml of fresh LB medium at 30 °C. Hydrogen peroxide, 
d-cycloserine and polymyxin B were added separately as 
required at final concentrations of 1 mM, 250 µg/ml and 
2  µg/ml, respectively. To analyse the effect of hydrogen 
peroxide, fresh reagent was added to the culture every 
hour and  OD600 measurements were taken. A. baumannii 
DU202 cells cultured in LB broth alone served as a nega-
tive control.

Animal cell culture and apoptosis assay
A549 human lung carcinoma cells were cultured in 
RPMI 1640 culture medium supplemented with heat-
inactivated 10% foetal bovine serum (FBS) under humidi-
fied 5%  CO2 and 95% air at 37 °C. Cells were plated onto 
12-well culture plates, and OMVs were applied and incu-
bated for 24  h. For apoptosis assays, cells were stained 
with fluorescein isothiocyanate (FITC)-conjugated 
annexin V, propidium iodide (PI) and Hoechst reagent 
according to the manufacturer’s instructions. Stained 
cells were analysed using a NucleoCounter NC-3000 
image cytometer (ChemoMetec, Denmark) [20].

Bioinformatic analysis
The subcellular locations of proteins were predicted using 
the subcellular location prediction program PSORTdb 2.0 
(http://db.psort .org/). Transmembrane helices in mem-
brane proteins were predicted using the TMHMM server 
version 2.0 (http://www.cbs.dtu.dk/servi ces/TMHMM 
-2.0/). The phage region in genome of A. baumannii 
DU202 was analysed with PHAST [24]. Spearman corre-
lation coefficient and scatter plots between each sample 
were calculated by R language (http://www.r-proje ct.org) 

using value of protein abundance according MASCOT 
results.

Western blotting and immunoproteomics analysis
Rabbit  OMVDU202 antiserum was prepared with techni-
cal assistance from Young In Frontier, Inc. (Seoul, Korea). 
Three injections were applied at intervals of 2  weeks, 
and blood was collected 1 week after the final injection. 
At 2 weeks after the third injection, serum was obtained 
by retro-orbital bleeding. For western blotting, OMV 
protein samples were separated by 12% SDS–PAGE, 
protein bands were transferred to a nitrocellulose mem-
brane (Bio-Rad, CA) and the membrane was washed 
with TRIS-buffered saline (TBS) after blocking with 5% 
skim milk in TBS for 1 h. Following incubation with anti-
serum (1:4000 in 3% skim milk in TBS) for 14 h at 4 °C, 
the membrane was washed with TBST (0.5% Tween 20 in 
TBS) and specific IgG binding was visualised by incuba-
tion with anti-rabbit-IgG peroxidase conjugate (1:4000 in 
3% skim milk in TBS) and development with a chemilu-
minescent substrate (GE Healthcare). The chemilumines-
cence signal was detected using an ImageQuant LAS 400 
mini (GE Healthcare). A separate gel was used for protein 
identification by LC-MS/MS analysis.

Results and discussion
Antibiotics and stressor molecules induce differential 
production of OMVs in A. baumannii
OMVs of A. baumannii DU202 were purified and des-
ignated as  OMVLB (OMVs from LB culture condition), 
 OMVIM (OMVs from imipenem culture condition) and 
 OMVTC (OMVs from tetracycline culture condition) 
according to the culture conditions. Electron microscopy 
(EM) analysis revealed that purified OMVs were homo-
geneous (Fig. 1a), but the overall amount produced var-
ied with the culture conditions (Fig.  1b and c). OMVs 
were increased > 2.2-fold following exposure to imipe-
nem compared with untreated controls (Fig. 1b). Imipe-
nem is an inhibitor of β-lactamases that inhibits cell wall 
synthesis in Gram-positive and Gram-negative bacteria 
[25]. Stressor molecules d-cycloserine, polymyxin and 
hydrogen peroxide were also tested, and d-cycloserine 
caused the largest increase in OMV production (Fig. 1c). 
d-cycloserine is a peptidoglycan inhibitor [11, 26], which 
indicates that weakening the integrity of the A. bauman-
nii cell wall stimulates OMV production. By contrast, 
tetracycline, a protein synthesis inhibitor targeting the 
ribosome, had no effect on OMV production (Fig. 1b).

Pathogenicity of A. baumannii OMVs against cultured 
epithelial cells
Acinetobacter baumannii OMVs are known to be cyto-
toxic toward animal host cells [3]. To investigate the 
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cytotoxicity of A. baumannii DU202 OMVs, A549 
human lung carcinoma cells were treated with different 
concentrations of  OMVLB or  OMVIM.  OMVLB showed 
moderate early apoptosis-stimulating activity, whereas 
 OMVIM induced severe apoptotic cell death at the same 
concentration (Fig. 2).  OMVTC also exhibited cytotoxicity 
toward host cells (data not shown). These results indicate 
that OMVs isolated from A. baumannii treated with anti-
biotics are more cytotoxic, and this prompted us to per-
form a proteomic analysis of antibiotic-induced OMVs.

Proteogenomic characterization of A. baumannii OMVs
In our previous proteomic studies, we used the A. bau-
mannii ATCC 17978 genome as a  reference genome 

[15], but in the present work, we updated the reference 
genome with that of A. baumannii DU202. To identify 
protein components of A. baumannii DU202 OMVs, 
purified OMVs were fractionated by 12% SDS–PAGE and 
subjected to in-gel tryptic digestion for LC-MS/MS anal-
ysis. When using the A. baumannii ATCC 17978 genome 
as a reference, we identified 254 proteins in A. baumannii 
DU202 OMVs (Fig. 3a). A further 113 proteins were iden-
tified using the A. baumannii DU202 genome, and 19 
proteins obtained using the A. baumannii ATCC 17978 
genome were deleted (Fig. 3a).

Comparative proteomic analysis of purified OMVs and 
bacterial membrane-associated protein fractions was 
performed, and as expected, not all protein components 
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Fig. 1 Differential production of A. baumannii DU202 OMVs according to antibiotics and stressors. Transmission electron micrograph of OMVs 
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Fig. 2 Cytotoxic effect of A. baumannii DU202 OMVs. A549 human lung carcinoma cells were treated with various concentrations (0, 50, 100 and 
200 µg/ml) of OMVs for 24 h, and apoptosis was assessed
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of membrane-associated protein fractions were detected 
in purified OMVs. Indeed, only 35.5% of the protein com-
ponents (216 of 609 proteins) in membrane-associated 
protein fractions were also detected in the OMV pro-
teome (Fig.  3b). Spearman correlation analysis values 
of commonly induced proteins in OMVs and the mem-
brane-associated protein fractions were only 0.45–0.52, 
indicating a relatively poor correlation between the two 
proteome datasets (Additional file  1: Figure S1). These 
results suggest that the protein components of OMVs 
were differentially enriched and selectively sorted during 
the segregation of OMVs from host bacteria.

Another interesting result of proteogenomic analy-
sis was the detection of prophage gene clusters in the 
genome and their expression in OMVs as major protein 
components (Fig.  4). The PHAST program identified 
eight gene clusters, including five intact bacteriophage 
genes, scattered throughout the genome of A. bau-
mannii DU202. Proteomic analysis of A. baumannii 
DU202 OMVs revealed that, among these, four bac-
teriophage gene clusters (three intact and one ques-
tionable) were active in the expression of the phage 
components (Additional file  2: Figure S2). Mu-like 
prophage major head subunit (DU202_RS10735), 
phage major capsid proteins (DU202_RS09385) and 

putative proteins (DU202_RS14035, DU202_RS10700 
and DU202_RS14845) were identified as major proteins 
in purified OMVs (Fig. 4 and Additional file 3: Table S1). 
Because bacteriophages and OMVs are of a similar size 
(50–200 nm), we cannot completely exclude the possibil-
ity of co-purification of the two particles. Indeed, several 
studies reported that OMVs form complexes with phages 
to prevent phage attack [27–29]. However, EM image 
analysis confirmed the high purity of OMVs (Fig. 1a), sug-
gesting that OMV particles may contain phage proteins 
as major protein components. Recent genome sequenc-
ing of clinical A. baumannii strains revealed the pres-
ence of phage islands that have been classified as cryptic 
prophages [30]. Therefore, it was necessary to confirm 
whether phage proteins induced in clinical A. bauman-
nii strains were incorporated into OMVs. Our proteomic 
results clearly showed differential expression of phage 
proteins correlated with antibiotic treatment, and about 
40% of phage protein expression was downregulated fol-
lowing imipenem treatment (Fig. 4).

Finally, genomic analysis of A. baumannii DU202 
revealed the presence of four β-lactamase genes in the 
genome, and the proteomic results demonstrated upreg-
ulation of β-lactamase OXA-23 (DU202_RS06415) fol-
lowing exposure to imipenem. In particular, OXA-23 
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Fig. 3 Venn diagrams for comparative proteome analysis. a OMV proteomic results based on two indicated genomic databases. b Summary 
of proteomic analysis of two sub‑proteomes (OMV vs. bacterial membrane fraction). c Comparative proteome analysis of  OMVLB and  OMVIM. d 
Quantitative summary of OMV proteomics. The numbers indicate the identified protein number
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accounted for about 36% of total proteins in  OMVIM, 
and was upregulated 9.23-fold compared with  OMVLB 
(Table 1).

Imipenem induces differential expression of surface 
proteins in A. baumannii OMVs
Next, we compared protein contents of  OMVLB and 
 OMVIM. Of total 348 proteins,  OMVLB and  OMVIM 
shared 230 proteins, and 71 and 47 proteins were exclu-
sively expressed in  OMVLB and  OMVIM, respectively 
(Fig.  3c, d). Above, we showed that  OMVIM are more 
cytotoxic than  OMVLB, and their protein contents are 
different from each other. To investigate proteins that 
may contribute to the cytotoxic activity of  OMVIM, we 
focused on differentially expressed proteins between 
 OMVLB and  OMVIM, especially localized in outer mem-
brane, periplasm and extracellular region. Eight pro-
teases were identified in the proteome of OMVs, all of 
which were upregulated in the imipenem culture (Addi-
tional file 3: Table S1). Of these, putative serine protease 
(DU202_RS15930), M23 family peptidase (DU202_
RS20255) and tail-specific protease (DU202_RS02680) 
were particularly highly upregulated and predicted as 
major outer membrane proteins (Table 1). Although the 
biological functions of these proteases are not yet clear, 
periplasmic and serine proteases have been linked to 
pathogenic activities in several pathogenic Gram-nega-
tive and Gram-positive bacteria including P. aeruginosa, 
E. coli and Streptococcus pyogenes [31–34]. Sequence 

homology analysis showed that putative serine protease 
(DU202_RS15930) shares significant homology (86–91% 
coverage, 33–34% identity) with HtrA protease and 
DegP from various pathogenic bacteria [35, 36]. Putative 
peptidase S41 (DU202_RS01365) shares high sequence 
similarity with CtpA of P. aeruginosa (76% coverage, 33% 
identity), which is cytotoxic toward host cells and essen-
tial for the type 3 secretion system [31].

Outer membrane proteins and porins (DU202_
RS17430, DU202_RS01660, DU202_RS12145, DU202_
RS04315 and DU202_RS16100) were also upregulated in 
OMVs following exposure to imipenem (Table 1). Outer 
membrane protein A (OmpA, DU202_RS17430) of A. 
baumannii is cytotoxic and involved in biofilm forma-
tion as well as adhesion, invasion and apoptosis of host 
cells [37–39]. In fact, OmpA is shown to contribute in 
the antimicrobial resistance. Disruption of OmpA gene 
results in decreased antibiotic resistance of A. bauman-
nii [40]. OmpW (DU202_RS01660) is a highly immuno-
genic protein that elicits protective immunity against A. 
baumannii infections [41]. β-barrel assembly machine 
(BAM) proteins are outer membrane complexes respon-
sible for folding and insertion of β-barrel outer mem-
brane proteins, and are considered to be strong vaccine 
candidates in Gram-negative bacteria [42, 43]. In this 
study, BamA (DU202_RS12145) and BamD (DU202_
RS04315) were upregulated by imipenem (Table  1), as 
was TolB (DU202_RS16100), which increases OMV for-
mation in Helicobacter pylori [44].

Fig. 4 Mu‑like prophage gene cluster in A. baumannii DU202 and their expression in OMVs
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Peptidyl-prolyl cis–trans isomerases (PPIs) catalyse the 
cis/trans isomerisation of peptide bonds preceding prolyl 
residues during protein folding [45]. PPIs have been iden-
tified as virulence-associated proteins in bacteria such as 
Legionella pneumophila, Enterobacteriaceae and Yers-
inia pseudotuberculosis [46]. Expression of A. baumannii 
DU202 PPI (DU202_RS00390) was upregulated > 1.8-fold 
in  OMVIM, and superoxide dismutase (DU202_RS18760) 
and lipoprotein NlpD (DU202_RS15465) were also 
induced in OMVs by imipenem (Table 1). These proteins 
have been linked to virulence in the pathogenic bacteria 
Neisseria meningitidis, Brucella abortus and Yersinia pes-
tis [47, 48].

Immunogenic proteins in A. baumannii  OMVIM

To identify proteins with high immunogenic activity 
among the A. baumannii DU202 OMV proteins that may 
be candidates for diagnostic markers or vaccines, western 
blotting was performed using the A. baumannii DU202 

OMV antiserum. In previous studies, OmpA, OmpO and 
OmpW were identified [6]. Among the identified 348 
OMV proteins, eight proteins (AdeK, OmpE, OmpA, 
TolB, OmpW, lipoprotein Omp16, Mu-like prophage 
head subunit and hypothetical protein) were predicted 
to be highly immunogenic (Fig.  5 and Additional file  4: 
Table S2). Interestingly, all are cell surface proteins (outer 
membrane or periplasmic) according to the subcellular 
prediction program, but it was not possible to differenti-
ate between  OMVLB and  OMVIM.

Conclusions
Treatment of the A. baumannii clinical strain DU202 
with imipenem increased OMV production, modi-
fied OMV proteome components and enhanced path-
ogenicity toward cultured host cells. A. baumannii 
DU202 includes several prophage gene clusters in its 
genome, some of which are highly expressed in OMVs. 
Our proteogenomic analysis successfully identified 

Table 1 Differential induction of major outer membrane proteins of Acinetobacter baumannii DU202 OMV according 
to imipenem treatment

a Induction ratio was calculated as  OMVLB per  OMVIM
b Abundance was indicated as mol%

Locus_tag Description Localization Log  ratioa OMVLB
b OMVimipenem

b

DU202_RS06415 Carbapenem‑hydrolyzing class D beta‑lactamase OXA‑23 Cytoplasmic 0.923 4.3782 36.682

DU202_RS02680 Tail‑specific protease OuterMembrane 0.855 0.037 0.262

DU202_RS15465 Lipoprotein NlpD Periplasmic 0.69 0.051 0.251

DU202_RS16100 Tol–Pal system beta propeller repeat protein TolB OuterMembrane 0.53 0.168 0.57

DU202_RS19805 Transporter OuterMembrane 0.461 0.078 0.225

DU202_RS12145 Outer membrane protein assembly factor BamA OuterMembrane 0.46 0.111 0.319

DU202_RS11840 TonB‑dependent siderophore receptor OuterMembrane 0.439 0.045 0.123

DU202_RS15930 Putative serine protease OuterMembrane 0.413 0.326 0.844

DU202_RS18760 Superoxide dismutase (Cu–Zn) Periplasmic 0.366 0.762 1.77

DU202_RS20255 M23 family peptidase Periplasmic 0.365 0.051 0.119

DU202_RS01660 Outer membrane protein W precursor Periplasmic 0.265 0.49 0.903

DU202_RS04315 Outer membrane protein assembly factor BamD OuterMembrane 0.244 0.106 0.186

DU202_RS17430 Outer membrane protein A precursor OuterMembrane 0.196 1.775 2.789

DU202_RS00390 FKBP‑type peptidyl‑prolyl cis–trans isomerase OuterMembrane 0.178 0.083 0.125

DU202_RS10675 Putative bacteriophage Mu Gp45 protein Periplasmic − 0.579 0.112 0.03

DU202_RS16695 Succinate dehydrogenase flavoprotein subunit Cytoplasmic − 0.586 0.158 0.041

DU202_RS17820 Preprotein translocase subunit YajC InnerMembrane − 0.592 0.18 0.046

DU202_RS14050 Phage head–tail adapter protein Cytoplasmic − 0.61 0.149 0.037

DU202_RS09385 Phage major capsid protein Periplasmic − 0.632 1.084 0.253

DU202_RS04220 Peptidoglycan‑binding protein LysM Periplasmic − 0.7 0.12 0.024

DU202_RS05710 Copper resistance protein NlpE Extracellular − 0.743 0.447 0.081

DU202_RS09380 HK97 family phage prohead protease Cytoplasmic − 0.75 0.214 0.038

DU202_RS10720 Phage tail sheath‑like protein Periplasmic − 0.767 0.175 0.03

DU202_RS13995 Lytic transglycosylase domain‑containing protein OuterMembrane − 0.8 0.16 0.025

DU202_RS14000 Methyl‑coenzyme M reductase OuterMembrane − 0.967 0.482 0.052

DU202_RS16690 Succinate dehydrogenase iron‑sulfur subunit Cytoplasmic − 1.307 0.154 0.008

DU202_RS09375 Phage portal protein OuterMembrane − 1.522 0.718 0.022
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several unique genomic characteristics of OMVs from a 
clinical A. baumannii strain that could prove useful for 
developing antibiotic agents in the future.
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