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LETTER TO THE EDITOR

Proteomic analysis identifies highly 
expressed plasma membrane proteins 
for detection and therapeutic targeting 
of specific breast cancer subtypes
Yvonne S. Ziegler1* , James J. Moresco2, Patricia G. Tu2, John R. Yates III2 and Ann M. Nardulli1

Abstract 

In recent years, there has been an emphasis on personalizing breast cancer treatment in order to avoid the debilitat-
ing side effects caused by broad-spectrum chemotherapeutic drug treatment. Development of personalized medi-
cine requires the identification of proteins that are expressed by individual tumors. Herein, we reveal the identity of 
plasma membrane proteins that are overexpressed in estrogen receptor α-positive, HER2-positive, and triple negative 
breast cancer cells. The proteins we identified are involved in maintaining protein structure, intracellular homeostasis, 
and cellular architecture; enhancing cell proliferation and invasion; and influencing cell migration. These proteins may 
be useful for breast cancer detection and/or treatment.
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Introduction
Much has been written about the promise of personal-
ized medicine for cancer treatment. Tremendous strides 
could be made in cancer treatment if targeted therapies 
were developed for specific tumor subtypes rather than 
relying on broad-spectrum chemotherapeutic agents. 
To begin to meet this challenge, it will be necessary to 
identify proteins that are expressed in individual patient 
tumors so that targeted treatments can be developed. 
Some progress has been made in this regard in the identi-
fication of proteins that are expressed in different classes 
of breast cancer (BC) tumors [1, 2].

The majority of BC tumors express estrogen recep-
tor α (ERα) and the progesterone receptor (PR). Estro-
gen receptor antagonists and aromatase inhibitors have 
been successfully utilized to treat these ERα-positive 
tumors [3]. Another class of BC tumors do not express 

ERα, but overexpress the plasma membrane (PM) protein 
kinase HER2 (receptor tyrosine-protein kinase HER2). 
Humanized antibodies that bind to HER2 and reduce 
proliferation of HER2-positive BC cells have been uti-
lized as a targeted treatment for this class of BC tumor 
[4]. Unfortunately, there exists a class of BC tumors for 
which no targeted treatments exist. These BC tumors 
do not express ERα, PR, or HER2 and are referred to as 
triple negative breast cancer (TNBC) tumors. There is a 
pressing need to identify proteins that are expressed by 
individual BC tumors, especially TNBC tumors so that 
new, targeted treatments might be developed.

PM proteins make attractive therapeutic targets due to 
their accessibility and involvement with the initiation of 
critical cell signaling cascades [5]. As proof of concept, 
many targeted therapies approved or in development tar-
get cell surface proteins [6]. Importantly, novel immuno-
therapies can capitalize on abundant cell-surface markers 
that are specific for particular cancer subtypes [7, 8].

The proteins discussed herein are an addendum to a 
previous study [6] in an attempt to identify additional 
proteins that might be useful targets for personalized 
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therapy. The earlier analysis examined overexpressed 
proteins in several categories, including tyrosine kinases, 
MHC class I proteins, cell adhesion proteins, GPCRs and 
G proteins, cytoskeletal proteins, intermediate filaments, 
tubulins, actins, and myosins. The proteins discussed 
below did not readily fall into these functional categories 
and are now being considered based on their expression 
across the clinical classes of breast cancer.

Materials and methods
Cell lines and culture
MCF-7, MDA-MB-231, and SK-BR-3 cells, derived from 
pleural effusions (metastatic sites), and MCF-10A cells, 
derived from a benign fibrocystic mammary lesion, were 
originally obtained from ATCC (Manassas, VA) and 
maintained as described [6]. Two TNBC cell lines, DT22 
(basal claudin-low) and DT28 (basal-epithelial) were 
derived from dissociated primary tumors and maintained 
as described [6, 9].

Plasma membrane isolation
Purified PM were prepared using differential centrifuga-
tion followed by aqueous two-phase partitioning [6, 10, 
11]. Briefly, ≥ 4 × 107 cells were harvested and pelleted 
in PBS at 4  °C, resuspended  (108 cells/ml) in hypotonic 
buffer (0.2  mM EDTA, 1  mM  NaHCO3 with protease 
inhibitors), and the nuclei and intact cells were removed 
by low-speed centrifugation (10  min at 800×g). The 
supernatant was subjected to high-speed centrifugation 
(1 h at 100,000×g) to yield a crude membrane pellet. The 
pellet was resuspended in 200  mM phosphate buffer, 
pH 7.2 and combined with the two-phase solution com-
prised of 6.6% dextran T500 (Sigma, St. Louis, MO) and 
6.6% w/w polyethylene glycol (Emerald Bio, Bainbridge 
Island, WA) in 200 mM phosphate buffer, pH 7.2, vigor-
ously mixed, spun (5 min at 1150×g), and the top phase 
containing PM was removed. The bottom phase was re-
extracted with fresh dextran/polyethylene glycol buffer 
and combined with the first top phase. Finally, the pooled 
top phase was diluted with 5 volumes of 1 mM  NaHCO3 
and spun (1 h at 100,000×g). The PM pellets were flash 
frozen and stored at − 80 °C for subsequent MS analysis.

Mass spectrometry
Pellets from ultracentrifugation were resuspended in 
1  ml extraction buffer (635626, Clontech, Mountain 
View, CA,), followed by precipitation of 100  μg of pro-
tein in 23% TCA. Acetone-washed pellets were resus-
pended in 60 μl digestion buffer (0.1% Rapigest (Waters, 
Milford, MA) plus 50 mM ammonium bicarbonate) and 
heated at 60  °C for 30 min. Proteins were reduced with 
5  mM tris(2-carboxyethyl)phosphine hydrochloride 
(C4706, Sigma) and alkylated with 10 mM iodoacetamide 

(Sigma). Proteins were then digested for 18 h at 37 °C in 
1 μg trypsin (V5111, Promega, Madison, WI). Digestion 
was terminated by addition of 5% formic acid followed 
by a 30 min incubation at 37 °C. Debris was removed by 
centrifugation, 30 min at 18,000×g. MudPIT analysis was 
performed using an Accela HPLC pump (Thermo) and 
LTQ XL (Thermo) using an in-house built electrospray 
stage [12]. Protein and peptide identification were done 
with Integrated Proteomics Pipeline—IP2 (Integrated 
Proteomics Applications, San Diego, CA. http://www.
integ rated prote omics .com/). The tandem mass spectra 
were searched against a human protein database (Uni-
protKB, release 2018_07) with reversed sequences using 
ProLuCID (version 1.3.5) [13–15]. The search space 
included half and fully tryptic peptide candidates that 
fell within the mass tolerance window with no miscleav-
age constraint. Carbamidomethylation (+57.02146  Da) 
of cysteine was considered as a static modification. Data 
was filtered using DTASelect v2.0.49 with a protein false 
positive rate of 1%.

TCGA analysis
TCGA data was extracted and analyzed as described [16]. 
Briefly, level 3 gene expression (microarray) data derived 
from breast invasive carcinoma were downloaded from 
the TCGA Research Network (http://cance rgeno me.nih.
gov/) and parsed with a script generated at the University 
of Illinois Life Sciences Office of Information Technol-
ogy. Data from 321 estrogen receptor positive, 53 HER2 
positive, and 80 TNBC tumors were used to generate 
boxplots in GraphPad Prism (version 5.00 for Windows, 
GraphPad Software, La Jolla California USA, www.graph 
pad.com).

Results and discussion
To identify proteins expressed by specific classes of BC 
tumors, we utilized MCF-7 cells, (ERα and PR positive), 
SK-BR-3 cells (HER2 overexpression), and MDA-MB-231 
cells, which do not express ERα, PR, or HER2 and are 
classified as TNBC cells. Each of these cell lines has 
been extensively characterized and their gene expression 
profiles are similar to their respective tumor subtypes 
[17, 18]. In addition, two more recently isolated TNBC 
cell lines, DT22 and DT28 cells [6, 9, 16] were included 
to more carefully characterize the behavior of primary 
TNBC tumors. Using microarray analysis, the PAM50 
classifier  [19], and the claudin-low predictor  [20], DT22 
is classified as basal-claudin-low, and DT28 is classified 
as basal [9]. MCF-10A cells were included as a benign 
control [21, 22].

To exploit the fact that PM proteins make attractive 
therapeutic targets, PM proteins were isolated from each 
cell line and mass spectrometry (MS) analysis was used 

http://www.integratedproteomics.com/
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to define the PM proteomes and identify potential targets 
[6]. Data was parsed using spectral counts (SC), normal-
ized spectral abundance factor (NSAF) [23], which cor-
rects for the effect of protein length on spectral counts, 
and exponentially modified protein abundance index 
(EMPAI) [24], which is useful in quantifying protein con-
tent in complex mixtures (Additional file  1: Table  S1). 
Biological validation of the MS data was previously 
performed using RT-PCR, immunofluorescence, and 
Western blotting analyses, and a close correlation was 
observed between the SC values and mRNA and pro-
tein levels in each of the cell lines [6]. Thus, the MS data 
generated is semi-quantitative in nature and can yield 
insights into differences and similarities among the BC 
and control cell lines.

Although a large number of proteins with higher PM 
expression have been previously described [6], this paper 
describes additional proteins that may be useful in tar-
geted BC treatment or tracking disease progression and/
or recurrence. Two factors were considered in selecting 
these proteins for further investigation, including the 
total number of SCs detected and also the number of 
SCs detected in a BC cell line compared to the MCF-10A 
control. Four BC PM proteins that have been success-
fully targeted or are in clinical trials as potential targets 
were examined in our data, including HER1 (EGFR), 
HER2 (ERBB2), HER3 (ERBB3), and the tyrosine-protein 
kinase receptor UFO (AXL) (Table 1). We decided upon 
a cut-off of 100 SCs for consideration of a protein, a value 
well above the 53 and 58 SCs seen for ERBB3 and AXL, 
respectively. Since targetability requires that the malig-
nant cells stand out from normal cells, we also examined 
the ratio of SCs between the BC cells and control MCF-
10A cells. Epidermal growth factor receptor (EGFR) 
provided the cut-off value of 8, thus requiring that malig-
nant expression be at least eightfold higher than control 
expression to be considered.

ERα‑positive cells
AGR2 (anterior gradient protein 2 homolog) was highly 
expressed in MCF-7 cells with 135 SCs (Table 2), but was 

not detected in the PM of any of the other BC cell lines. 
AGR2 is a member of the protein disulfide isomerase 
(PDI) family, is involved in protein folding and disulfide 
exchange reactions, and has been implicated in cancer 
cell proliferation and progression [25, 26]. There is evi-
dence to suggest that ERα induces AGR2 expression 
[27] and that higher AGR2 levels are associated with 
tamoxifen resistance in advanced disease [28]. To inves-
tigate how our MS results relate to clinical data, the gene 
expression of AGR2 was analyzed using microarray data 
from The Cancer Genome Atlas (TCGA). Consistent 
with our findings in MCF-7 cells, the expression of AGR2 
is higher in ERα-positive BC tumors than in HER2-pos-
itive or TNBC tumors (Fig. 1a). Gene expression of ERα 
in BC tumors is included for comparison, but note that 
ERα is predominantly a nuclear protein with minimal PM 
expression, as reflected in our data [29]. Interestingly, 
we previously demonstrated that another protein in the 
PDI family (P4HB) alters ERα structure and influences 
estrogen-regulated gene expression [30]. AGR2, which 
enhances BC cell proliferation and has been detected 
in circulating tumor cells, may be useful as a marker of 
metastasis [26].  

GCN1 (eIF2-alpha kinase activator GCN1) is most 
highly expressed in MCF-7 cells (107 SCs) and has very 
low expression in MCF-10A cells (7 SCs). This protein 
activates the protein kinase GCN2 which orchestrates 
the cell’s response to amino acid starvation [31].

HER2‑positive cells
Three proteins were more highly expressed in the 
HER2-positive SK-BR-3 cells than in the other BC 
cell lines. ACLY (ATP-citrate synthase) was highly 
expressed in SK-BR-3 cells (199 SCs) and is responsi-
ble for acetyl-CoA production and de novo lipid syn-
thesis. ACLY has been implicated in promoting high 
rates of aerobic glycolysis and lipid synthesis in a vari-
ety of tumor cells and in increasing tumor cell aggres-
sion [32]. Because reduction of ACLY expression leads 
to arrest of tumor cell proliferation in vitro and in vivo, 
it has been suggested that this protein may be useful 

Table 1 Targeted therapies approved or in clinical trials

The therapeutic, gene target, and number of SCs identified in each cell line for that target are listed. MB-231 indicates MDA-MB-231 cells

Therapeutics and their targets

Therapeutic Gene target MCF‑7 SKBR3 DT22 DT28 MB‑231 MCF‑10A

Herceptin ERBB2 0 276 45 3 3 0

Gefitinib, Tarceva, Poziotinib EGFR 0 22 11 27 88 10

MM-111, Seribantumab, U3-1402 ERBB3 3 6 52 3 0 0

Bemcentinib AXL 0 0 0 0 58 0
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as a therapeutic target [33]. DHRS2 (dehydrogenase/
reductase SDR family member 2) metabolizes a vari-
ety of steroids and other cellular components and was 
highly and exclusively expressed in SK-BR-3 cells (200 
SCs). Increased DHRS2 expression has also been noted 
in prostate [34] and ovarian [35] cancer cells. SUSD2 
(sushi domain-containing protein 2) is involved in cell 
adhesion and migration and was highly expressed in 
SK-BR-3 cells (412 SCs). Interestingly, SUSD2 expres-
sion closely resembles the expression of HER2 in BC 
tumors (Fig. 1b). Elevated expression of SUSD2 is asso-
ciated with increased tumor invasion and decreased 
survival in a mouse model [36]. Silencing of SUSD2 
expression in endometrial carcinoma cells results in 
cell death [37]. Thus, it has been suggested that reduc-
ing expression of this protein might be a therapeutically 
useful strategy. In contrast to its effect on BC and endo-
metrial cells, SUSD2 may function as a tumor suppres-
sor in both kidney and lung cancer cells [38].

TNBC cells
There is a tremendous need to identify proteins that are 
overexpressed in TNBC tumors in order to develop tar-
geted treatments for these patients. We identified 7 pro-
teins that are most highly represented in TNBC cells. 
DT22 cells overexpressed two of these proteins. EEF2 
(elongation factor 2; 103 SCs) is overexpressed in multi-
ple cancer types and is a promising immunotherapy tar-
get [39]. TNC (tenascin; 105 SCs), an extracellular matrix 
protein involved in neuronal guidance and axonal out-
growth in the brain, has been implicated in the metastasis 
of breast cancer to the lungs [40]. PSMA5 (proteasome 
subunit alpha type-5) is highly expressed only in DT28 
cells (219 SCs). Increased proteasome activity has been 
noted in breast and other cancer types, providing protec-
tion from apoptosis, thereby yielding additional avenues 
for drug intervention [41].

Like the DT22 cells, MDA-MB-231 cells overex-
pressed two proteins, including BASP1 (brain acid 

Table 2 Highly expressed plasma membrane proteins in breast cancer cell lines

The gene name, number of spectral counts identified in each cell line, and protein name are listed. SCs of more highly expressed proteins are bolditalic. MB-231 
indicates MDA-MB-231 cells

Overexpressed proteins identified

Gene MCF‑7 SK‑BR‑3 DT22 DT28 MB‑231 MCF‑10A Protein

ERα-positive cells

 AGR2 135 0 0 0 0 0 Anterior gradient protein 2 homolog

 GCN1 107 37 81 52 32 7 eIF2-alpha kinase activator GCN1

HER2-positive cells

 ACLY 57 199 73 83 78 19 ATP-citrate synthase

 DHRS2 0 200 0 0 0 0 Dehydrogenase/reductase SDR family member 2

 SUSD2 8 412 0 0 0 4 Sushi domain-containing protein 2

TNBC

 EEF2 85 57 103 52 75 9 Elongation factor 2

 TNC 0 0 105 6 0 0 Tenascin

 PSMA5 25 11 51 219 33 6 Proteasome subunit alpha type-5

 BASP1 0 2 0 0 140 2 Brain acid soluble protein 1

 SLC1A5 18 10 34 14 115 6 Neutral amino acid transporter B(0)

 ECPAS 59 71 109 118 44 6 Proteasome adapter and scaffold protein ECM29

 TCP1 16 66 106 109 74 8 T-complex protein 1 subunit alpha

ERα-positive and HER2-positive cells

 FASN 107 393 46 21 60 30 Fatty acid synthase

ERα-positive and TNBC cells

 PA2G4 129 84 54 130 26 15 Proliferation-associated protein 2G4

HER2-positive and TNBC cells

 AHNAK 91 426 931 142 1219 103 Neuroblast differentiation-associated protein AHNAK

 TPP2 45 119 150 41 58 6 Tripeptidyl-peptidase 2

Multiple cell types

 EEF1A1 894 834 576 486 560 34 Elongation factor 1-alpha 1

 EEF1A2 739 525 157 87 154 11 Elongation factor 1-alpha 2
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soluble protein 1; 140 SCs). We were intrigued by the 
fact that, like TNC, BASP1 is involved in neuronal 
guidance in the brain [42, 43]. In addition, BASP1 is 
involved in terminal end bud formation during mam-
mary gland development [44]. It seems possible that 
these two proteins may also play a role in tumor cell 

infiltration. SLC1A5 (neutral amino acid transporter 
B(0); 115 SCs), mediates uptake of glutamine in TNBC 
[45]. SLC proteins by definition are membrane trans-
port proteins. Interestingly, another SLC protein, 
SLC39A6 is a PAM50 gene [46] and is most likely a Zn 
transporter [25]. The modified and excessive nutritional 
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needs of cancer cells likely require increased expression 
of multiple SLC proteins.

Two proteins were more highly expressed in the TNBC 
cell lines derived from primary tumors, DT22 and DT28. 
The first of these, ECPAS (proteasome adapter and scaf-
fold protein ECM29; 109 and 118 SCs, respectively), 
is a component of the 26S proteasome. Lower levels 
of ECM29 predict a better outcome in breast cancer 
patients. In fact, the therapeutic action of palbociclib 
involves activation of the proteasome through the loss of 
ECM29, resulting in cell senescence and decreased cell 
proliferation [47]. Also more highly expressed by DT22 
and DT28 cells is TCP1 (T-complex protein 1 subunit 
alpha; 106 and 109 SCs respectively). This protein is part 
of the protein folding CCT chaperone complex that has 
generated interest as a therapeutic target in small cell 
lung cancer [48].

The fact that these seven proteins differentially distrib-
ute over the three different TNBC cell lines and that 5 of 
the proteins were overexpressed by just one TNBC cell 
line reflect that the TNBC category is heterogeneous and 
requires further definition [49].

Multiple BC cell types
Although a number of the proteins we identified were 
expressed in just one class of BC cells (ERα-positive, 
HER2-positive, or TNBC cells), some proteins were over-
expressed in more than one BC cell type.

FASN (fatty acid synthase) was highly expressed by 
MCF-7 (107 SCs) and SK-BR-3 (393 SCs) cells and is 
also more highly expressed in ERα-positive and HER2-
positive mammary tumors (Fig. 1c). FASN catalyzes the 
synthesis of fatty acids that are required for membrane 
production in rapidly dividing cells and has been desig-
nated a cancer biomarker [50]. Interestingly, while over-
expression of FASN has been linked to aberrant cellular 
architecture, reducing expression of this protein restores 
nearly normal cellular architecture [51].

PA2G4 (proliferation-associated protein 2G4) was 
more highly expressed in ERα-positive MCF-7 (129 SCs) 
and DT28 TNBC (130 SCs) cells. Elevated PA2G4 expres-
sion in mammary tumors is associated with decreased 
patient survival [52, 53]. In contrast, reduced PA2G4 
expression is associated with increased cell proliferation 
and reduced survival of patients with hepatocellular car-
cinoma [54].

Two proteins were highly expressed in HER2-posi-
tive and TNBC cells. AHNAK (neuroblast differentia-
tion-associated protein AHNAK) was the most highly 
expressed PM protein identified in our study and was 
especially high in two of the TNBC cell lines, DT22 (931 
SCs) and MDA-MB-231 (1219 SCs) cells. The number of 
AHNAK SCs in these cells was far greater than detected 

in MCF-10A cells (103 SCs). ANHAK was also highly 
expressed in HER2-positive SK-BR-3 cells (426 SCs). It 
has been suggested that AHNAK functions as a tumor 
suppressor in TNBC cells by decreasing cell proliferation 
and tumor invasion [55] and that increased expression 
of this protein may indicate a more favorable prognosis. 
Consistent with this idea, decreased AHNAK expression 
is associated with a poor outcome in melanoma patients 
[56]. SK-BR-3 and DT22 cells also share high expres-
sion of TPP2 (tripeptidyl-peptidase 2; 119 and 150 SCs, 
respectively), a multi-functional enzyme that controls of 
ERK1 and ERK2 phosphorylation [57].

The eukaryotic translation elongation factors 1-alpha 
proteins EEF1A1 and EEF1A2 play critical roles in pro-
tein synthesis. Peptides from both elongation factors are 
highly represented in all of the breast cancer cell types 
whereas the non-transformed MCF-10A cells expressed 
substantially lower levels of both EEF1A proteins. The 
overexpression of EEF1A2 in breast cancer results in 
activation of PIK-Akt-STAT3 pathways and formation of 
filopodia, resulting in oncogenesis and metastasis [58]. 
Elevated expression of these elongation factors has also 
been noted in human ovarian and lung cancer [58].

Conclusions
Taken together, our findings suggest that the increased 
expression of specific proteins in BC cells helps to main-
tain the structural integrity of cellular proteins (AGR2, 
TCP1) and cellular architecture (FASN), promote the 
synthesis and procurement of fatty acids and other sub-
strates required for generation of rapidly dividing cells 
(ACLY, SLC1A5, FASN, GCN1), enhance tumor cell pro-
liferation (AGR2, ACLY, EEF2, EEF1A1, EEF1A2) and 
invasion (SUSD2), influence tumor cell migration (BASP, 
TNC), and maintain intracellular homeostasis (PSMA5, 
ECPAS). The importance of individual proteins in onco-
genesis and tumor progression has been demonstrated 
by inhibiting the expression of proteins in BC cells. For 
example, inhibiting expression of ACLY [33] reduces 
BC cell proliferation and knocking down FASN helps to 
restore normal mammary cellular architecture [51].

Developing targeted treatments for BC tumors would 
appear to be a daunting task. However, a recurring 
theme in our findings was that proteins, which were 
highly expressed in the BC cell lines we examined, are 
also highly expressed in other types of cancer. Thus, 
by characterizing tumors by the proteins they express, 
rather than the tissue of origin, it may be possible to 
identify therapeutic targets and treatments that would 
be useful for a variety of tumors. For example, Trastu-
zumab, which has been utilized as a first line treatment 
for HER2-positive BC tumors, has also been used to 
treat HER2-positive gastric cancer [59]. Likewise, the 
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FASN inhibitor C75 has significant antitumor effects 
on BC cells as well as prostate and ovarian cancer cells 
[60]. It should be noted, however, that the effect of a 
protein or an inhibitor can vary in tumors that origi-
nate in different tissues.

The veracity of our findings is supported by the fact 
that clinical trials are currently underway to test the 
efficacy of novel inhibitors to limit disease progression. 
A new FASN inhibitor, TVB-2640, is currently being 
tested for its effect on mammary, colon, prostate, and 
lung tumors and leukemia (clinicaltrials.gov). Our studies 
would predict that this inhibitor would be most effective 
in HER2-positive BC cells. The effectiveness of radio-
actively-labeled antibodies to TNC is being examined 
in patients with BC, glioblastoma, and head and neck 
tumors (clinicaltrials.gov). In addition to their impor-
tance as therapeutic targets, some of the highly expressed 
proteins we have identified (SUSD2, FASN, AHNAK, 
EEF1A1, EEF1A2) may be useful as diagnostic biomark-
ers so that disease progression and recurrence might be 
followed in patients using liquid biopsies. Finally, and 
perhaps most importantly, the identification of highly 
abundant cell surface proteins that are unique to an indi-
vidual’s cancer could result in personalized immunother-
apies that are highly effective in controlling or eradicating 
deadly metastatic disease.

Additional file

Additional file 1. Table S1. Peptide count, NSAF values, EMPAI values, 
spectral counts, and % sequence coverage for plasma membrane proteins 
identified by mass spectrometry (FDR < .01).
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