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Abstract 

Background:  Blood-based protein measurement is a routine practice for detecting biomarkers in human disease. 
Comprehensive profiling of blood/plasma/serum proteome is a challenge due to an extremely large dynamic range, 
as exemplified by a small subset of highly abundant proteins. Antibody-based depletion of these abundant proteins 
alleviates the problem but introduces experimental variations. We aimed to establish a method for direct profiling of 
undepleted human serum and apply the method toward biomarker discovery for Alzheimer’s disease (AD), as AD is 
the most common form of dementia without available blood-based biomarkers in clinic.

Methods:  We present an ultra-deep analysis of undepleted human serum proteome by combining the latest 11-plex 
tandem-mass-tag (TMT) labeling, exhaustive two-dimensional liquid chromatography (LC/LC) fractionation (the 1st 
LC: 3 h for 180 fractions, and the 2nd LC: 3 h gradient per fraction), coupled with high resolution tandem mass spec‑
trometry (MS/MS). AD (n = 6) and control (n = 5) sera were analyzed in this pilot study. In addition, we implemented a 
multiplexed targeted LC–MS3 method (TOMAHAQ) for the validation of selected target proteins.

Results:  The TMT–LC/LC–MS/MS platform is capable of analyzing 4826 protein components (4368 genes), cover‑
ing at least 6 orders of magnitude in dynamic range, representing one of the deepest serum proteome analysis. 
We defined intra- and inter- group variability in the AD and control groups. Statistical analysis revealed differentially 
expressed proteins in AD (26 decreased and 4 increased). Notably, these altered proteins are enriched in the known 
pathways of mitochondria, fatty acid beta oxidation, and AGE/RAGE. Finally, we set up a TOMAHAQ method to con‑
firm the decrease of PCK2 and AK2 in our AD samples.

Conclusions:  Our results show an ultra-deep serum discovery study by TMT–LC/LC–MS/MS, and a validation experi‑
ment by TOMAHAQ targeted LC–MS3. The MS-based discovery and validation methods are of general use for bio‑
marker discovery from complex biofluids (e.g. serum proteome). This pilot study also identified deregulated proteins, 
in particular proteins associated with mitochondrial function in the AD serum samples. These proteins may serve as 
novel AD candidate biomarkers.
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Background
Cellular and biochemical components in blood play a 
central role in human physiology and their dynamic 
levels are considered to correlate with an individual’s 
healthy and diseased states [1, 2]. Blood is an exception-
ally complex fluid, comprised of cells (i.e. red and white 
blood cells and platelets) and plasma (the liquid part) 
from which serum is collected after removing clotting 
factors with adequate coagulation. Human plasma/serum 
contains extraordinary diverse proteins, secreted from all 
types of cells and tissues for normal physiological func-
tion, leaked from damaged cells and tissues especially 
under disease conditions, or released from infectious 
organisms. Measuring various protein concentrations in 
plasma/serum is routine in clinical practice. The concen-
tration dynamic range spans at least 10 orders of magni-
tude, from the most abundant albumin (~ 50  mg/ml) to 
cytokines of low abundance (e.g. 4.2, 7.4 and 11.2 pg/ml 
for interleukin-6, interleukin-17 and TNF-α, respectively) 
in normal individuals [3, 4]. This extremely high dynamic 
range raises a significant challenge for profiling the com-
plete plasma/serum by a proteomics platform, commonly 
based on liquid chromatography-tandem mass spectrom-
etry (LC–MS/MS). Depletion of highly abundant plasma 
proteins is often used to alleviate the dynamic range chal-
lenge, as the top 22 abundant proteins occupy approxi-
mately 99% of the total protein mass [1]. The depletion 
may be achieved by affinity columns immobilized with 
antibodies against the top abundant proteins [5–7]. 
However, there are multiple caveats associated with the 
depletion method: (i) the antibodies are never completely 
specific and may remove other nonspecific proteins; (ii) 
the depletion is performed under non-denaturing condi-
tion, leading to co-immunoprecipitation and removal of 
antigen-bound proteins; and (iii) the depletion step gen-
erates significant experimental variations [7].

Advances in mass spectrometry (MS)-based proteom-
ics [8, 9], especially in LC separation power and MS 
resolution and scan rate, enable the profiling of more 
than 15,000 proteins (> 12,000 genes) from mammalian 
tissue samples [10, 11]. Protein quantification can be 
achieved through data dependent acquisition (e.g. label 
free method and stable isotope labeling) [12], as well 
as data-independent acquisition [13]. Tandem-mass-
tag (TMT) is a commonly used stable isotope labeling 
method, which allows up to 11-plexed analysis [14, 15]. 
Although the accuracy of TMT measurement is often 
affected by ion co-elution-induced ratio compression, 
this issue is largely addressed by the MS3 method [16] or 
the combination of extensive LC fractionation, MS opti-
mization, and computational correction [17]. With the 
success of tissue profiling [18, 19], we attempted to apply 
this latest TMT–LC/LC–MS/MS technology to analyze 

blood-based complex biofluids for Alzheimer’s disease 
(AD) biomarker discovery.

Following the discovery of putative biomarkers, it is 
necessary to validate these candidates in large clinical 
cohorts, usually by Ab-based approaches or targeted 
MS methods [2], such as selected single, multiple and 
parallel reaction monitoring (SRM, MRM, and PRM, 
respectively) [20, 21]. More recently, Triggered by Offset, 
Multiplexed, Accurate mass, high resolution, and Abso-
lute Quantitation (TOMAHAQ) has been reported as 
an isobaric targeted method [22, 23]. For each targeted 
peptide quantification, TOMAHAQ implements a syn-
thetic, TMT0-labeled peptide, which is used to trigger 
the quantification of native target peptide by MS3, based 
on a pre-selected offset mass. During the generation of 
MS3 spectra, synchronous precursor selection (SPS) can 
improve quantification accuracy by selecting pre-defined 
b- or y ions in MS2.

Alzheimer’s disease is the most common form of 
dementia and the sixth-leading cause of death in the 
US, affecting more than 5 million Americans with a 
healthcare cost of $236 billion in 2016 [24]. By 2050, AD 
patients are projected to reach 13.8 million in the US [24] 
and 100 million worldwide [25]. Currently, AD diagnosis 
is based on patient’s symptoms, memory and behavior 
tests, brain imaging, as well as post-mortem brain patho-
logical assays [26, 27]. Blood-based biomarkers, however, 
are not available for AD, and most proposed candidates 
are derived from known disease mechanisms, such as 
Aβ and tau [28, 29]. Here we present the unbiased, large-
scale profiling of human serum specimens, revealing con-
sistent mitochondrial protein changes between control 
and AD samples.

Methods
Patient sample description
Human blood sera were collected from control (n = 5) 
and AD patients (n = 6), provided by the Brain and Body 
Donation Program at Banner Sun Health Research Insti-
tute, with approval for this study. Clinical and pathologi-
cal diagnoses were based on established criteria [30]. All 
subjects consented to the study, and informed consent 
was obtained from each entrant. After clotting and cen-
trifugation, the sera were frozen and stored at − 80 °C in 
aliquots of polyethylene tubes until use.

Serum protein extraction and quantification
Human serum proteins were extracted in fresh lysis 
buffer [50  mM HEPES, pH 8.5, 8  M urea, and 0.5% 
sodium deoxycholate with 1  ×  phosphatase inhibitor 
cocktail (PhosSTOP, Sigma-Aldrich)]. The protein con-
centration was measured by the BCA assay (Thermo 
Fisher Scientific) and confirmed by Coomassie-stained 
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short SDS gel as previously described [31]. The protein 
lysates were stored at − 80 °C in aliquots before use.

Protein digestion and TMT labeling
The digestion and labeling were performed based on an 
optimized protocol [32, 33]. Quantified protein (~ 0.1 mg 
in the lysis buffer with 8  M urea) for each TMT chan-
nel was directly digested with Lys-C (Wako, 1:100 w/w) 
at 21 °C for 2 h, diluted four-fold to lower urea concen-
tration to 2  M, and further digested with trypsin (Pro-
mega, 1:50 w/w) at 21  °C overnight. The digestion was 
terminated by the addition of 1% trifluoroacetic acid 
(TFA) with centrifugation. The supernatant was desalted 
with Sep-Pak C18 cartridge (Waters), and then dried by 
a speedvac vacuum concentrator. Each sample was re-
dissolved in 50  mM HEPES, pH 8.5, reacted with TMT 
reagents, pooled equally, and desalted again before LC/
LC–MS/MS.

Extensive LC/LC‑MS/MS analysis
The pooled TMT labeled peptides were resolved by 
offline basic pH reverse phase LC, and acidic pH reverse 
phase LC coupled with MS/MS analysis [34]. The set-
ting of basic pH LC included a XBridge C18 column 
(3.5  μm particle size, 4.6  mm × 25  cm, Waters), buffer 
A (10  mM ammonium formate, pH 8.0), buffer B (95% 
acetonitrile, 10  mM ammonium formate, pH 8.0) [33], 
and a 3 h gradient of 15–35% buffer B. Each fraction was 
collected every minute, ending with a total of 180 frac-
tions. In the acidic pH LC-MS/MS analysis, each previ-
ous fraction was analyzed on a column (75 µm × 25 cm, 
heated to 65 °C to reduce backpressure) coupled with a Q 
Exactive HF Orbitrap mass spectrometer (Thermo Fisher 
Scientific). Peptides were resolved by a 3  h gradient 
(buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer 
A plus 65% acetonitrile). MS settings included MS1 scans 
(60,000 resolution, 1 × 106 AGC and 50 ms maximal ion 
time) and 20 data-dependent MS2 scans (410–1600 m/z, 
60,000 resolution, 1 ×  105 AGC, ~ 150  ms maximal ion 
time, HCD, 32% normalized collision energy, and ~ 15  s 
dynamic exclusion).

Identification and quantification of proteins by JUMP 
software suite
The bioinformatics processing of identification was 
carried out with our recently developed JUMP search 
engine, which combines the advantage of pattern- and 
tag-dependent scoring to improve sensitivity and speci-
ficity [35]. A composite target-decoy database was 
used to estimate false discovery rate (FDR) [36]. The 
protein database was generated by combining down-
loaded Swiss-Prot, TrEMBL, and UCSC databases and 
removing redundancy (human: 83,955 entries). Major 

parameters were precursor and product ion mass toler-
ance (± 15  ppm), full trypticity, two maximal missed 
cleavage, static mass shift for TMT tags (+  229.16293 
on Lys and N-termini) and carbamidomethyl modifica-
tion (57.02146 on Cys), dynamic mass shift for oxidation 
(+  15.99491 on Met), and three maximal modification 
sites. The resulting PSMs were filtered by mass accuracy, 
and then grouped by precursor ion charge state followed 
by the cutoffs of JUMP-based matching scores (J-score 
and ΔJn) to reduce FDR below 1% for proteins. When 
the same peptide is derived from numerous homologous 
proteins, the peptide was matched to the protein with the 
top PSM number, according to the rule of parsimony. The 
quantification was performed as previously described 
[17].

Calculation of abundance index of identified proteins 
by PSMs
The absolute protein abundance index of serum pro-
teome was calculated based on previously reported meth-
ods [37, 38], using the total number of PSMs matched to 
a particular protein, normalized by theoretically detect-
able peptides from the protein. It was derived by the for-
mula: (the number of PSMs/the number of theoretically 
detectable peptides) × a scale factor. The scale factor was 
set to 5000, which generated abundance indexes that 
were roughly equivalent to protein copy numbers per cell 
during deep proteomics analyses.

Evaluation of sample variations and principal component 
analysis
The measurement variation was analyzed according to 
intra- and inter-group replicates. The ratios of all pro-
teins from the samples were modeled with a Gaussian 
distribution to evaluate standard deviation (SD). Prin-
cipal component analysis (PCA) was used to visualize 
the differences among human disease groups. Relative 
expression of all proteins was used as input of PCA, using 
a R statistical analysis package (version 3.4.0) [39].

Differential expression (DE) analysis, pathway enrichment 
and protein–protein interaction (PPI) analysis
DE analysis was determined by student t test in the fol-
lowing steps: (i) calculating p values and applying a 
threshold of 0.05; (ii) filtering by at least 1.5 fold of the 
standard deviation in the analysis; (iii) manually examin-
ing all proteins to remove proteins quantified by only one 
peptide.

Pathway enrichment analysis was used to infer func-
tional groups of proteins enriched in a given pathway. 
The analysis was performed using Fisher’s exact test (p 
value) with the BH correction for multiple testing (BH 
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FDR). Enriched pathways with FDR < 0.05 were consid-
ered statistically significant.

DE proteins were matched to a composite PPI data-
base by integrating STRING (v10) [40], BioPlex [41], and 
InWeb_IM [42], including 18,515 proteins and 469,993 
PPI connections. Modules in each protein cluster were 
defined as previously reported [18]. Modules were anno-
tated by Gene Ontology, KEGG or Hallmark.

TOMAHAQ targeted LC–MS3 analysis
The TOMAHAQ assay was based on the initially 
reported protocol [22]. Selected peptides were synthe-
sized, purified (at least 95% purity), and dissolved in 
20% acetonitrile. The peptides were labeled by a TMT0 
reagent (Thermo Fisher Scientific), desalted, and spiked 
into the TMT11-labeled pooled samples. The amount of 
TMT0-labeled synthetic peptides was adjusted to ensure 
detection in MS1.

In the LC–MS3 analysis, the TMT0-TMT11 mixed 
samples were analyzed on a reverse phase LC coupled 
with MS3 analysis. The setting included a C18 column 
(50  µm ×  15  cm, 1.9  μm particle size, heated to 65  °C 
to reduce backpressure), buffer A (0.2% formic acid, 5% 
DMSO) and buffer B (buffer A plus 65% acetonitrile) in 
a 1 h gradient of 10–35% buffer B at 250 nl/min, and an 
Orbitrap Fusion mass spectrometer (Thermo Fisher Sci-
entific). The TOMAHAQ workflow comprises a sequence 
of decisions to prompt quantitative SPS-MS3 in multiple 
scans. In scan 1, survey MS1 scans (mass range: ± 50 m/z 
of target peptides, 60,000 resolution, 1 ×  106 AGC and 
100  ms maximal ion time) were used to detect one 
TMT0 labeled, synthetic trigger peptide (± 15  ppm). If 
the intensity threshold (1 ×  105) was reached, the trig-
ger peptide was fragmented in scan 2 (0.4 m/z isolation 
window, and ~ 35 NCE in CID) and detected by Orbit-
rap (15,000 resolution; 1  ×  105 AGC; 50  ms maximal 
ion time). A “Product Ion Trigger” function was used 
to compare the trigger peptide MS2 spectra to a pre-
determined MS2 product ion list (± 10 ppm). If at least 
6 product ions were matched, it trigged scans 3 and 4 to 
analyze the corresponding target peptide, using a pre-
selected offset (peptide-specific, e.g. 5.01  m/z for z = 2 
and two TMT tags). In scan 3, target MS2 was collected 
(0.4 m/z isolation window, ~ 35 NCE in CID, 15,000 res-
olution; 1 ×  105 AGC; 1000  ms maximal ion time). In 
scan 4, target MS3 was collected based on the previous 
MS2 and additional MS3 settings: Precursor Ion Exclu-
sion (Low = 70, High = 5), Isobaric Tag Loss Exclusion 
(Reagent Tag Type = TMT to exclude “complement” MS2 
ions), 0.4 m/z isolation window for 10 pre-defined MS2 
product ions on a “Targeted Mass Inclusion List”, 55 NCE 
in HCD, 60,000 resolution, 1 × 105 AGC, and 2,500 ms 
maximal ion time.

Availability of data and materials
The mass spectrometry proteomics raw data have been 
deposited to the Proteome Xchange Consortium (http://
www.prote​omexc​hange​.org) [43] via the PRIDE partner 
repository with the dataset identifier PXD011482.

Results and discussion
Multiplexed quantitative analysis of undepleted human 
serum proteome
A flowchart of the experiment is presented in Fig.  1, in 
which we profiled serum proteome without depletion by 
extensive TMT–LC/LC–MS/MS to maximize sensitivity 
and proteome coverage. Clinical characteristics of AD 
patients, together with gender- and age-matched control 
cases, are summarized in Additional file 1: Table S1. The 
whole serum protein extracts were denatured and trypsi-
nized into peptides. The resulting peptides were differen-
tially labelled with different TMT tags, and then equally 
pooled. The pooled peptides were separated by extensive 
offline basic pH reverse phase (RP) LC, collected into as 
many as 180 fractions to decrease the complexity in each 

Fig. 1  Experimental scheme of deep undepleted serum proteome 
analysis using TMT–LC/LC–MS/MS. AD and control serum samples 
were extracted, digested, labeled and pooled. The pooled peptide 
mixture was resolved in a 3 h gradient by basic pH RPLC, with 
fractions collected every minute (n = 180). Each collected fraction 
was subjected to the analysis by automated nanoscale acid pH 
RPLC, coupled with high resolution tandem mass spectrometry. All 
resulting data were analyzed by the JUMP software suite

http://www.proteomexchange.org
http://www.proteomexchange.org
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fraction. We then used a long, high resolution column 
and 3 h gradient for acidic pH RPLC (totaling 540 h) cou-
pled to the mass spectrometer. Taking account of main-
tenance time for LC, we spent approximately one month 
of instrument time to obtain ultra-deep analysis. In total, 
we collected 7.6 million MS/MS scans and accepted 0.36 
million peptide-spectrum matches (PSMs) after database 
search, leading to the identification and quantification of 
30,506 unique peptides, 4826 proteins with < 1% false dis-
covery rate (FDR), corresponding to 4368 genes (Addi-
tional file 1: Table S2). The most abundant protein serum 
albumin (ALB) was identified by 47,006 PSMs (13.1% 
of all accepted PSMs), and the top 22 proteins occupied 
262,008 PSMs (72.2% of the accepted PSMs). In spite of 
the presence of these exceedingly abundant species, we 
were still able to identify 3415 (70.8%) proteins with at 
least two matching peptides, and 3912 (81.1%) proteins 
with at least two PSMs. To our knowledge, this is one 
of most comprehensive quantitative analyses of human 
serum in a single experiment.

Estimation of the minimal fraction number to achieve high 
serum proteome coverage
As the serum samples have different protein composition 
and dynamic range from tissue specimens, we attempted 
to evaluate the performance of the two dimensional LC 
and to optimize a strategy for serum proteome analy-
sis. During the 3 h gradient of the 1st dimensional basic 
pH RPLC (15–35% buffer B, Fig. 2a), the majority of the 
peptides were eluted between 25 and 165  min. In this 
pilot analysis, we did not concatenate the 180 fractions 
because mixing fractions regenerates peptide complexity. 

Consistently, in the 2nd dimensional acid pH RPLC–MS/
MS, most peptides/proteins were identified between 
fractions 25–165. However, the number of identified pep-
tides were not evenly distributed, suggesting that con-
catenation may be a solution to equalize peptide content 
and improve analytical efficiency.

In shotgun proteomics, longer analytical time is gen-
erally rewarded with higher peptide/protein coverage 
until the saturation point is reached. Indeed, prior to the 
analysis of the half of fractions (n = 90, every alternative 
fraction), identified peptides increased with fractions 
in an approximately linear fashion (Fig.  2b). After 100 
fractions, the slope appeared to decrease dramatically, 
implicating that the analysis was close to saturation. To 
enhance the throughput of this platform, it is possible to 
analyze ~ 4000 proteins with the half of these fractions to 
balance coverage and MS usage.

Evaluation of sensitivity and dynamic range 
for the identified serum proteome
To assess the sensitivity of our method, we compared 
our dataset with a public plasma proteome database, and 
focused on the 1399 proteins with reported plasma con-
centrations [44]. Out of these proteins in the database, we 
detected 1206 (86%) proteins in our analysis. While sort-
ing the database proteins into 10 subsets by abundance 
(n = ~ 140 per subset) (Fig. 3a), our analysis identified at 
least 85% in the top 9 subsets, and the remaining < 15% 
proteins do not have sufficient tryptic peptides compat-
ible with our method. Even in the 10th subset of proteins 
with the lowest abundance, we still detected 44% of these 
proteins. Together, this comparison indicates that only 

Fig. 2  Basic pH RPLC elution profile and protein identification in individual fractions. a Extensive elution profile of pooled peptide mixture by 
basic pH RPLC. Peptides were eluted from a gradient buffer and monitored by UV absorption at 214 nm. Fractions were collected every minute. b 
Cumulative curve of total peptides and proteins by different combinations of fractions. For example, for the 90 alternative fractions, 24,083 peptides 
and 3890 proteins were identified
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a very small portion of plasma proteins were below our 
detection limit, demonstrating high sensitivity of our 
TMT–LC/LC–MS/MS method.

We next computed the abundance index based on 
PSMs after size normalization (see “Methods”) and eval-
uated the dynamic range in our dataset. The abundance 
index is consistent with known protein concentrations in 
the plasma database (R = 0.66, Fig. 3b, Additional file 1: 
Table  S3). As to the dynamic range we covered, serum 
albumin has the highest concentration (7.6 × 1010 ng/L), 
and cardiac type troponin T2 (TNNT2) has the lowest 
concentration (3.0 ng/L), spanning a range of more than 
10 orders of magnitude. Conservatively, looking at the 5% 
top and bottom quantile, the estimated dynamic range is 
3.6 × 106 (Fig. 3b). The results indicate a broad dynamic 
range is covered by the deep analysis.

Quality control analysis and intra‑ and inter‑group 
variations in AD‑control serum proteomes
We performed quality control analysis by comparing any 
of the two samples in the 11 quantified cases, and evalu-
ated intra- and inter-group variations in AD and con-
trol cases. To compare the samples, we plotted the TMT 
reporter intensities for all identified proteins (Fig.  4a). 
All two-sample comparisons showed a consistent and 
reproducible pattern (R of at least 0.7). For example, R 
values of the Ctl4/Ctl1, AD6/AD3, and AD5/Ctl3 were 
0.89, 0.91 and 0.76. For the above comparisons, we also 
derived the log2ratio values for all proteins to generate 
the histograms, which were largely fit into normal distri-
bution to generate standard deviation (Fig. 4b). As antici-
pated, the intra-group (e.g. Ctl4/Ctl1 and AD6/AD3) and 

inter-group standard deviation (e.g. AD5/Ctl3) were 0.60, 
0.50 and 1.03, respectively, consistently with the R values 
(Fig. 4a).

To fully compare intra- and inter-group variations, we 
obtained standard deviation values for all two-sample 
comparisons (n = 10 for the control group, n = 15 for the 
AD group, and n = 30 for the AD/control group). The 
averages of standard deviations in the control, AD, and 
AD/control comparisons were 0.75 ± 0.15, 0.73 ± 0.12, 
and 0.78 ± 0.14, respectively. Although the inter-group 
had slightly larger variations than the intra-group com-
parisons, there is no statistically significant differ-
ence, which may be due to the small cohort size, or 
large confounding factors, such as gender, age, genetic 
background, clinical treatment, and other pre- and 
post-sample collection variance [29, 45]. However, three-
dimensional principal-component analysis (PCA) of all 
quantified proteins displayed the separation of control 
and AD cases (Fig. 4c), confirming the reproducibility of 
the analysis.

Serum proteomics reveals deregulation of mitochondrial 
pathways in AD cases
To study serum proteome alterations in AD, we estab-
lished a computational pipeline by integrating differen-
tially expressed (DE) analysis with pathway enrichment 
[11, 18] (Fig.  5a). Out of 4826 proteins identified in the 
serum samples, we initially identified 248 DE proteins 
(p < 0.05), which were filtered by log2(AD/Ctl) changes 
(1.5 fold of average standard deviation at 0.75, equal to 
1.125 on the log2 scale, equivalent to 2.2 fold change), 
resulting in 35 DE proteins. After manual examination 

Fig. 3  Estimation of the method sensitivity and dynamic range. a Comparison between our dataset and plasma proteome database. The plasma 
proteome database contains concentration information for a large set of proteins. We extracted these proteins with concentration and divided 
them into 10 equal bins. In each bin, protein percentage identified in our dataset are highlighted (e.g. 99% in the top bin). b Plot of known protein 
concentration in the plasma proteome database against absolute protein abundance index calculated in our dataset
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to remove one-hit-wonders, we accepted a final list of 30 
proteins (Additional file 1: Table S3), shown in a heat map 
representing log2ratios between AD and control sam-
ples (Fig.  5b). Whereas 4 (13%) proteins (PUS10, BRF1, 
RC3H2, and CLIP1) showed higher expression in the AD 
than the control, 26 (87%) proteins had lower expression 
in AD. Strikingly, out of these downregulated proteins, 12 
proteins are localized in mitochondria, including some 
abundant proteins (e.g. PCK2, AK2, HSPA9, CYCS, DLD, 
and GATM, with at least 14 PSMs) (Fig. 5c).

Consistently, the 30 DE proteins were enriched in 
mitochondria-related pathway, as well as the signaling 
of fatty acid beta oxidation and AGE/RAGE (Fig.  5d). 
Interestingly, several proteins (HSPA9, CYCS, DLD, and 
GATM) were also enriched in various pathways related 
to Alzheimer’s disease [46–49]. Finally, we superimposed 
the DE proteins onto PPI network to extract functional 
modules that are assembled by interacting proteins to 
form functional units at a systems level. The PPI network 

was curated from the most commonly used databases, 
STRING [40], BioPlex [41], and InWeb_IM [42]. Com-
putational analysis identified 3 PPI modules, all related 
to mitochondrial function, including mitochondrial 
envelope (CYCS and GSTK1), intermembrane space 
(GATM and AGXT2), and matrix (AK2, DLD, HSPA9, 
HSD17B10, HSD17B8, and ECHDC2). Mitochondrial 
failure has been long proposed to play an important 
role in the development of Alzheimer’s disease [50, 51]. 
The master mitochondrial regulator PGC-1α [52] was 
reported to be dysregulated in AD brain during the pro-
gression of neuropathology and dementia, leading to the 
downregulation of mitochondrial genes including PCK2 
[53], supporting our proteomic findings. Thus, compre-
hensive profiling of serum proteome revealed the change 
of key mitochondrial proteins in AD that may be relevant 
to disease development.

In this deep proteomics analysis, we also detected 
tau and APP proteins in the samples. However, these 

Fig. 4  Statistical analysis to determine quality and intra/inter-group variations of serum proteome. a Representative comparisons of intra- and 
inter-group variations based on TMT reporter intensities for identified proteins in AD and control cases. b Histograms based on protein log2 ratios, 
fitted to normal distribution to derive standard deviation. c Principal component analysis of identified proteins
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proteins did not show statistically significant difference 
between the control and AD samples, partially due to the 
limited sample size. Recently, Nakamura et al. developed 
an approach to measure plasma Aβ by immunoprecipi-
tation (IP) and MS, and proposed an AD composite bio-
marker based on (APP)669–711/Aβ1–42 and Aβ1–40/Aβ1–42 
ratios [28]. The composite biomarker displayed high per-
formance for predicting brain Aβ burden, and high corre-
lation with Aβ1–42 in cerebrospinal fluid. Without the IP 
enrichment, the detailed ratio analysis could not be per-
formed in our dataset. The IP-MS approach may be used 
to improve sensitivity for targeted biomarker candidates.

TOMAHAQ‑based multiplexed approach for target 
validation in AD samples
Finally, we utilized a TOMAHAQ-based LC–MS3 assay 
to validate two mitochondrial proteins AK2 and PCK2 
which differentially expressed in our LC/LC–MS/MS 
discovery study. Both candidates were found to be down 
regulated in AD, with Log2 (AD/control) values of − 1.05 
and − 1.21. In this validation assay, we synthesized two 
peptides as internal standards. The synthetic peptides 
were labeled with the TMT0 reagent, and then mixed 
with endogenous samples labeled with 11-plexed TMT 
reagents. TOMAHAQ allows simultaneous and accu-
rate quantification of peptides across 11 samples in one 

Fig. 5  Analysis of whole serum proteome reveals mitochondrial associated signaling pathway. a Summary of the computational pipeline for 
serum proteome analysis. b Heatmap of differentially expressed proteins from control and AD samples (p < 0.05). c Fold change and PSM-based 
abundance of downregulated proteins in AD. d Functional annotations of enriched differentially expressed serum proteome
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assay. During the LC–MS runs, TMT0-peptides were 
always detected to trigger the measurement of their cor-
responding native peptides by MS3 spectra. The reporter 
ions of native peptides in the MS3 spectra were used for 
accurate quantification (Fig. 6a, see details in “Methods”). 
Consistently, the levels of PCK2 and AK2 in the AD cases 
were significantly lower, with Log2 (AD/control) values 
of − 1.04 ± 0.05 and − 1.69 ± 0.09, respectively (Fig. 6b), 
when compared to the control cases. This multiplexed 
method may be used for sensitive and accurate quantifi-
cation of selected targets in large-scale clinical validation 
in the future.

Conclusions
We identified 4826 proteins and demonstrated high pro-
teome coverage, sensitivity and reproducibility, as well 
as multiplexed targeted assays. Although extensive frac-
tionation and long instrumentation time were employed 
in this pilot study, we propose to achieve similar results 

of ~ 4000 proteins within a reasonable time frame. This 
extensive TMT–LC/LC–MS/MS platform will be of gen-
eral application for the measurement of complex clini-
cal specimens. Remarkably, even in this small cohort, we 
identified consistent changes of 30 proteins in AD speci-
mens compared to the non-dementia controls, in which 
12 proteins were clustered to the mitochondria-related 
pathway. These novel protein signatures may be related 
to AD progression and have potential to be followed as 
biomarkers in a large scale investigation, possibly by the 
TOMAHAQ-based LC–MS3 assay.

To our knowledge, this study (30,506 peptides from 
4826 proteins) represents one of the deepest, undepleted 
serum proteome profiling experiments from human 
biofluid. Previous studies usually attempted to increase 
the serum/plasma proteome coverage by immunode-
pletion of abundance proteins and extensive separa-
tion [4]. In 2006, the combination of immunodepletion, 
chemical fractionation (isolating cysteinyl- peptides and 

Fig. 6  Validation of selected proteins by TOMAHAQ targeted LC-MS3 method a TOMAHAQ used synthetic trigger peptides which were spiked 
into a mixture of multiplexed samples. Monitoring trigger peptides enabled quantification of target peptides. MS3 analyses of the target peptides 
were based on pre-defined b or y ions from target MS2 spectra, and the resulting reporter ions were used for quantification. b Validation of known 
candidate proteins PCK2 and AK2
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glycol-peptides) and LC/LC–MS/MS, allowed the identi-
fication of 22,267 peptides from 3654 different proteins. 
In 2011, human plasma proteome datasets were com-
piled to produce a non-redundant list of 1929 proteins 
(20,433 peptides) of high confidence [54]. In 2015, with 
the advance of better fractions and instrumentation, 
about 4600 proteins were analyzed in human plasma by 
immunodepletion, isobaric labeling and LC/LC–MS/MS. 
In 2017, the human plasma proteome draft included 3509 
proteins identified at least two peptides, and about 1300 
additional ambiguous proteins [55]. The drawbacks of 
immunodepletion are the removal of non-targeted pro-
teins, associated quantitative variability, and the cost of 
the antibody cartridge [7]. Our study demonstrates the 
possibility to achieve deep analysis without the step of 
immunodepletion. However, all of these deep plasma/
serum profiling experiments were time consuming due 
to a large number of fractions, which are not well suited 
for large clinical studies. Alternatively, a single-run, 
label-free protocol was introduced for rapid analysis of 
hundreds of plasma proteomes, and with additional pre-
fractionation, interpretation of 1000 proteins became 
possible [56]. Other approaches, such as SWATH, was 
used to quantify more than 300 plasma proteins in 232 
plasma samples [57]. Furthermore, the throughput of 
profiling of biofluids can be increased by sample multi-
plexing, such as iTRAQ/TMT labeling [58]. Here, we 
adapted the TMT-derived TOMAHAQ method for tar-
geted protein analysis. The integration of deep proteome 
coverage by extensive TMT–LC/LC-MS/MS in the dis-
covery phase, and targeted measurement by TOMAHAQ 
in the validation phase, will represent a balance between 
comprehensive profiling and analytical time.

Additional file

Additional file 1: Table S1. Summary of human cases used in this study. 
Table S2. Serum proteome profiling of AD and control cases by TMT–LC/
LC-MS/MS. Table S3. Dynamic range analysis based on plasma proteome 
database concentration and MS-derived abundance index. Table S4. Dif‑
ferentially expressed serum proteins in AD and control cases by TMT–LC/
LC-MS/MS.
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