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Quantitative proteomic analysis of prostate 
tissue specimens identifies deregulated protein 
complexes in primary prostate cancer
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Abstract 

Background:  Prostate cancer (PCa) is the most frequently diagnosed non-skin cancer and a leading cause of mortal-
ity among males in developed countries. However, our understanding of the global changes of protein complexes 
within PCa tissue specimens remains very limited, although it has been well recognized that protein complexes carry 
out essentially all major processes in living organisms and that their deregulation drives the pathogenesis and pro-
gression of various diseases.

Methods:  By coupling tandem mass tagging-synchronous precursor selection-mass spectrometry/mass spectrom-
etry/mass spectrometry with differential expression and co-regulation analyses, the present study compared the 
differences between protein complexes in normal prostate, low-grade PCa, and high-grade PCa tissue specimens.

Results:  Globally, a large downregulated putative protein–protein interaction (PPI) network was detected in both 
low-grade and high-grade PCa, yet a large upregulated putative PPI network was only detected in high-grade but 
not low-grade PCa, compared with normal controls. To identify specific protein complexes that are deregulated 
in PCa, quantified proteins were mapped to protein complexes in CORUM (v3.0), a high-quality collection of 4274 
experimentally verified mammalian protein complexes. Differential expression and gene ontology (GO) enrichment 
analyses suggested that 13 integrin complexes involved in cell adhesion were significantly downregulated in both 
low- and high-grade PCa compared with normal prostate, and that four Prothymosin alpha (ProTα) complexes were 
significantly upregulated in high-grade PCa compared with normal prostate. Moreover, differential co-regulation and 
GO enrichment analyses indicated that the assembly levels of six protein complexes involved in RNA splicing were 
significantly increased in low-grade PCa, and those of four subcomplexes of mitochondrial complex I were signifi-
cantly increased in high-grade PCa, compared with normal prostate.

Conclusions:  In summary, to the best of our knowledge, the study represents the first large-scale and quantitative, 
albeit indirect, comparison of individual protein complexes in human PCa tissue specimens. It may serve as a useful 
resource for better understanding the deregulation of protein complexes in primary PCa.
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Background
Prostate cancer (PCa) is the most frequently diagnosed 
non-skin cancer and a leading cause of cancer death 
among males in developed countries [1]. In the United 
States alone, it was estimated that 174,650 men will be 
diagnosed with PCa and that 31,620 will die of this dis-
ease in 2019 [2]. Largely owing to the developments and 
advances in next-generation sequencing technologies, 
the past few years have witnessed a striking growth of 
genomic and transcriptomic profiles of clinical PCa spec-
imens [3]. These large-scale efforts not only enhanced 
our understanding of the molecular underpinnings of 
PCa pathogenesis and progression, but also facilitated 
the identification of novel PCa biomarkers and thera-
peutic targets [4, 5]. Nonetheless, despite the significant 
progress, genomic and transcriptomic profiling studies 
have inherent limitations—they only indirectly and often 
inconclusively measure the properties of proteins, which 
are the major functional molecules and actual execu-
tors of biological functions in living organisms. In fact, 
although genomic alterations can be prioritized using 
a systems pharmacology approach combined with tar-
geted proteomics [6], recent studies have suggested that 
aberrations at the gene copy number, DNA methylation, 
and RNA expression levels often do not reliably predict 
changes at the protein expression level [7, 8].

In contrast to genomic and transcriptomic technolo-
gies, mass spectrometry (MS)-based proteomic tech-
nologies enable comprehensive and direct analysis of 
proteins, and have thus been widely used in the prot-
eomic profiling of clinical specimens, such as biofluid 
and tissue samples [9]. Compared with biofluid speci-
mens such as blood and urine, tissue specimens allow 
more accurate sampling of proteomic changes in tumor 
cells and microenvironment, but they are more difficult 
to obtain. According to a recent survey, only about 40 
proteomic studies were performed on human PCa tis-
sue specimens in the past decade [10]. Moreover, most of 
these studies were conducted using the two-dimensional 
electrophoresis (2DE) matrix-assisted laser desorption 
ionization mass spectrometry (MALDI-MS) technology, 
which rarely provides adequate proteomic coverage and 
is only semi-quantitative. To date, comprehensive and 
quantitative proteomic studies of PCa tissue specimens 
have remained scarce [7, 11–15]. Furthermore, none of 
these studies investigated the global changes of multi-
protein complexes along PCa development and progres-
sion. Notably, protein complexes act as highly specialized 
molecular machines and carry out essentially all major 
processes in a cell, such as gene transcription and splicing 
as well as protein synthesis and degradation [16, 17]. The 
abnormal expression and/or activation of certain protein 
complexes may lead to the pathogenesis and progression 

of many diseases [18]. Hence, the identification of dereg-
ulated protein complexes in clinical tissue specimens 
offers a great potential of revealing novel molecular 
mechanisms and discovering new biomarkers and thera-
peutic targets for various human diseases including PCa.

Currently, a variety of proteomic technologies are avail-
able for large-scale protein quantification [19]. Among 
these, tandem mass tagging (TMT) offers high multiplex-
ing capability, allowing quantitative comparison of up to 
11 samples simultaneously [20, 21]. Previously, TMT suf-
fered from the issue of precursor ion interference, which 
results in ratio compression and thus an underestimation 
of expression differences [22]. With the recent develop-
ment of the synchronous precursor selection (SPS)-MS3 
technique, the ratio compression issue is largely elimi-
nated [23]. As such, the TMT-SPS-MS3 combination 
enables highly multiplexed and accurate quantification 
of proteomes. Moreover, when coupled with protein co-
regulation analysis, TMT-SPS-MS3 analysis permits sys-
tems-wide analysis of protein–protein interactions (PPIs) 
with high accuracy [24].

In the present study, the TMT-SPS-MS3 approach was 
integrated with differential expression and co-regulation 
analyses to investigate the global changes of protein 
complexes, in terms of abundance and PPI, in 27 opti-
mal cutting temperature (OCT) compound-embedded 
and cryopreserved clinical tissue specimens of primary 
PCa (i.e., 9 normal prostate, 9 low-grade/low-risk PCa, 
and 9 high-grade/high-risk PCa). Notably, recent studies 
have shown that, when properly handled and processed, 
OCT samples provide better protein recovery and MS 
identification than formalin-fixed and paraffin-embed-
ded (FFPE) specimens [25, 26]. After stringent statistical 
analysis, the study revealed that certain protein com-
plexes were significantly deregulated in low-grade and/or 
high-grade PCa, compared with normal prostate. Further 
exploitation of the deregulated protein complexes may 
shed new light on the molecular basis of PCa develop-
ment and progression in  vivo, as well as provide novel 
biomarkers and therapeutic targets for better manage-
ment of this leading male cancer.

Methods
Prostate tissue specimens
All 18 PCa tissue samples and 9 PCa-adjacent normal 
control samples (with ≤ 2% tumor) were collected from 
radical prostatectomy during the period of 2010–2014, 
OCT embedded by the Cedars-Sinai Medical Center 
Biobank core facility, and stored at − 80  °C (Additional 
file  2: Table  S1). The PCa samples are either of low-
grade (Gleason score of 6) or high-grade (Gleason score 
of 8 or 9) prostate adenocarcinoma (Additional file  2: 
Table S1). The average (± standard deviation; SD) ages of 
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patients in the normal (N) prostate, low-grade (LG) PCa, 
and high-grade (HG) PCa groups are 62.1 (± 11.2), 61.3 
(± 9.2), and 65.1 (± 8.1) years, respectively (Additional 
file 2: Table S1). Some patients had comorbidities such as 
hypertension and arthritis, but there is no significant bias 
for a specific type of comorbidity in any group (Addi-
tional file 2: Table S1).

To estimate the percentages of epithelial and stromal 
cells in each tissue specimen, cryostat sections were cut 
from OCT blocks at 8  μm with a Leica CM1950 Cry-
ostat (Leica Biosystems, Wetzlar, Germany) and mount 
on gelatin-coated histological slides. After hematoxylin 
and eosin (H and E) staining, tissue sections were evalu-
ated by an experienced pathologist, who was blinded 
to the experimental design, to estimate the percentages 
of epithelial and stromal cells under an optical micro-
scope. Only specimens with ≥ 60% of epithelial cell purity 
were used for the proteomic analysis (Additional file  2: 
Table S1).

Protein extraction, digestion and TMT labeling
OCT was removed essentially as described [27]. Briefly, 
with a sterile scalpel, about 20  mm3 tissue was cross-
sectionally cut from the top (tissue) layer of each OCT 
block in a petri dish on ice, further cut into small pieces, 
and transferred to a 1.5 mL Eppendorf tube. Tissue pieces 
were gently washed with 1 mL ice-cold 70% ethanol for 
twice, ice-cold water for once, and ice-cold 100 mM Tris–
HCl, pH 7.4 for twice. To lyse tissue, 100 μL lysis buffer 
(80  mM Tris–HCl, 4% SDS, 100  mM DTT, pH7.4) was 
added into each tube, and the tissue pieces were grinded 
with disposable pestles using a cordless pestle motor 
(VWR, Radnor, PA). The lysates were thoroughly soni-
cated in a water-bath sonicator (Elma S180H) to reduce 
viscosity, incubated at 95 °C for 5 min, and centrifuged at 
16,000 × g for 10  min. Protein concentration was deter-
mined using the Pierce 660  nm protein assay (Thermo 
Scientific) according to the manufacture’s instruction.

To generate an internal proteomic standard, 20 μg pro-
tein from each of the 27 samples was mixed. Because a 
10-plex TMT reagent set can only accommodate up to 10 
samples, the 27 tissue samples and three internal stand-
ard (pooled) samples were divided into three sets. Each 
TMT10plex set contains one internal standard, three 
normal prostate, three low-grade PCa, and three high-
grade PCa samples. From each sample, 60  μg proteins 
were alkylated with iodoacetamide and digested with 
trypsin using the filter-aided sample preparation (FASP) 
method [27]. Tryptic peptides were labeled with 10-plex 
TMT reagents in parallel, essentially as we previously 
described [28, 29]. To ensure that the internal standards 
for the three sets are identical, the three TMT126-labeled 
internal standard samples were mixed into one single 

sample. Subsequently, for each TMT10plex set, an equal 
amount of tryptic peptides (derived from about 20  μg 
proteins) with differential TMT labeling was merged into 
one sample, desalted using C18 spin columns (Thermo 
Scientific), and concentrated in a SpeedVac (Thermo 
Scientific).

Peptide fractionation
To reduce the complexity of tryptic peptides and improve 
the proteomic coverage, peptide fractionation was per-
formed using high-pH reversed-phase liquid chroma-
tography (LC) [30]. Each TMT10plex-labeled peptide 
mixture sample was redissolved with 45 μL 10  mM 
ammonium formate, pH 10. Twenty microliters of pep-
tide solution were injected and separated on a 20-cm 
Hypersil GOLD C18 column (1.9 μm particle size, 2.1 mm 
inner diameter, 175 Å pore size) heated to 35  °C on an 
Ultimate 3000 XRS system (Thermo Scientific), with 
a flow rate of 0.5  mL/min. Mobile phase A and B con-
sisted of 10  mM ammonium formate in water (pH 10) 
and 10 mM ammonium formate in 95% acetonitrile (pH 
10), respectively. The 13-min LC gradient was 0% B over 
3 min, 0–28% B over 7 min, 28–90% B over 1 min, 90% 
B over 1 min, and 90–0% B over 1 min. For each TMT-
10plex set, a total of 72 fractions were collected after 
3.5 min, with a collection rate of one fraction per 6 s. The 
72 fractions were then concatenated into 24 fractions by 
combining fractions 1, 25, 49; 2, 26, 50; and so on. It was 
shown that the concatenation strategy allows more uni-
form peptide distributions on subsequent low-pH RPLC 
and thus improves protein identifications [30]. The con-
catenated fractions were concentrated in a SpeedVac and 
stored at -80 °C until LC-SPS-MS3 analysis.

LC‑SPS‑MS3 analysis
LC-SPS-MS3 analysis was conducted on an EASY nLC 
1200 connected to an Orbitrap Fusion Lumos mass 
spectrometer (Thermo Scientific). The Orbitrap Fusion 
Lumos is currently one of the most advanced mass spec-
trometers. It is a tribrid mass spectrometer that contains 
three different types of mass analyzers—a quadrupole 
mass filter, a linear ion trap, and an orbitrap. The tribrid 
configuration allows isolation and MS3 fragmentation of 
multiple MS2 fragment ions (i.e., SPS-MS3), largely elim-
inating the issues of isolation interference and dynamic 
range compression that are commonly observed in iso-
baric tag-based quantitative proteomics experiments 
[23].

Each fraction of peptides was redissolved with 25  μL 
0.2% formic acid, 2% acetonitrile. Ten microliters of 
peptide solution were loaded onto a 2-cm trap column 
(PepMap 100 C18, 75 μm inner diameter, 3 μm particles, 
100 Å pore size) and separated by a 50-cm EASY-Spray 
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column (PepMap RSLC C18, 75 μm inner diameter, 2 μm 
particles, 100 Å pore size) heated to 55 °C, at a flow rate 
of 250 nL/min. Mobile phases A and B consisted of 0.1% 
formic acid in water and 0.1% formic acid in 80% ace-
tonitrile, respectively. The 3-h LC gradient was 3–25% B 
over 140  min, 25–50% B over 25  min, 50–100% B over 
5  min, and 100% B over 10  min. SPS-MS3 analysis was 
conducted essentially as described [31]. The param-
eter settings for FTMS1 include orbitrap resolution 
(120,000), scan range (350–1400), AGC (5E5), maxi-
mum injection time (100  ms), RF lens (30%), data type 
(centroid), charge state (2–5), dynamic exclusion for 60 s 
using a mass tolerance of 7  ppm, and internal calibra-
tion using m/z 371.10123; for ITMS2 include mass range 
(400–1400), number of dependent scans (10), isolation 
window (0.4  m/z), activation type (rapid CID), collision 
energy (35%), maximum injection time (120  ms), AGC 
(2E4), and data type (centroid); for MS3 include mass 
range (400–1400), precursor ion exclusion (low m/z 50, 
high m/z 5), isolation window (m/z 0.7), MS2 isolation 
window (m/z 2), number of notches (10), HCD collision 
energy (55%), orbitrap resolution (50,000), maximum 
injection time (150  ms), AGC (2.5E5), and data type 
(centroid).

Protein Identification and Quantification
To determine TMT labeling efficiency, RAW files for 
three fractions (#4, #12, #20) were selected from each 
TMT10plex set and analyzed by Proteome Discoverer 
(v2.2) (Thermo Scientific). The SEQUEST HT algorithm 
was applied to search against the human Uniprot protein 
sequence database (released on 03/30/2018, contain-
ing 20,937 canonical sequences and 72,379 additional 
sequences). Of note, the 72,379 additional sequences are 
all human proteins, including ~ 22,000 manually reviewed 
non-canonical isoform sequences as well as ~ 50,000 addi-
tional predicted and unreviewed sequences in Uniprot/
TrEMBL. Modifications included carbamidomethylation 
of cysteines as fixed modification as well as acetylation of 
protein N-terminus, oxidation of methionines, TMT tag-
ging of lysines and peptide N-terminus as variable modi-
fications. Trypsin (Full) was used for digestion and up to 
two mis-cleavages were allowed. The mass tolerance was 
10 ppm for precursor mass and 0.6 Da for fragment mass. 
Peptide-spectrum matches (PSMs) identified with high 
confidence and unambiguously were used to determine 
labeling efficiency, by calculating the ratios of PSMs for 
TMT-labeled peptides against total PSMs.

To identify and quantify proteins, all the 72 acquired 
LC-SPS-MS3 files (24 files per TMT10plex set × 3 sets) 
were analyzed by MaxQuant (v1.6.0.16) [32], using the 
Andromeda algorithm [33] to search against the afore-
mentioned human Uniprot protein sequence database 

combined with the common contaminant protein 
sequences (244 sequences). The quantification type was 
Reporter ion MS3, the isobaric labels were TMT10plex, 
and the reporter mass tolerance was 0.003  Da. Modifi-
cations included carbamidomethylation of cysteines as 
fixed modification as well as acetylation of protein N-ter-
minus, deamidation of asparagines and glutamines, and 
oxidation of methionines and prolines as variable modi-
fications. Tryspin/P was used for digestion and up to two 
mis-cleavages were allowed. The match-between-runs 
function was enabled, using 0.7 min of match time win-
dow and 20 min of alignment time window. The mass tol-
erance was 20 ppm for first search peptide tolerance and 
4.5  ppm for main search peptide tolerance, and 0.5  Da 
for MS/MS match tolerance. A false discovery rate (FDR) 
of 1% was applied to filter PSMs, peptides, and protein 
groups. The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium 
(http://prote​omexc​hange​.org) via the PRIDE partner 
repository [34] with database identifier PXD010744.

Identification of differentially expressed proteins (DEPs)
Statistical analysis was performed with Perseus (v1.5.5.3) 
[35]. Proteins identified from the reverse sequence data-
base or based on a single modified peptide, as well as 
non-human contaminant proteins identified from the 
contaminant sequence database, were filtered out. Subse-
quently, only proteins quantified across all the analyzed 
samples were selected for statistical analysis. Protein 
ratios against the internal standard (TMT126 channel) 
were computed and then log2-transformed. For each 
sample, the log2-transformed ratios were normalized 
against the Tukey’s bi-weight mean, which calculates 
a robust average that is unaffected by outliers, with the 
assumption that most identified cellular proteins are not 
significantly differentially expressed across the samples. 
To estimate the epithelial/stromal cell purity in the tissue 
sections used for proteomic analysis, the protein expres-
sion data were analyzed using the Estimation of Stromal 
and Immune Cells in Malignant Tumors using Expres-
sion data (ESTIMATE) (v2.0) [36], an algorithm widely 
used to compute cell purity from expression data.

After a quality control analysis using SuperHirn [37], 
one outlier sample was detected from each group and 
they were removed. For the comparison between each 
group (n = 8 after the removal of outlier samples), Stu-
dent’s t test (two-tailed) was used. To correct the p val-
ues for multiple testing, the Storey method was applied 
[38]. DEPs were identified using q values < 0.05 and the 
empirical cutoff of log2-transformed fold changes of > 0.5 
in absolute value. It is known that stromal content in PCa 
tissue samples is generally lower than in normal prostate. 
Thus, some unchanged stromal cell-enriched proteins 

http://proteomexchange.org


Page 5 of 18Zhou et al. Clin Proteom           (2019) 16:15 

may appear to be downregulated in PCa tissue compared 
with normal prostate, and are thus erroneously identi-
fied as downregulated DEPs. To determine to what extent 
DEPs are stromal cell-enriched, we generated a PCa stro-
mal gene signature and compared the signature genes 
with the downregulated DEPs. To generate the PCa stro-
mal signature, the gene expression profiles for 12 stro-
mal and 89 epithelial cell populations isolated from PCa 
tissues by laser capture microdissection (GSE6099) [39] 
were compared, and the cutoffs of false discovery rate 
(FDR) < 1% and log2-transformed fold change > 1 were 
applied to identify genes significantly enriched in PCa 
stromal cells compared with epithelial cells. Moreover, 
the PCa stromal signature was corroborated by analyz-
ing the gene expression data of the GSE8218 cohorts, 
for which the stromal content ratios were evaluated by a 
pathologist and provided in [40].

For gene ontology (GO) enrichment analysis of DEPs, 
the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, v6.8) analysis was performed 
[41]. To generate putative PPI networks from DEPs, the 
Ingenuity Pathway Analysis (IPA) (Ingenuity) was per-
formed with high stringency—only direct PPIs with 
experimental evidence were used. Subcellular localiza-
tions of PPI subnetworks were displayed using the “Sub-
cellular Layout” function of the IPA, which classifies 
proteins into five subcellular compartments: (1) extra-
cellular space, (2) plasma membrane, (3) cytoplasm, (4) 
nucleus, and (5) unknown.

Identification of differentially expressed protein complexes
Proteins quantified across all samples were mapped into 
individual protein complexes in the CORUM (v3.0) data-
base [42], using the R statistical software (R Development 
Core Team; https​://www.r-proje​ct.org/) (v3.5.0). Briefly, 
the allComplexes.txt and uniprot_corum_mapping.
txt files were downloaded from the CORUM database 
(http://mips.helmh​oltz-muenc​hen.de/corum​/#downl​
oad). The protein IDs of quantified proteins (Additional 
file 2: Table S4) were matched with the UniProtKB acces-
sion number in the uniprot_corum_mapping.txt file, 
with which a CORUM complex ID is associated. The 
number of quantified subunits in each CORUM com-
plex was counted, and protein complexes with < 2 quanti-
fied subunits were removed. For the remaining CORUM 
complexes, if the number of quantified subunits accounts 
for < 50% of the number of total subunits (i.e., subu-
nit coverage < 50%), they were removed so as to reduce 
potentially erroneous quantification at the protein com-
plex level. Furthermore, if two or more different CORUM 
complexes contain an identical set of quantified subunits, 
the redundancy was removed as follows: 1) if the subunit 
coverages were different, only the CORUM complex with 

the highest subunit coverage was kept, and 2) if the subu-
nit coverages were identical, only the CORUM complex 
with the smallest CORUM ID number was kept.

To identify specific protein complexes that are differ-
entially expressed, the mean log2-ratio of all proteins in 
a CORUM complex was calculated for each sample, and 
then compared across the three groups (i.e., normal, low-
grade, and high-grade) by Student’s t-test (two-tailed). 
The Storey method was then applied to correct the p val-
ues for multiple testing. The CORUM complexes with q 
values of < 0.05 and the mean difference of > 0.31 in abso-
lute value were accepted as differentially expressed com-
plexes. Here, the cutoff for the mean difference was set 
as 0.31 because it corresponds to p < 0.05, based on the 
normal distribution of mean differences (SD = 0.158). To 
identify significantly enriched GO terms, Fisher exact 
test was performed by using Perseus (v1.5.5.3) [35] and 
the cutoffs of q < 0.05 and enrichment factor > 2 were 
applied.

Identification of differentially regulated protein complexes
Differential co-regulation analysis provides a level of 
information about PPIs, which is not possible to obtain 
using the widely used differential expression analysis 
[24, 43]. Prior to the co-regulation analysis, the CORUM 
complexes used for the aforementioned differential 
expression analysis were further filtered to remove those 
with PPI coverages of < 50%. Here, the PPI coverage for a 
protein complex is defined by the number of inter-subu-
nit PPIs (i.e., excluding self-pairs) for quantified subunits 
divided by the number of inter-subunit PPIs for all sub-
units. For a protein complex containing n subunits, the 
number of inter-subunit PPIs is n × (n − 1)/2.

Differential co-regulation analysis was conducted using 
R (v3.5.0) to analyze the pairwise correlation of proteins 
within each CORUM complex. The Spearman’s method 
was used to assess correlation of proteins within each 
complex. Subsequently, the Fisher z-transformation was 
performed to stabilize the variance of sample correla-
tion coefficients in each condition, as described in [44, 
45]. To avoid obtaining infinite z scores, all Spearman’s 
Rho values of 0.99 through 1 were replaced by 0.99 and 
those of − 1 through − 0.99 were replaced by − 0.99. For 
each CORUM complex, to determine whether the differ-
ence of mean z scores between two conditions (e.g., LG 
vs. N) is statistically significant, the following steps were 
performed: (1) 8 out of the 24 samples were randomly 
sampled twice and used as condition A and condition 
B, respectively; (2) for each condition, Spearman’s Rho 
values and z scores were computed as mentioned above; 
(3) the mean z score difference between conditions A 
and B was calculated; (4) the steps 1–3 were repeated 
for 10,000 times, and a null hypothesis distribution of 

https://www.r-project.org/
http://mips.helmholtz-muenchen.de/corum/#download
http://mips.helmholtz-muenchen.de/corum/#download
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the mean z score differences was generated; (5) the sig-
nificance of each observed mean z score difference was 
computed using the null hypothesis distribution; and 
(6) the p values were adjusted by the Storey method for 
multiple comparison. CORUM protein complexes with 
q < 0.05 and mean z score differences of > 0.7 in absolute 
value were accepted as differentially regulated protein 
complexes. As the standard deviation of all random mean 
z score differences was 0.428, the cutoff for the mean z 
score difference of 0.70 corresponds to p < 0.1.

Immunoblotting analysis
Immunoblotting analysis was performed essentially as 
we previously described [46, 47]. Ten micrograms of 
protein per sample was loaded onto mini-protean TGX 
gels (BIO-RAD, 4–20% gradient), separated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE), and electro-transferred onto nitrocellulose mem-
branes (BIO-RAD, 0.45  μm). Membranes were blocked 
with 5% nonfat dry milk (ApexBIO) in Tris-buffered 
saline containing 0.1% Tween 20 (TBST). All primary 
antibodies, including anti-XRCC5 (rabbit polyclonal 
antibody, #2753), anti-XRCC6 (rabbit monoclonal anti-
body, #4588), and GAPDH (rabbit monoclonal antibody, 
#3683), were purchased from Cell Signaling Technology 
(CST) and used at 1:1000 dilution in the aforementioned 
blocking buffer. After overnight incubation at 4 °C, mem-
branes were washed with the TBST buffer and then incu-
bated with 1:2000 diluted anti-rabbit secondary antibody 
(CST, #7074) for 1.5  h at room temperature. Protein 
bands were visualized following incubation with Super-
Signal West Pico PLUS Chemiluminescent Substrate 
(Thermo Fisher Scientific) and exposure of membranes to 
autoradiography film (Thomas Scientific). Densitometry 
analysis was performed using ImageJ (v1.52a) on immu-
noblots from two independent immunoblotting experi-
ments [48]. Pearson correlation analysis was conducted 
to calculate the correlation coefficient of protein expres-
sion levels.

Results
TMT‑SPS‑MS3 analysis for quantitative profiling of prostate 
tissue specimens
The TMT-SPS-MS3 method was applied to quantitatively 
compare the proteomes across the 27 OCT-embedded 
prostate tissue samples, followed by differential expres-
sion and co-regulation analyses to identify in vivo dereg-
ulated protein complexes (Fig.  1). All tissue specimens 
had epithelial cell purity of ≥ 60% according to a histolog-
ical analysis (Additional file 2: Table S1). The specimens 
were divided into three risk groups according to the 
prostatectomy Gleason scores, including PCa-adjacent 
normal prostate (abbreviated as N, n = 9), low-grade PCa 

(LG, n = 9), and high-grade PCa (HG, n = 9). Of note, the 
Gleason score (on a scale of 6 to 10) is one of the most 
commonly used systems for evaluating the aggressive-
ness of primary PCa, and a higher Gleason score is gener-
ally associated with a worse prognosis [49, 50]. Prior to 
protein quantification, the TMT labeling efficiency was 
assessed by a database searching analysis using TMT as 
a variable modification. Based on the ratios of peptide-
spectrum matches (PSMs) for TMT-labeled peptides 
over total PSMs in different peptide fractions, the TMT 
labeling efficiency was determined as 98.7% ± 0.2% 
(mean ± SD) (Additional file 2: Table S2).

Identification and analysis of DEPs
After TMT-SPS-MS3 analysis, database searching, and 
protein identification filtering, a total of 5562 protein 
groups were identified with an FDR of ≤ 1%, and on aver-
age 2585 (± 308) protein groups were identified from 
each peptide fraction (Additional file 2: Table S3). Among 
the 5562 identified protein groups, 5297, 4662, and 3642 
were quantified in at least one, two, and three TMT-
10plex sets, respectively (Additional file  1: Fig. S1). The 
3642 protein groups that were quantified across all the 27 
samples were used for the following statistical and bioin-
formatic analyses.

To determine whether there were outlier samples, 
between-sample variation was assessed using the Super-
Hirn [37]. Three tissue samples (LG1, N5, and HG9) were 
found to have high degrees of between-sample variation 
(Additional file 1: Fig. S2), so they were considered as out-
lier samples and excluded from further statistical analy-
sis. For the remaining 24 samples (n = 8 for each group), 
after Student’s t test (two-tailed) and multiple com-
parison correction, the cutoffs of q < 0.05 and log2-ratios 
of > 0.5 in absolute value were applied to identify DEPs 
(Additional file 2: Table S4). A total of 197 DEPs, includ-
ing 143 downregulated and 54 upregulated proteins, were 
identified in LG samples in comparison to the N sam-
ples (Fig.  2a and Additional file  2: Table  S5). Of these, 
MAM domain-containing protein 2 (MAMDC2) and 
pyrroline-5-carboxylate reductase 1 (PYCR1) were the 
most dramatically downregulated and upregulated pro-
teins, respectively (Fig. 2a, lower panel). In HG samples 
(versus N samples), a total of 309 DEPs (215 downregu-
lated and 94 upregulated) were identified, among which 
glutathione S-transferase mu 1 (GSTM1) and spondin-2 
(SPON2) were the most dramatically downregulated and 
upregulated proteins, respectively (Fig. 2b and Additional 
file 2: Table S5). In comparison, the proteomic difference 
between LG and HG samples was small—only 33 DEPs 
(29 downregulated and 4 upregulated in HG, compared 
with LG) were identified, of which ADP-ribosyl cyclase/
cyclic ADP-ribose hydrolase 1 (CD38) and decaprenyl 
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diphosphate synthase subunit 2 (PDSS2) were the most 
substantially downregulated and upregulated proteins, 
respectively (Fig. 2c and Additional file 2: Table S6). 

A comparison of the 197 DEPs in the LG (vs. N) group 
and the 309 DEPs in the HG (vs. N) group suggested 
that 115 DEPs are shared by the two groups, whereas 82 
and 194 are unique to the LG and HG groups, respec-
tively (Fig. 3a and Additional file 2: Table S5). Interest-
ingly, most of the 194 DEPs unique to the HG group 
were also slightly (log2-ratios of −  0.5 to 0.5) changed 
in the LG group (Fig. 3b, red circles). Similarly, most of 
the 115 shared DEPs were less changed in the LG group 
than in the HG group (Fig. 3b, black “x”s). Collectively, 
the findings suggest that, compared with normal pros-
tate, most protein expression level changes that are 
statistically significant in high-grade PCa were already 
present in low-grade PCa samples, although the extent 
is less pronounced. In contrast, most of the 82 DEPs 
unique to the LG group were less markedly changed 
in the HG group (Fig.  3b, orange triangles). Intrigu-
ingly, DAVID analysis of the 82 LG-only DEPs revealed 
a highly significant over-representation of extracellular 

exosomes (53 proteins, p = 2E − 24) (Additional file  2: 
Table S7), suggesting the possibility of differential exo-
some biogenesis and/or shedding in the two groups.

To determine whether the DEPs may interact with 
each other and form protein complexes, Ingenuity Path-
way Analysis (IPA) was applied to reconstruct networks 
of proteins with direct PPI evidence that was experi-
mentally obtained. In the LG group (vs. N), only 13 out 
of the 54 (24%) upregulated DEPs form three small PPI 
networks, but 92 out of the 143 (64%) downregulated 
DEPs form a large PPI network (Fig. 3c and Fig. S3). In 
comparison, in the HG group (vs. N), 58 out of the 94 
(62%) upregulated DEPs form a large upregulated PPI 
network, and 157 out of the 215 (73%) downregulated 
DEPs form a large downregulated PPI network (Fig. 3d 
and Fig. S4). Notably, the upregulated protein subnet-
works are almost exclusively localized in cytoplasm and 
nucleus (Fig. 3c and d; shown as compartments #3 and 
#4), whereas the downregulated protein subnetworks 
are mainly localized in extracellular space, plasma 
membrane, and cytoplasm (Fig.  3c, d; shown as com-
partments #1, 2, and 3).

Fig. 1  Workflow for quantitative proteomic comparison of three groups of prostate tissue specimens (i.e., normal control, low-grade PCa, and 
high-grade PCa) using TMT-SPS-MS3. A total of 30 OCT-embedded prostate tissue samples were digested in parallel into tryptic peptides by FASP, 
followed by chemical labeling with three sets of TMT10plex reagents. The three TMT126-labeled pooled mixture samples (shown as blue circles) 
were mixed and then equally divided into three portions (shown as blue circles divided into thirds). Differentially TMT10plex-labeled peptide 
samples were mixed into three groups (shown by the long rounded-rectangles), and then each set of TMT10plex mixture was fractionated by 
high-pH RPLC and concatenated into 24 fractions, so as to decrease peptide complexity and improve the detection of low-abundance proteins. 
Each fraction of TMT-labeled peptides was sequentially analyzed by LC-SPS-MS3. The acquired 72 RAW files derived from the three TMT10plex sets 
(24 fractions per set), which correspond to 30 individual samples, were analyzed by MaxQuant to identify and quantify proteins. Proteins quantified 
across all the 30 samples were a) analyzed by Perseus to identify differentially expressed proteins and b) mapped to CORUM (v3.0) protein 
complexes and subjected to differential expression and co-regulation analyses to identify in vivo deregulated protein complexes
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Identification of differentially expressed CORUM protein 
complexes
The CORUM database is a manually curated reposi-
tory of experimentally characterized protein complexes 
from mammalian organisms, especially human (67%) 
[42, 51]. The latest CORUM database (v3.0) contains a 
total of 4274 protein complexes, representing one of the 
largest and most comprehensive publicly available data-
sets of mammalian protein complexes [42]. Notably, the 
CORUM database only comprises protein complexes 
that have been individually isolated and characterized. 
Therefore, it is generally considered a gold-standard data-
base for mammalian protein complexes, being used in a 
large number of studies as a reference dataset for bench-
marking computational models and high-throughput 
experimental data [52–54]. In comparison, although 

high-throughput interactome studies have identified 
many novel protein complexes, most of the novel iden-
tifications have not been corroborated by experiments 
delineating the biological function of complexes. There-
fore, the high-quality CORUM database, rather than a 
high-throughput interactome database, was selected for 
the identification of deregulated protein complexes in 
this study.

To identify specific protein complexes that are dereg-
ulated in primary PCa, the 3642 quantified protein 
groups were mapped to the CORUM (v3.0) database. A 
total of 852 non-redundant protein complexes, which 
met the criteria of containing at least two quantified 
subunits in each complex and having a subunit coverage 
of ≥ 50%, were selected for further analysis (Additional 
file  2: Table  S8). To identify differentially expressed 

Fig. 2  Identification of differentially expressed proteins between the N, LG, and HG groups. a Comparison of the N and LG groups. b Comparison 
of the N and HG groups. c Comparison of the LG and HG groups. The upper panels show the volcano plots of all the 3642 quantified protein 
groups. The lower panels show the boxplots for the most dramatically changed proteins in each comparison, whose names were underlined in 
the corresponding volcano plots. Here, the abbreviations N, LG, HG, and n.s. stand for normal prostate, low-grade PCa, high-grade PCa, and not 
significant, respectively. In the boxplots, **, *, and n.s. stand for p < 0.01, 0.01 ≤ p < 0.05, and p ≥ 0.05, respectively

Fig. 3  Comparison of protein groups differentially expressed in LG and HG PCa, compared with N samples. a Venn diagram of protein groups 
differentially expressed in LG and HG PCa, compared with N samples. A total of 82 DEPs were LG only, 194 were HG only, and 115 were shared by 
both LG and HG. b Scatter plot for the comparison of log2(LG/N) and log2(HG/N) ratios for the 82 LG-only, 115 shared, and 194 HG-only DEPs. The 
cyan shade covers the area where the absolute values of log2(LG/N) are less than those of log2(HG/N), i.e., the changes in the LG group are less 
remarkable than those in the HG group. c Putative networks of direct PPIs for proteins significantly upregulated (left) or downregulated (right) 
in LG PCa, compared with N samples. The five subcellular localization layers are (1) extracellular space, (2) plasma membrane, (3) cytoplasm, (4) 
nucleus, and (5) others. More detailed information is shown in Supplemental Figure S3. d Putative networks of direct PPIs for proteins significantly 
upregulated (left) or downregulated (right) in HG PCa, compared with N samples. The subcellular localization layers are the same for the panel C. 
More detailed information is shown in Supplemental Figure S4. In the figure, the abbreviations N, LG, and HG stand for normal prostate, low-grade 
PCa, and high-grade PCa, respectively

(See figure on next page.)
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CORUM protein complexes, the log2-ratios of proteins 
in each complex were averaged for each tissue sample, 
followed by Student’s t test for the comparison between 
the three groups (i.e., N, LG, and HG). After applying 

the cutoffs of q < 0.05 and log2-ratios > 0.31 in absolute 
value, 54 (7 up and 47 down), 85 (34 up and 51 down), 
and 6 (1 up and 5 down) complexes were found to be 
differentially expressed in LG versus N, HG versus N, 
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and HG versus LG comparisons, respectively (Fig.  4 
and Additional file 2: Table S8). Among these, 27 (4 up 
and 23 down) complexes were differentially expressed 
in both cancer (LG and HG) groups, compared with the 
control (N) group (Additional file 1: Fig. S5 and Addi-
tional file 2: Table S8). In addition, 4 protein complexes 
were significantly less abundant in the HG group, com-
pared with both N and LG groups (Additional file  1: 
Fig. S5B and Additional file  2: Table  S8). Moreover, 
gene ontology (GO) enrichment analysis suggested 
that a) both the 47 complexes downmodulated in LG 
(vs. N) and the 51 complexes downmodulated in HG 
(vs. N) were significantly (q < 0.001) enriched in the 
GO term of cell adhesion (GO:0007155), to which 13 
integrin protein complexes belong, and b) the 34 com-
plexes overexpressed in HG (vs. N) were significantly 
(q = 0.03) enriched in the negative regulation of apop-
totic process (GO:0043066), to which 4 Prothymo-
sin alpha (ProTα) complexes belong (Additional file  2: 
Table S9).

Identification of differentially regulated CORUM protein 
complexes
Protein–protein associations are essential for the assem-
bly of functional protein complexes. Recent studies 

provided compelling evidence that co-regulation analy-
sis of protein pairs, whose expression levels were quan-
tified by isobaric tagging-based multiplexed quantitative 
proteomics approaches, permits the analysis of protein–
protein associations with high accuracy [24, 43]. In the 
present study, to identify differentially associated/assem-
bled protein complexes in vivo, differential co-regulation 
analysis was performed for a total of 475 non-redundant 
CORUM (v3.0) complexes meeting the criteria of (a) 
containing at least two quantified subunits, (b) having a 
subunit coverage of ≥ 50%, and (c) having a PPI coverage 
of ≥ 50%.

Firstly, for each of the 475 CORUM complexes, the 
Spearman correlation of each protein pair was computed 
and then converted into a z score to stabilize the variance 
[44, 45]. For instance, the DNA-PK-Ku-eIF2-NF90-NF45 
complex, which plays a critical role in DNA double-
strand break repair, is formed after the Ku heterodimer 
binds to a suitable DNA end [55, 56]. As expected, the 
XRCC5 and XRCC6 proteins—subunits of the stable Ku 
heterodimer [56] —have high Spearman’s Rho values and 
z scores in all the N, LG, and HG groups (Fig. 5a, upper 
panel). The high correlation coefficient of the protein 
expression levels of XRCC5 and XRCC6 was confirmed 
by an immunoblotting analysis, showing an average 

Fig. 4  CORUM protein complexes differentially expressed between the N, LG, and HG groups. a Comparison of the N and LG groups. b Comparison 
of the N and HG groups. c Comparison of the LG and HG groups. The upper panels show the volcano plots of all the 852 quantified CORUM protein 
complexes. The lower panels show the boxplots for the most dramatically changed protein complexes in each comparison, which were indicated 
by arrows in the corresponding volcano plots. Here, the abbreviations N, LG, HG, n.s. stand for normal prostate, low-grade PCa, high-grade PCa, and 
not significant, respectively. In the boxplots, **, *, and n.s. stand for p < 0.01, 0.01 ≤ p < 0.05, and p ≥ 0.05, respectively
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Pearson correlation coefficient of 0.89 (Additional file 1: 
Fig. S6). In comparison, the ILF2 and XRCC5 protein 
pair has low Spearman’s Rho and z score in the N group 
but has high values in the LG and HG groups (Fig.  5a, 
lower panel). This suggests increased protein–protein 
association between ILF2 and XRCC5 in the LG and HG 
groups, compared with the N group. A heatmap visuali-
zation of the z scores of all protein pairs within the com-
plex showed that most protein pairs have higher z scores 
in the LG and HG groups than in the N group (Fig. 5b). 
It indicates that more DNA-PK-Ku-eIF2-NF90-NF45 
complexes may be assembled in PCa cells than in normal 
prostate cells, probably in response to higher DNA dam-
age in cancer cells.

Secondly, to statistically compare the assembly levels of 
each CORUM protein complex across the three groups, 
the z scores for all protein pairs within a complex were 
averaged and the mean z scores were used to estimate the 
assembly levels of the protein complexes. As shown in 
Fig. 6a, the mean z scores of all the 475 CORUM protein 
complexes in the N group roughly follow a normal distri-
bution. In comparison, both the LG and HG groups have 
small shoulder peaks on the right side (Fig. 6a), suggest-
ing that a small portion of the 475 protein complexes may 
have stronger protein–protein associations (i.e., higher 

assembly levels) in the LG and/or HG groups than in the 
N group.

Thirdly, for each of the 475 CORUM protein com-
plexes, the distribution of 10,000 random mean z score 
differences was plotted, and the p value corresponding 
to an observed difference of mean z score between two 
groups was calculated. For example, for the DNA-PK-
Ku-eIF2-NF90-NF45 complex upregulated in LG (vs. 
N), the 10,000 random mean z score differences follow 
a normal distribution (mean = 0, SD = 0.308). Therefore, 
the observed mean z score difference of 0.98 between 
the N and LG groups corresponds to p = 1.5E − 3 and, 
after multiple testing correction, q = 4.2E − 3 (Fig. 6b, left 
panel). For another example, for the FN1-TGM2 complex 
downregulated in HG (vs. N), the observed mean z score 
difference of -1.94 corresponds to p = 2.5E − 3 and, after 
multiple testing correction, q = 5.9E − 3 (Fig.  6b, right 
panel).

Finally, applying the cutoffs of q < 0.05 and mean z 
score difference of > 0.7 in absolute value, 28 (20 up and 
8 down), 22 (17 up and 5 down), and 22 (10 up and 12 
down) protein complexes were found to be differen-
tially assembled in the LG versus N, HG versus N, and 
HG versus LG comparisons, respectively (Fig.  6c and 
Additional file 2: Table S10). Among these, only 4 (3 up 

Fig. 5  A representative example showing the differences of specific protein pairs in the DNA-PK-Ku-eIF2-NF90-NF45 protein complex across 
the three sample groups. a Scatter plots showing the log2-transformed relative abundance ratios of XRCC6 plotted against those of XRCC5 
(upper panel) as well as the log2-transformed relative abundance ratios of ILF2 plotted against those of XRCC5 (lower panel) in the normal 
prostate, low-grade PCa, and high-grade PCa groups (from left to right). b Heatmap of z scores of all protein pairs (excluding self-pairs) within the 
DNA-PK-Ku-eIF2-NF90-NF45 protein complex. The abbreviations N, LG, and HG stand for normal prostate, low-grade PCa, and high-grade PCa, 
respectively
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and 1 down) complexes were differentially regulated in 
both cancer (LG and HG) groups, compared with the 
control (N) group (Additional file  1: Fig. S7 and Addi-
tional file 2: Table S10). Moreover, notably there is little 
overlap between the 58 differentially assembled protein 
complexes (Additional file 2: Table S10) and the 114 dif-
ferentially expressed protein complexes (Additional file 2: 
Table S8)—only one protein complex was found to be dif-
ferentially assembled and expressed in the same direction 
(i.e., up or down) and comparison (e.g., LG vs. N) (Addi-
tional file 1: Fig. S8). It suggests that differential co-regu-
lation and expression analyses are highly complementary 
in detecting deregulated protein complexes.

GO enrichment analysis suggested that the 20 protein 
complexes upregulated in LG (vs. N) were significantly 
(q = 7.0E − 3) enriched in RNA splicing (GO:0008380), 
to which 6 protein complexes belong (Additional file  2: 
Table  S11). In addition, at least 11 of the 20 protein 
complexes were annotated as being localized in nucleus 
(GO:0005634) (Additional file  2: Table  S10), though the 
GO term enrichment did not reach significance after 
multiple testing correction (p = 9E − 4; q = 0.35). These 

nuclear protein complexes are involved in DNA damage 
response, chromatin remodeling, pre-mRNA and pri-
miRNA processing, and RNA splicing (Additional file 1: 
Fig. S9). In addition, GO enrichment analysis also sug-
gested that the 17 protein complexes upregulated in HG 
(vs. N) were significantly (q = 0.046) enriched in oxidative 
phosphorylation (GO:0006818), to which four subcom-
plexes of mitochondrial complex I belong (Additional 
file 2: Table S11).

Discussion
Proteins differentially expressed in PCa versus normal 
prostate tissue
In this study, nearly 400 proteins were found to be dif-
ferentially expressed between PCa and normal prostate 
tissue. Notably, the total number of downregulated pro-
teins is larger than that of upregulated proteins (Fig. 1). 
One concern is that the stromal cell ratios in PCa tissue 
samples were decreased compared with normal prostate 
tissue, a known phenomenon in the field of PCa research. 
Consequently, even when the cellular expression levels 
of stromal cell-enriched proteins are not changed, the 

Fig. 6  Identification of differentially associated CORUM protein complexes. The Fisher z-score transformation was performed on the Spearman’s 
rank-order correlation of proteins within each complex, in order to stabilize the variance of sample correlation coefficients. a Density plot of the 
mean z scores for the 475 CORUM protein complexes in N, LG, and HG samples. b Representative examples for the determination of p and q values 
corresponding to observed mean z score differences. Each peak shows the distribution of 10,000 mean z score differences between two sets of 
eight randomly selected samples. c Volcano plots showing mean z score differences plotted against negative log10-transformed p values for the 475 
CORUM protein complexes. Here, the abbreviations N, LG, and HG stand for normal prostate, low-grade PCa, and high-grade PCa, respectively
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total protein amount of such proteins may appear to be 
decreased, leading to the erroneous identification of 
these proteins as downregulated proteins. However, our 
histological analysis showed that the estimated average 
(± SD) stromal cell ratios (over all cells) were 32% (± 8%), 
19% (± 8%), and 22 (± 7%) for the N, LG, and HG groups, 
respectively (Additional file 2: Table S1). Thus, although 
the stromal cell ratios were decreased in PCa samples 
compared to normal prostate, the largest decrease of 
average ratios is only 40% (i.e., 1–19/32). Furthermore, 
by applying the ESTIMATE (Estimation of Stromal and 
Immune Cells in Malignant Tumors using Expression 
data) algorithm to analyze the 3642 quantified proteins, 
the average stromal cell ratios were found to be 26% 
(± 8%), 17% (± 7%), and 20% (± 10%) for the N, LG, and 
HG groups, respectively (Additional file  2: Table  S12), 
consistent with the histological analysis result. Moreover, 
of the 255 genes encoding the proteins downregulated in 
PCa samples (vs. normal prostate), only 18 (7% of 255) 
belong to the PCa stromal gene signature, which contains 
105 genes significantly enriched (FDR < 1%; Log2FC > 1) 
in PCa stromal cells compared with PCa epithelial cells 
isolated by laser capture microdissection (Additional 
file 2: Table S13). Collectively, most of the protein down-
regulations were not directly caused by the decrease of 
stromal content in PCa compared with normal prostate.

Compared with normal prostate, the most substan-
tially up- and down-regulated proteins in low-grade PCa 
were identified as PYCR1 and MAMDC2, respectively. 
PYCR1 is a metabolic enzyme that catalyzes the NAD(P)
H-dependent conversion of pyrroline-5-carboxylate to 
proline [57]. Previous studies showed that (1) compared 
with normal prostate, PYCR1 was significantly upregu-
lated in PCa at both mRNA and protein levels, (2) the 
expression levels of PYCR1 were significantly associated 
with Gleason scores, and 3) PYCR1 is involved in PCa cell 
proliferation and colony formation [58, 59]. MAMDC2 
is a poorly characterized proteoglycan containing four 
MAM domains, which are commonly found in sur-
face receptors [60]. To our knowledge, no other studies 
reported that MAMDC2 was substantially downregu-
lated in low-grade PCa, compared with normal prostate.

Compared with normal prostate, the most dramatically 
up- and down-regulated proteins in high-grade PCa were 
identified as SPON2 and GSTM1, respectively. SPON2 is 
an extracellular matrix (ECM) protein belonging to the 
F-Spondin family. It was found to be a candidate serum 
and histological diagnostic biomarker for PCa and a 
candidate prognostic biomarker for colorectal cancer 
[61–64]. GSTM1 encodes a mu class cytoplasmic glu-
tathione-S-transferase, which functions in cellular detox-
ification of many carcinogens. A recent meta-analysis 

suggested that GSTM1 deletion was significantly asso-
ciated with risk of PCa in overall, Asian, Eurasian, and 
American populations [65].

In addition, a comparison of the DEPs in PCa (vs. nor-
mal) identified by us (n = 391) and by Iglesias-Gato et al. 
[11] (n = 649) suggested that 16 upregulated and 26 
downregulated proteins were commonly found in both 
studies (Additional file 2: Table S5). The relatively small 
overlap is not unexpected because of the high heteroge-
neity of PCa and the differences of tissue preservation 
(OCT vs. FFPE), sample size (24 vs. 36), quantification 
method (TMT vs. Super-SILAC), and cutoff for identify-
ing DEPs (q < 0.05 and |log2FC| > 0.5 vs. FDR < 0.1).

Proteins differentially expressed in high‑grade 
versus low‑grade PCa
In contrast to the large number of DEPs between PCa 
and normal prostate, only 33 proteins were differen-
tially expressed between low-grade and high-grade PCa 
specimens, even though the two groups have very differ-
ent patient outcomes [49, 50]. With a larger sample size 
(n = 16 for high-risk PCa and n = 12 for low risk PCa), 
Iglesias-Gato et al. found that 130 proteins were differen-
tially (p < 0.05 and FC > 1.6) expressed between low-risk 
and high-risk PCa groups [11]. Via label-free quantita-
tive proteomics comparison of LCM-isolated epithelial 
cells from Gleason grade 3 versus 4 tumors (n = 4 for 
each), Staunton et  al. identified 120 DEPs (FDR < 0.05) 
[12]. A comparison of the three datasets suggested that 
only three DEPs (ADH5, ALDH2, and CSRP1) are shared 
between our and Iglesias-Gato studies, three DEPs 
(CPE, QDPR, and PACSIN3) are shared between our 
and Staunton studies, and five DEPs (ABAT, COL6A2, 
COL6A3, EPHX2, and PFKP) are shared between the 
Iglesias-Gato and Staunton studies (Additional file  2: 
Table  S6). The small overlaps between the three studies 
are likely due to high PCa heterogeneity as well as differ-
ences of tissue preservation methods, sample sizes, quan-
tification methods, and cutoffs for identifying DEPs.

In this study, the most notably up- and down-regu-
lated proteins in high-grade PCa compared with low-
grade PCa were PDSS2 and CD38, respectively. PDSS2, 
an enzyme that synthesizes the prenyl side-chain of 
coenzyme Q, was included in the Promark panel for the 
prediction of PCa aggressiveness and lethality [66, 67]. 
CD38, a cyclic ADP-ribose synthase, is the main NAD’ase 
in cells. Recent studies indicated that (1) decreased 
expression of CD38 in luminal progenitor cells can initi-
ate PCa and is linked to lower overall survival, (2) CD38 
expression inversely correlates with PCa progression, and 
3) CD38 inhibits PCa proliferation by reducing cellular 
NAD+ pools [68, 69].



Page 14 of 18Zhou et al. Clin Proteom           (2019) 16:15 

The putative PPI networks of DEPs
The present study revealed that, compared with nor-
mal prostate, both low-grade and high-grade PCa have 
decreased expression of many ECM and plasma mem-
brane proteins, which form large putative PPI networks. 
The ECM remodeling is probably due to increased prote-
olysis by matrix metalloproteinases, including contribu-
tions from extracellular vesicles [70]. The most striking 
difference between low-grade and high-grade PCa is that 
only small PPI networks were more abundant in the for-
mer group, whereas a large PPI network was upregulated 
in the latter group. This suggests that high-grade PCa 
cells may potentially perturb protein complexes more 
broadly than low-grade PCa as a feature and/or driver of 
higher aggressiveness.

Differentially expressed CORUM protein complexes
The GO enrichment analysis of differentially expressed 
CORUM protein complexes revealed cell adhesion 
(GO:0007155) as the most prominently downregulated 
process in both low-grade and high-grade PCa, com-
pared to normal prostate (Additional file 2: Table S9). Of 
note, all the downregulated protein complexes belong-
ing to this GO term (cell adhesion) are integrin protein 
complexes. Integrins are cell surface receptors for extra-
cellular matrix proteins and play important roles in cell 
survival, proliferation, and migration [71]. Previous 
studies demonstrated that many integrin subunits were 
downregulated in PCa [71]. In addition, the negative 
regulation of apoptotic process (GO:0043066), involv-
ing four ProTα complexes, was found to be significantly 
upregulated in high-grade PCa compared with normal 
prostate (Additional file 2: Table S9). ProTα is a 109–111 
amino acid protein that acts as an anti-apoptotic factor 
involved in the control of the apoptosome activity in the 
cytoplasm [72]. The expression of ProTα was found to be 
positively correlated with the development and progres-
sion of human PCa as well as many other cancer types 
such as breast, colon, liver, and lung cancers [73]. Never-
theless, the functions of ProTα and its protein complexes 
in PCa remain to be better defined.

Differentially regulated protein complexes
The combination of protein co-regulation analysis and 
GO enrichment analysis revealed that six spliceosome 
subcomplexes related to RNA splicing (GO:0008380) 
were significantly increased in low-grade PCa, compared 
with normal prostate (Additional file 2: Table S11). RNA 
alternative splicing allows for the production of multi-
ple proteins from a single gene, thereby expanding pro-
tein diversity. Accumulating studies have shown that the 
alternative splicing of key cellular regulatory proteins, 
such as fibroblast growth factor receptor, androgen 

receptor, cyclin D1, and Kruppel-like factor 6, contrib-
utes to the tumorigenesis and progression of PCa [74]. 
Although beyond the scope of this study, we believe it 
would be valuable to confirm the increased assembly of 
spliceosomes in early stage PCa and to better define the 
roles of spliceosomes in PCa tumorigenesis.

The most prominent complexes with higher assembly 
levels in high-grade PCa, compared with normal prostate, 
are subcomplexes of mitochondrial complex I (Additional 
file 2: Table S11). As the largest complex of the mitochon-
drial electron transport chain, mitochondrial complex I 
contributes ~ 40% of the proton motive force required for 
mitochondrial ATP synthesis [75]. Moreover, via modu-
lating the NAD +/NADH ratio, mitochondrial complex I 
controls the synthesis of aspartate, a precursor of purine 
and pyrimidine synthesis. Although still controversial, 
epidemiological studies demonstrated that Metformin, a 
mitochondrial complex I inhibitor, reduces incidence and 
mortality of PCa patients [76]. It would be interesting to 
test whether PCa patients with different assembly levels 
of mitochondrial complex I in PCa cells may benefit dif-
ferently from Metformin treatment.

A major challenge for the management of PCa patients 
is to distinguish aggressive from indolent PCa. In this 
study, 22 protein complexes were found to be differen-
tially assembled in high-grade (high-risk) PCa compared 
with low-grade (low-risk) PCa. Among most dramatically 
dysregulated protein complexes, the GRB2-SOS1 com-
plex has significantly higher (Z score difference = 1.57, 
q = 0.017) assembly level, whereas the PPP2CA-
PPP2R1A complex has significantly lower (Z score dif-
ference = − 1.64, q = 0.009) assembly level, in high-grade 
PCa than in low-grade PCa. The GRB2-SOS1 complex 
is a key component of the receptor tyrosine kinase-Ras 
signaling pathway whose hyper-activation drives PCa 
progression [77]. The PPP2CA-PPP2R1A complex is a 
critical component of protein phosphatase 2A, which 
dephosphorylates a large number of oncogenic proteins 
and thus inhibits multiple oncogenic signaling pathways 
[78]. It is possible that increased assembly of GRB2-
SOS1 complex and disruption of PPP2CA-PPP2R1A 
complex may play a synergistic role in promoting PCa 
aggressiveness.

Until now, it has only been convincingly demonstrated 
that isobaric labeling (e.g., TMT and iTRAQ)-based 
quantification allows the identification of protein–pro-
tein associations with high accuracy through protein co-
regulation analysis [24, 43]. Compared with label-based 
quantification, label-free quantification (LFQ) is more 
straightforward and scalable. Notably, the past few years 
have witnessed significant improvement of quantification 
accuracy of LFQ methods [79, 80]. It would be interest-
ing and valuable to explore whether LFQ quantification 
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followed by protein co-regulation analysis can also iden-
tify deregulated protein–protein associations with high 
accuracy.

Limitations
Similar to all other comprehensive proteomic studies of 
prostate tissue specimens [7, 11–15], the sample size in 
this study is relatively small. In addition, other catego-
ries of prostate tissue specimens, such as those of benign 
prostatic hyperplasia, PCa with Gleason scores of 7, 
and more importantly metastatic PCa, were not investi-
gated. Nonetheless, larger-scale analysis of prostate tissue 
specimens in the near future will clarify the landscape of 
global protein complex changes during PCa development 
and progression, facilitating the discovery of novel bio-
markers and drug targets for precision management of 
PCa patients.

In addition, due to the wide dynamic range of protein 
abundance in tissue specimens, the present proteomic 
dataset is biased towards high-abundance protein com-
plexes. Thus, the differences of many low-abundance pro-
tein complexes between the three groups (i.e., N, LG, and 
HG) could not be compared. However, with continuous 
improvements in proteomics instrumentation and meth-
ods, near-complete analysis of protein complexes will be 
achieved in the near future.

Conclusions
In summary, TMT-SPS-MS3 profiling of clinical pros-
tate tissue specimens, followed by differential expres-
sion and co-regulation analyses, led to the discovery of 
candidate dysregulated protein complexes in primary 
PCa (Additional file  2: Table  1). Compared with nor-
mal prostate, low-grade PCa tissue samples have (1) 
seven more abundant protein complexes, (2) higher 
assembly levels of 20 protein complexes including six 
spliceosome subcomplexes involved in RNA splic-
ing, (3) decreased abundance of 47 protein complexes 
including 13 integrin protein complexes involved in cell 
adhesion, and (4) decreased assembly levels of eight 
protein complexes. Compared with normal prostate, 
high-grade PCa tissue samples have (1) 34 more abun-
dant protein complexes including four anti-apoptotic 
ProTα complexes, (2) increased assembly of 17 com-
plexes including four subcomplexes of mitochondrial 
complex I, (3) 51 less abundant complexes including 
13 integrin complexes involved in cell adhesion, and 
(4) decreased assembly of five complexes. In addition, 
compared with low-grade PCa, high-grade PCa tissue 
samples have (1) one more abundant protein complex, 
(2) increased assembly of 10 protein complexes includ-
ing the GRB2-SOS1 complex, (3) five less abundant 
protein complexes, and (4) decreased assembly of 12 

Table 1  Summary of the results for differential expression and co-regulation analyses

a  Form three small PPI networks
b  Form a large PPI network in cytoplasm and nucleus
c  Form a large PPI network mainly in extracellular space, plasma membrane, and cytoplasm
d  Four ProTα complexes are involved in the negative regulation of apoptotic process (GO:0043066)
e  Thirteen integrin protein complexes are involved in cell adhesion (GO:0007155)
f  Eleven protein complexes are nuclear complexes, of which six are involved in RNA splicing (GO:0008380)
g  Four subcomplexes of mitochondrial complex I are involved in oxidative phosphorylation (GO:0006818)

Group Category Cutoffs for filtering LG versus N HG versus N HG versus LG

Individual proteins Total Quantified in all samples 3642 3642 3642

Differential q < 0.05; |Log2FC| > 0.5 197 309 33

Up q < 0.05; Log2FC > 0.5 54a 94b 4

Down q < 0.05; Log2FC < − 0.5 143c 215c 29

CORUM complexes for 
differential expres-
sion analysis

Total Quantified subunits ≥ 2; subunit coverage ≥ 50% 852 852 852

Differential q < 0.05; |Log2FC| > 0.31 54 85 6

Up q < 0.05; log2FC > 0.31 7 34d 1

Down q < 0.05; Log2FC <  − 0.31 47e 51e 5

CORUM complexes 
for differential co-
regulation analysis

Total Quantified subunits ≥ 2; subunit coverage ≥ 50%; PPI 
coverage ≥ 50%

475 475 475

Differential q < 0.05; |mean Z score difference| > 0.7 28 22 22

Up q < 0.05; mean Z score difference > 0.7 20f 17g 10

Down q < 0.05; mean Z score difference <  − 0.7 8 5 12
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complexes including the PPP2CA-PPP2R1A complex. 
To our knowledge, this study represents the first com-
prehensive, albeit indirect, analysis of individual pro-
tein complexes in PCa tissue specimens. It may serve as 
a useful resource for better understanding the dysregu-
lation of protein complexes in primary PCa. 
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