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Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer that is characterized by its poor prognosis, 
rapid progression and development of drug resistance. Chemotherapy is a vital treatment option for most of PDAC 
patients. Stratification of PDAC patients, who would have a higher likelihood of responding to chemotherapy, could 
facilitate treatment selection and patient management.

Methods: A quantitative proteomic study was performed to characterize the protein profiles in the plasma of PDAC 
patients undergoing chemotherapy to determine if specific biomarkers could be used to predict likelihood of thera-
peutic response.

Results: By comparing the plasma proteome of the PDAC patients with positive therapeutic response and longer 
overall survival (Good-responders) to those who did not respond as well with shorter survival time (Limited-respond-
ers), we identified differential proteins and protein variants that could effectively segregate Good-responders from 
Limited-responders. Functional clustering and pathway analysis further suggested that many of these differential 
proteins were involved in pancreatic tumorigenesis. Four proteins, including vitamin-K dependent protein Z (PZ), sex 
hormone-binding globulin (SHBG), von Willebrand factor (VWF) and zinc-alpha-2-glycoprotein (AZGP1), were further 
evaluated as single or composite predictive biomarker with/without inclusion of CA 19-9. A composite biomarker 
panel that consists of PZ, SHBG, VWF and CA 19-9 demonstrated the best performance in distinguishing Good-
responders from Limited-responders.

Conclusion: Based on the cohort investigated, our data suggested that systemic proteome alterations involved in 
pathways associated with inflammation, immunoresponse, coagulation and complement cascades may be report-
ers of chemo-treatment outcome in PDAC patients. For the majority of the patients involved, the panel consisting 
of PZ, SHBG, VWF and CA 19-9 was able to segregate Good-responders from Limited-responders effectively. Our 
data also showed that dramatic fluctuations of biomarker concentration in the circulating system of a PDAC patient, 
which might result from biological heterogeneity or confounding complications, could diminish the performance of 
a biomarker. Categorization of PDAC patients in terms of their tumor stages and histological types could potentially 
facilitate patient stratification for treatment.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most notorious and lethal types of cancer with the worst 
5-year survival rate (8%) [1, 2]. Combination chemo-
therapy such as FOLFIRINOX (fluorouracil, irinotecan, 
oxaliplatin, and leucovorin) or a combination of gemcit-
abine and nab-paclitaxel improved survival of metastatic 
pancreatic cancer patients [3, 4]. Unfortunately, many 
patients with advanced and metastatic pancreatic cancer 
have poor performance status and may have difficulty tol-
erating combination chemotherapy [4].

So far the studies in the predictive markers to chemo-
therapy for PDAC are quite scarce. A few reported stud-
ies include: FKBP51, a scaffolding protein for Akt and 
PHLPP, which promotes cell death in response to gem-
citabine [5]; hENT1, a gemcitabine transporter, which 
predicts the patients who can potentially benefit from 
gemcitabine treatment [6]; and hyaluronidase—an 
enzyme degrades hyaluronic acid to enhance drug deliv-
ery [7]. In addition to proteins, therapeutically actionable 
oncogenes, such as lBRCA1/2, PALB2, and ATM, were 
also studied as genomic biomarkers for predicting treat-
ment response [8].

Carbohydrate antigen 19-9 (CA 19-9), which detects 
the epitope of sialyl Lewis(a) on mucins and other adhe-
sive molecules, is currently the primary biochemical test 
for monitoring the clinical course of pancreatic cancer 
treatment. Using the decline in CA 19-9 from its ini-
tial value to that after 8  weeks of chemotherapy is now 
well established in metastatic (stage IV), but not locally 
advanced (stage III) or earlier stages of pancreatic can-
cer, as a prognostic marker for chemotherapy response/
overall survival for both gemcitabine/abraxane and FOL-
FIRINOX, the two most common treatment regimens [9, 
10].

Efforts have been constantly invested to mine the blood 
proteome of PDAC patients for biomarker development, 
including plasma or serum, as well as exosomes [11–
13]. Nonetheless, little information is available regard-
ing robust biomarkers that are clinical applicable for 

therapeutic selection and prediction at the time of treat-
ment initiation.

In this study, using the spectral library-based prot-
eomic approach [14–16] and a unique PDAC cohort, we 
sought to explore the plasma proteome in PDAC patients 
who received chemotherapy to reveal proteome signals 
associated with treatment response and survival time. 
The information gained in this study may benefit future 
efforts in developing clinical applications for treatment 
selection and prediction for PDAC patients in the context 
of personalized medicine.

Materials and methods
Patients and plasma samples
The study was approved by the Institutional Review 
Board at the University of Washington and Virginia 
Mason Hospital (Seattle, WA). The current study cohort 
included 16 metastatic (stage IV) PDAC patients for pro-
teomic study, and additional 19 locally advanced (stage 
III) and 17 metastatic (stage IV) PDAC patients for the 
validation study (Table  1). Patients were staged accord-
ing to histology, imaging and clinical assessment. The 
patients were recruited prospectively for this study and 
inclusion criteria required newly diagnosed patients 
who were not treated prior to the first blood draw, while 
the second blood draw was performed after the chemo-
therapy. The days between the first and second draws 
were 62 ± 12  days. Chemotherapy was given according 
to the clinical acumen of the oncologist (author VJP) 
and included standard approved agents for pancreatic 
cancer. For the purposes of this study, the patients were 
stratified into Good-responders (≥ 12 months) and Lim-
ited-responders (< 12  months) in terms of their overall 
survival. The demographic information of the patients is 
provided in Additional file 1: Table S1. The blood samples 
were drawn into purple top tubes (Becton–Dickinson, 
Franklin Lakes, NJ, USA), with EDTA as an anticoagu-
lant, and then centrifuged at 1200 rpm for 20 min within 
4  h. The aliquoted plasma was stored at − 80  °C until 
analysis.

Table 1 Characteristics of PDAC patients at baseline and after the chemotherapy

Stage(s) Classification n Survival (month) 
(mean ± SD)

CA 19-9 (units/ml) (median (range))

Baseline After chemotherapy

III Good-responder 11 23.5 ± 4.9 179.5 (85.7, 371.2) 25.6 (9.7, 148.2)

Limited-responder 8 7.3 ± 3.2 447.4 (50.4, 17,089.3) 517.3 (19.8, 1388.5)

IV Good-responder 15 20.1 ± 8.1 1116.8 (112.3, 5229.2) 250.1 (13.3, 1851.8.4)

Limited-responder 18 6.7 ± 3.8 5532.8 (426.0, 64,178.0) 4642.0 (195.7, 88,904.1)

III and IV Good-responder 26 21.6 ± 7.0 395.9 (67.1, 4451.9) 125.3 (9.0, 795.0)

Limited-responder 26 6.9 ± 3.5 3164.5 (80.2, 51,831.1) 1123.9 (26.0, 55,992.8)
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Sample preparation for proteomic analysis
Equal volume (6  µl) of plasma from each sample was 
depleted to remove the top 12 abundant proteins using 
depletion spin columns (ThermoFisher Scientific, 
Waltham, MA, USA). The proteins were deglycosylated 
by PNGase F (New England Biolabs, Ipswich, MA, USA), 
reduced by 10  mM dithiothreitol at 50  °C for 1  h and 
alkylated by 25 mM iodoacetimide at room temperature 
in the dark for 30 min. After buffer exchanged  (Vivaspin® 
500 filter), the samples were digested with sequencing 
grade modified trypsin at 1:30 ratio (w:w) at 37  °C for 
18 h. The samples were dried down and re-suspended in 
50 µl 0.1% formic acid for MS analysis.

LC–MS/MS analysis
The samples were analyzed in a random order. The 
LC MS/MS system includes a nanoACQUITY UPLC 
(Waters, Milford, MA, USA) coupled with a Q Exactive™ 
plus mass spectrometer (ThermoFisher Scientific). The 
samples were separated by a C18 analytical column 
(75  µm × 30  cm) using a linear gradient from 5 to 30% 
B for 90 min with a flow rate of 0.3 µl/min. Electrospray 
ionization was operated in a positive mode at a voltage 
of 2.1  kV. Data-dependent acquisition (DDA) was per-
formed with a mass range from 400 to 1200 m/z. Higher-
energy collisional dissociation (HCD) was used for 
peptide fragmentation.

Data analysis
The MS data was searched against the UniProt human 
protein database (2015-07-23) for peptide/protein iden-
tification using the Comet algorithm [17] embedded in 
the Trans-Proteomic Pipeline (TPP v4.6) [18]. Carbami-
domethylation of cysteine was set as fixed modification, 
and oxidation of methionine and deamidation of aspar-
agine were set as variable modifications. The peptide 
assignment was validated with PeptideProphet [19], and 
a probability score ≥ 0.9 in correspondence with an FDR 
of 0.01 was applied to filter the peptides.

The Skyline software (v3.6) [20] was used for quan-
titative analysis of the DDA data. The spectral library 
was built using all of the DDA data collected from the 
32 samples analyzed. Quantification was made at MS1 
level using the sum of the first 3 monoisotopic peaks. 
The abundance of each peptide was normalized to total 
ion current (TIC) and presented as ion per million 
(IPM) using the following formula: Normalized Intensity 
(IPM) = Peptide Intensity/TIC * 1,000,000. Protein quan-
tification was achieved by summation of the normalized 
intensities of the corresponding peptides.

Single amino acid variants and global post-translational 
modifications were analyzed using Comet to search a 

PSI Extended FASTA Format (PEFF) (http://www.pside 
v.info/peff) human sequence database from neXtProt 
[21]. The search results were filtered by a maximum 
E-value of 10E−4. The spectral counts of peptides were 
used to compare their abundances.

CA 19-9 data
CA 19-9 data was provided as part of clinical informa-
tion. It was measured using chemiluminescence mag-
netic microparticle immunoassay (CMIA) on the Abott 
ARCHITECT ci16200 integrated system (Abott, Abott 
Park, Illinois, USA) according to the clinical protocol 
established at the Virginia Mason Medical Center.

Elisa
Four proteins, including PZ, AZGP1, SHBG and VWF, 
were analyzed in the plasma of a cohort of PDAC 
patients, using the following testing kits, ZYMUT-
EST Protein Z kit (Hyphen Biomed, France), zinc-α-2-
glycoprotein (human) TurboELISA kit (Adipogen, San 
Diego, CA, USA), human vWF-A2 DuoSet ELISA kit, and 
human SHBG DuoSet ELISA kit (R&D systems, Minne-
apolis, MN, USA), respectively. The absorbance was read 
on a Synergy H1 Multi-Mode plate reader (BioTek, Win-
ooski, VT, USA) at 450 nm. The samples were tested in 
duplicate in a randomized and blinded fashion.

Statistics and bioinformatics analysis
The statistical analysis was performed using SPSS v19.0 
(IBM, Armonk, NY, USA). The means of protein abun-
dance or ratio between Good-responders and Limited-
responders were compared using Students’ T test, while 
Chi square test was used to compare categorical data. 
Log-rank test was used to compare the survival between 
the biomarker-positive and biomarker-negative patients. 
A P-value < 0.05 was considered statistically significant. 
The R version 3.3.2 was used to perform principal com-
ponent analysis (PCA) with prcomp function and plot 
receiving operating characteristic (ROC) curve with 
ROCR package [22]. A binary logistic regression model 
was used to conduct the ROC analysis. Hierarchical data 
clustering analysis with heat map was done by a R pack-
age heatmap.plus with a method introduced by Key [23]. 
Functional annotation and enrichment analysis were per-
formed using the DAVID v6.8 and the KEGG pathway 
analysis [24].

Results
Evaluation of CA19-9
CA 19-9 was measured in the plasma samples of our 
study cohort. The value of CA 19-9 at baseline did not 
show significant difference between Good-respond-
ers and Limited-responders regardless PDAC stages 

http://www.psidev.info/peff
http://www.psidev.info/peff
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(Additional file  2: Figure S1A). The ROC analysis indi-
cated that the AUC values of CA 19-9 for stage III & IV, 
III and IV are 0.65, 0.58, and 0.65, respectively, in dis-
tinguishing Good-responders from Limited-responders 
(Additional file  2: Figure S1B). As a single biomarker, 
CA19-9 was not effective in separating Good-responders 
from Limited-responders at baseline.

Proteomic analysis and evaluation
A spectral-library based proteomic analysis (Fig.  1) was 
performed on paired plasma of each of the 16 Stage IV 
PDAC patients, which included one sample prior to and 
one sample after chemotherapy treatment (N = 32 sam-
ples). The raw data of each sample were analyzed by spec-
tral matching using the cohort specific plasma library, 
which stores the identification information of peptides, 
including masses for precursors and product ions, reten-
tion times, and charge states. An apparent setback of 
conventional DDA analysis for a complex sample is its 
intermitted detection of low abundant peaks for MS/
MS analysis in a single analysis, although its ion selec-
tion for fragmentation is highly specific. To work around 

this caveat, we implemented a combined spectral library, 
which was constructed using all the peptides and pro-
teins identified in the cohort samples (n = 32) with strin-
gent identification criteria. In such a setting, for any 
peptide that is identified in any one of the samples, its 
precursor signal will be extracted for all samples within 
the defined retention time window (5 min) and assigned 
identification based on precise mass matching.

For quantification, we compared the detection sensi-
tivity and consistency using either precursor or product 
ions. As shown in Fig. 2, MS1 signal provides more sen-
sitive detection of the peptides compared to the corre-
sponding product ion peaks. This is particularly obvious 
for those peptides with low intensities. For quality assur-
ance, we selected 8 proteins with a plasma concentration 
spanning from 17 to 7.2 × 105 ng/ml [25] to compare the 
quantification using the intensities of either precursors 
or product ions. The protein intensities by precursor and 
product ions of 8 proteins were well correlated in the 32 
samples (Fig. 3).

In total, 563 proteins in the patients’ plasma were iden-
tified and quantified (Additional file 3: Table S2). Peptides 

Fig. 1 The proteomic work flow applied in the study. a A spectral-library-based proteomic approach was used to compare the plasma proteomes 
between Good-responders and Limited-responders. Plasma samples were immunodepleted, digested and analyzed by LC–MS/MS. A spectral 
library was constructed for peptide/protein identification and quantification. b An example of peptide identification and quantification using 
spectral library based approach—the elution profile and MS/MS library matching of a doubly charged peptide DEPTYILNIK. The number of lines on 
the peptide elution profile indicates the number of the times the peptide has been fragmented and identified during the acquisition
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with a normalized intensity ≥ 16 IPM and consistently 
identified across all 32 samples were considered highly 
quantifiable (HQ) peptides (Additional file  4: Table  S3). 
The majority of the HQ peptides showed a precise mass 
matching (deviation < 3  ppm) with theoretical values 
across all samples (Additional file 5: Figure S2). Such an 
approach not only enhances the detection of low abun-
dant peptides, which may be missed in a single DDA run 
for MS/MS identification, but also improves the analyti-
cal coverage, sensitivity, and robustness by using a com-
bined spectral library.

Four analytical and biological replicates were pre-
pared to assess the reproducibility and robustness of the 
method in peptide and protein quantification. The cor-
relations of the intensities and retention time of the HQ 
peptides, the abundances of their resulting proteins for 
the analytical and biological replicates showed high lin-
earity (Additional file 6: Figure S3).

Proteins associated with treatment efficacy and patient 
prognosis
In the analysis, we were interested in revealing two 
groups of proteins that are relevant to the patient’s 
response to the treatment: (1) proteins that expressed 
differentially at baseline between Good-responders and 
Limited-responders (baseline differential proteins − BD 
proteins); (2) proteins that showed different abundance 
changes associated with the first chemotherapy treat-
ment between Good-responders and Limited-responders 
(Treatment-induced differential proteins − TID proteins).

For baseline comparison, two-sample T-test identified 
37 BD proteins that showed significantly differential 
expression between the two groups (Additional file  7: 
Table  S4). While the differential expression of these 
proteins may be influenced by biological heterogeneity, 

Fig. 2 The elution profiles of two peptides with quantifiable precursor and product ions. a Peptide TGISPLALIK derived from APOB. b Peptide 
LGEVNTYAGDLQK derived from APOA4

Fig. 3 The correlation of protein intensities quantified by precursor 
and product ions of 8 plasma proteins. The intensities were displayed 
as the log10 values. a APOB. b C8A. c LUM. d SELL. e GSN. f PON1. g 
HBA1. h SERPINF1
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a number of them have been implicated in PDAC [13, 
26–36]. Enrichment analysis by KEGG pathway further 
indicated that the most significant pathways involved 
were coagulation and complement cascades and gly-
colysis/gluconeogenesis (Additional file 8: Table S5). It 
was also notable that at baseline many inflammatory 
proteins had a lower concentration in Good-respond-
ers, including C-reactive protein (CRP), which had 
lower plasma level (more than 40% lower compared 
to the mean of all 16 patients) in 6 out of the 8 Good-
responders, consistent with previous studies [37].

Another comparison of the plasma proteomes between 
Good-responders and Limited-responders was made to 
reveal the plasma proteins that showed differential abun-
dance changes associated with the chemotherapy, i.e. the 
TID proteins. A total of 22 TID proteins were identified 
(Additional file 9: Table S6), and half of them were among 
the BD protein list showing differential abundances at 
baseline as well (Additional file 7: Table S4). Similarly, the 
most significant KEGG pathways for TID proteins were 
also coagulation and complement cascades and glycoly-
sis/gluconeogenesis (Additional file 10: Table S7).

The PCA analysis indicated that complete discrimina-
tion between Good-responders and Limited-responders 
were achieved with the BD proteins, but not the TID 
proteins, which were able to separate the two groups at 
some level, but not to delimit Good-responders and Lim-
ited-responders completely (Fig.  4a, c). Inclusion of CA 
19-9 in the PCA analysis did not demonstrate significant 
improvement in discriminating the two groups using 
either BD or TID proteins. Hierarchical clustering analy-
sis was not able to completely segregate Good-respond-
ers from Limited-responders based upon the intensities 
of either BD or TID proteins (Fig. 4b, d).

Glycopeptides
Using PNGase F to cleave the N-linked glycans from pro-
teins allowed us to interrogate the N-glycosylation abun-
dance change in the plasma proteome of PDAC patients 
using existing data sets. Without enrichment, 245 degly-
cosylated N-linked glycopeptides were identified as an 
additional gain in our experiments. Six N-glycosylated 
peptides showed differential abundance changes between 
PDAC Good-responders and Limited-responders at 
baseline (Additional file  11: Table  S8), while seven gly-
copeptides have different abundance changes associated 
with the chemotherapy between Good-responders and 
Limited-responders (Additional file  12: Table  S9). The 
PCA analysis demonstrated that the use of either the BD 
glycopeptides or the TID glycopeptides can largely segre-
gate Good-responders and Limited-responders, but not 
completely (Additional file 13: Figure S4).

Peptide variant analysis
We also carried out the analysis to identify the single 
amino acid variants of the plasma proteins to examine 
whether polymorphism might be a factor affecting the 
response to chemotherapy in PDAC patients. A total of 
2993 variant peptides with amino acid substitution were 
identified in the plasma of 16 patients, among which 64 
peptides have differential abundances between Good-
responders and Limited-responders (Additional file  14: 
Table S10). PCA demonstrated that these peptides could 
lead to a complete segregation between Good-responders 
and Limited-responders (Additional file 15: Figure S5).

ELISA results
Four BD proteins, including PZ, AZGP1, SHBG, and 
VWF, were selected for further testing by ELISA using 
a cohort of 52 PDAC patients, including 19 stage III 
and 33 stage IV with metastatic disease (Fig. 5). These 
four proteins were selected based on their abundance 
differences between Good-responders and Limited-
responders from proteomic data (Additional file  16: 
Figure S6) and their implications in pancreatic can-
cer. Notably, the ELISA measurement of AZGP1 was 
inconsistent with the proteomic data, possibly due in 
part to its glycosylation forms, which may affect the 
antibody based detection. For this reason, AZGP1 was 
excluded from further evaluation. The ROC analyses of 
PZ, SHBG, VWF and CA 19-9 as a single or compos-
ite biomarker are summarized in Fig.  6a and Table  2. 
To ensure that every patient who would benefit from 
chemotherapy will get chemotherapy, we anticipate a 
good predictive biomarker to have high sensitivity and 
acceptable specificity. When used alone, VWF showed 
better performance than the other two proteins or CA 
19-9 for stage III patients, while SHBG was the best one 
for stage IV patients. Addition of CA19-9 to each of 
these proteins was able to improve the AUC values for 
both stage III and IV. Overall, combination of two or 
three proteins as a composite biomarker outperformed 
the single markers and benefitted from the inclusion of 
CA 19-9, leading to an increase of the AUC values. For 
all patients combined, one of the best composite bio-
markers was the panel of PZ + SHBG + VWF + CA19-9 
with an AUC value of 0.71. This panel only achieved a 
specificity of 39% at 90% sensitivity in distinguishing 
Good-responders from Limited-responders. However, 
when the patients were grouped based on their tumor 
stages, the performance of the composite biomarkers 
improved substantially for stage III patients. It distin-
guished Good-responders from Limited-responders 
with an AUC value of 0.83, and yielded a specific-
ity of 63% at 90% sensitivity. For stage IV patients, 
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it yielded an AUC value of 0.87, leading to a specific-
ity of 30% at 90% sensitivity. Notably, we found that 
the low specificity for stage IV patients was caused by 
one Good-responder with a stage IV disease, who had 
exceptionally high levels of VWF and CA19-9, lead-
ing to a false classification of this subject as a Bio-
marker-positive patient and hence made the separation 
obscure. By excluding this patient for the analysis, the 
performance of the biomarker panel improved dra-
matically. The AUC values for all combined (stage III 
and IV) and stage IV patients increased to 0.77 (61% 

specificity at 90% sensitivity) and 0.95 (70% specificity 
at 90% sensitivity), respectively.

After deriving the cutoff points of the proteins for 
the best composite biomarkers (Additional file  17: 
Table  S11), the cohort of PDAC patients were divided 
into two groups based on the biomarker threshold: Bio-
marker-positive and Biomarker-negative. If a composite 
biomarker meets the cut point criteria, i.e. “Biomarker-
positive”, it suggests a potential Limited-responder, and 
vice versa.

Fig. 4 PCA and hierarchical cluster analysis of BD and TIC proteins. a PCA showed that PDAC Good-responders and Limited-responders 
segregated from each based on the intensities of the BD proteins. b Heat map representation of the BD proteins in PDAC Good-responders 
versus Limited-responders. The BD proteins were ordered by hierarchical clustering with color depicting intensity (log2 value). c PCA showed that 
PDAC Good-responders and Limited-responders did not segregate completely from each based on the ratios of the TIC proteins. d Heat map 
representation of the TIC proteins in PDAC Good-responders versus Limited-responders. The TIC proteins were ordered by hierarchical clustering 
with color depicting intensity (log2 value). GR Good-responders, LR Limited-responders
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The survivals between the Biomarker-positive 
patients and Biomarker-negative patients at differ-
ent stages were compared by log-rank test as shown 
in the Fig.  6b. When all the patients (stages III and 
IV) were tested together, the median survival was 
19.2  months (95% confidence interval (CI) 11.4–
22.1  months) for the Biomarker-negative patients, as 
compared to 8.7  months (95% CI 6–11.7  months) for 
the Biomarker-positive patients. For stage III, Bio-
marker-negative patients (median 22.1 months, 95% CI 
17.4–28.8  months) showed significant improved sur-
vival compared to Biomarker-positive patients (median 
8.7  months, 95% CI 1.9–17  months) with a P < 0.01. 
However, for stage IV, the separation between the 

Biomarker-negative patients (median 15.3 months, 95% 
CI 10.5–21.3 months) and Biomarker-positive patients 
(median 8.9 months, 95% CI 6.7–11.7 months) was not 
significant. Again, after exclusion of the outlier stage 
IV patient who had exceptional high level of VWF and 
CA 19-9, for all patent groups, the biomarker panel 
was able to separate Good-responders from Limited-
responders significantly based on their survival time 
(Fig. 6c). These data exemplified the challenges in blood 
biomarker development in PDAC, as the blood con-
centration of a protein could be influenced by many 
factors, including biological heterogeneity and other 
confounding complications due to malignancies and 
inflammatory diseases.

Fig. 5 ELISA analysis of four selected proteins. The plasma levels of PZ, AZGP1, SHBG, and VWF at baseline were determined by ELISA in a cohort of 
PDAC patients (a–d). The plasma concentrations were illustrated as box plots. GR good-esponders, LR Limited-responders
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Discussion
In this study, we applied the spectral library based 
quantitative proteomics to investigate the plasma pro-
teome of the PDAC patients with different treatment 
responses and survival time. The PCA analysis using 
the BD proteins was able to segregate Good-respond-
ers from Limited-responders with statistical signifi-
cance. The BD and TID proteins showed significant 
overlap and were implicated in pathways related to 
coagulation, complement cascades and glycolysis/
gluconeogenesis. Many of these proteins have previ-
ously been reported with an involvement in pancreatic 
tumorigenesis and drug resistance. The level of many 

inflammatory proteins were lower in the plasma from 
Good-responders.

For predictive biomarkers, we are looking for biomark-
ers with high sensitivity. For a biomarker with ≥ 90% sen-
sitivity and ≥ 50% specificity, it will ensure at least 90% of 
Good-responders would get treatment and benefit from 
the chemotherapy, while save half of Limited-respond-
ers from the unnecessary toxicity from treatment. For 
the PDAC patients that we tested, as an individual bio-
marker, the ELISA of the three protein candidates PZ, 
SHBG and VWF, as well as CA19-9, were not robust 
enough to distinguish Good-responders from Limited-
responders. Combination of two or more proteins as 

Fig. 6 ROC and survival analysis. a ROC curves for PZ, SHBG, VWF and CA19-9 as single biomarker, as well as the best-performing composite 
biomarker in stages III & IV, III, and IV PDAC patients. b For all the patients included, the survival curves of PDAC patients stratified by predictive 
composite biomarker for stages III & IV, III, and IV PDAC patients. c After exclusion of one stage IV patient who was Good-responder, but had 
exceptional high VWF and CA 19-9 concentrations, the survival curves of PDAC patients were significantly improved
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a composite biomarker boosted the performance in a 
cohort comprised of stage III and IV PDAC patients. 
While the panel that consists of PZ, SHBG, VWF and 
CA 19-9 demonstrated the best performance in segre-
gating Good-responders from the Limited-responders, 
a stage IV patient who was a Good-responder, but had 
exceptionally high levels of VWF and CA 19-9 readings, 
was falsely categorized. Just like CA 19-9, which does 
not work well on the patients who lack of sialyl Lewis(a) 
antigen, the performance of the biomarker could be 
diminished due to biological heterogeneity and/or other 
confounding factors, including chronic pancreatitis, 
jaundice, diabetes and other diseases. Compared to the 
stage III patients who have locally advanced PDAC, this 
may be more of the case for stage IV patients, many of 
whom have a metastatic disease and other complications. 
Classification of PDAC patients with clinical parameters, 
including tumor stages and histological types might give 
rise to the improvement in the sensitivity and specificity 
of biomarkers.

It is also notable that compared to mass spectromet-
ric data, the ELISA measurement showed dramatically 
compressed differences between Good-responders and 
Limited-responders (Additional file  18: Figure S7). The 
discrepancies could be attributed to several factors, 
including: (1) The dynamic range and sensitivity of the 
two approaches vary due to different measuring mecha-
nisms; 2) Proteomics tends to measure total proteins in 
the plasma, whereas ELISA may only measure proteins in 

free form; (3) Splice variants and post-translational mod-
ifications, such as glycosylation, could affect detection 
specificity of an antibody based measurement.

All three individual candidates included in the bio-
marker panel have been previously related to the progres-
sion and prognosis of PDAC. The serum levels of SHBG 
were elevated in advanced pancreatic cancer patients, 
which may imply a worsened survival as compared to the 
controls [36]. It is hypothesized that SHBG may correlate 
with inflammation during acute phase [38]. Abnormal 
coagulation is one of the most frequently encountered 
complications by oncologists, which is attributed to mul-
tiple factors, such as tumor type and disease stage. PZ, 
which was of higher abundance in Good-responders, is 
involved in the regulation of blood coagulation. Descend-
ing PZ concentrations in the patients with malignant 
tumors were observed, which coincided with tumor pro-
gression and may imply poor prognosis [39]. VWF has 
essential functions in platelet adhesion and inflammation 
[40]. The relatively lower plasma concentration of VWF 
in Good-responders compared to Limited-respond-
ers appeared to be consistent with other inflamma-
tory proteins, such as CRP, and might imply a different 
immunoresponse and a less degree of angiogenesis com-
plication [41].

The sequence variant analysis demonstrated that amino 
acid polymorphism is not a rare event in plasma proteins. 
Among the variants that were identified with differen-
tial plasma level between Good-responders and Limited 

Table 2 The summary of ROC analysis of PZ, SHBG, VWF and CA19-9

These proteins were tested as single or composite biomarker for predicting Good-responders from Limited-responders with or without inclusion of CA 19-9. PZ is a 
vitamin K-dependent glycoprotein, which regulates blood coagulation. SHBG is a glycoprotein that binds hormones, which is an index of testosterone level and an 
inflammatory marker. VWF is a blood glycoprotein maintaining hemostasis, which also acts in inflammation and antitumor

Marker Stages III and IV Stage III Stage IV

AUC Sensitivity 
at 90% 
specificity

Specificity 
at 90% 
sensitivity

AUC Sensitivity 
at 90% 
specificity

Specificity 
at 90% 
sensitivity

AUC Sensitivity 
at 90% 
specificity

Specificity at 90% 
sensitivity

PZ 0.60 0.22 0.06 0.68 0 0.50 0.46 0 0.10

SHBG 0.60 0.27 0 0.57 0.27 0 0.69 0.33 0.28

VWF 0.59 0.08 0.04 0.72 0.09 0.38 0.49 0.20 0.17

CA19-9 0.65 0.23 0.38 0.58 0.18 0.50 0.65 0.20 0.44

PZ + CA19-9 0.66 0.22 0.33 0.73 0 0.625 0.70 0 0.40

SHBG + CA19-9 0.62 0.12 0.38 0.72 0.45 0.25 0.78 0.33 0.22

VWF + CA19-9 0.67 0.19 0.38 0.73 0.09 0.5 0.69 0.20 0.50

PZ + SHBG 0.60 0.17 0.22 0.70 0.18 0.5 0.79 0.43 0.30

PZ + VWF 0.64 0.11 0.22 0.72 0 0.50 0.46 0 0.10

SHBG + VWF 0.58 0.08 0.04 0.80 0.36 0.38 0.72 0.47 0.33

PZ + SHBG + CA19-9 0.64 0.17 0.33 0.78 0.27 0.50 0.87 0.86 0.40

PZ + VWF + CA19-9 0.73 0.11 0.39 0.77 0 0.75 0.70 0.29 0.40

SHBG + VWF + CA19-9 0.68 0.23 0.38 0.83 0.36 0.50 0.77 0.47 0.22

PZ + SHBG + VWF 0.65 0.17 0.33 0.75 0.18 0.50 0.80 0.86 0.40

PZ + SHBG + VWF + CA19-9 0.71 0.11 0.39 0.83 0.27 0.63 0.87 0.71 0.30
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responder, many of them are derived from a few proteins, 
including ceruloplasmin, plasminogen, retinol-binding 
protein 4, transthyretin, apolipoprotein B-100, comple-
ment component C7. Interestingly, two transthyretin 
variants (Gln89 and Tyr114), detected with higher level 
in Good-responders, were reported to be associated with 
amyloid polyneuropathy [42–44]. Since only a hand-
ful of these variations have been sparsely studied previ-
ously due to the lack of technology for global analysis, the 
changes of these variants in association with the differ-
ence in patient response warrant further investigation. 
These single amino acid polymorphisms could be traced 
back to genome-wide single nucleotide polymorphism 
(SNP) studies, and may add new knowledge towards how 
and whether these mutations contribute to malignancies 
and chemoresistance.
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