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Abstract 

Background:  Sepsis is a dysregulated host response to infection and a major cause of death worldwide. Respiratory 
tract infections account for most sepsis cases and depending on the place of acquisition, i.e., community or hospital 
acquired infection, differ in etiology, antimicrobial resistance and outcomes. Accordingly, the host response may be 
different in septic patients secondary to community-acquired pneumonia and hospital acquired pneumonia (HAP). 
Proteomic analysis is a useful approach to evaluate broad alterations in biological pathways that take place during 
sepsis. Here we evaluated plasma proteome changes in sepsis secondary to HAP.

Methods:  Plasma samples were obtained from patients (n = 27) at admission and after 7 days of follow-up, and were 
analyzed according to the patients’ outcomes. The patients’ proteome profiles were compared with healthy volunteers 
(n = 23). Pooled plasma samples were labeled with isobaric tag for relative and absolute quantitationand analyzed 
by LC–MS/MS. We used bioinformatics tools to find altered functions and pathways. Results were validated using 
biochemical estimations and ELISA tests.

Results:  We identified 159 altered proteins in septic patients; most of them were common when comparing 
patients’ outcomes, both at admission and after 7 days. The top altered biological processes were acute inflammatory 
response, response to wounding, blood coagulation and homeostasis. Lipid metabolism emerged as the main altered 
function in patients, with HDL as a central node in the network analysis, interacting with downregulated proteins, 
such as APOA4, APOB, APOC1, APOL1, SAA4 and PON1. Validation tests showed reduced plasma levels of total choles-
terol, HDL-C, LDL-C, non-HDL cholesterol, apolipoproteins ApoA1 and ApoB100, and Paraoxonase 1 in HAP patients.

Conclusion:  Proteomic analysis pointed to impairment of lipid metabolism as a major change in septic patients 
secondary to HAP, which was further validated by the reduced levels of cholesterol moieties and apolipoproteins in 
plasma. Our results stress the involvement of lipids in the pathogenesis of sepsis, which is in accordance with previous 
reports supporting the role of lipid moieties in pathogen toxin clearance and in modulating inflammatory responses.
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Introduction
Sepsis is defined as a life-threatening organ dysfunction 
caused by a dysregulated host response to infection [1]. 
It is a major cause of morbidity and mortality world-
wide, with over 30 million estimated cases annually 
leading to 5.3 million potential deaths [2]. The burden 
of sepsis may be greater in developing countries [3], as 
illustrated by the findings that one-third of intensive 
care beds in Brazil were occupied by septic patients, 
with a mortality rate of 55.7% [4]. Sepsis may be sec-
ondary to community- or hospital-acquired infections, 
which differ in etiology, antimicrobial resistance and 
outcomes [5–7]. The respiratory tract is the most com-
mon site of infection, accounting for more than half of 
the cases of sepsis in intensive care units (ICU) [4, 8].

The pathogenesis of sepsis is complex and involves 
virulence factors from infectious microorganisms and 
the host defense immune system [9, 10]. Inflamma-
tory and anti-inflammatory responses are triggered 
in sepsis, exposing patients to the potential harmful 
effects of inflammation or immunosuppression [11, 
12]. Transcriptomics studies were pivotal in uncover-
ing the broad derangements of the host following LPS 
exposure, trauma and sepsis [13–15]. Proteins are the 
actual players in biological systems; hence, proteome 
changes have been investigated in clinical and experi-
mental sepsis revealing that biological pathways, such 
as inflammatory, acute phase response, coagulation, 
complement, mitochondrial energy metabolism, and 
oxidative stress pathways are altered at the protein level 
[16, 17].

We have recently reported that the proteomes of 
patients with sepsis secondary to community acquired 
pneumonia (CAP) are altered, in which cytoskeleton, cel-
lular assembly, movement, lipid metabolism and immune 
responses are dysregulated [18]. Community and hospital 
acquired pneumonia are anticipated to present with dif-
ferent host responses during sepsis. A previous report 
evaluating a large cohort of CAP and HAP patients 
admitted to the ICU showed that patients with HAP 
presented with overexpressed genes involved in cell–cell 
junction remodeling, adhesion, and diapedesis, and an 
underexpressed type-I interferon signaling gene signa-
ture [19].

In this study, we evaluated proteome changes in sep-
tic patients secondary to HAP, in which we evaluated 
samples at admission and after 7  days of treatment and 
accordingly to outcomes, in survivors and nonsurvi-
vors. Proteins were quantified using the iTRAQ method 
and bioinformatic approaches were used for identifying 
molecular functions, biological processes and pathways. 
Processes related to lipid metabolism were then identi-
fied as the most altered in the plasma of HAP patients.

Material and methods
Study design
In the present study, patients with sepsis secondary to 
HAP were selected and analyzed based on outcomes, 
such as septic survival and septic nonsurvival at hospital 
discharge. Hospital acquired pneumonia (HAP) occurs 
48 h or more after admission and does not appear to be 
incubating at the time of admission; ventilator-associated 
pneumonia (VAP) is a type of hospital-acquired pneumo-
nia that occurs more than 02  days of mechanical venti-
lation [20]. The patients’ plasma proteome profiles were 
compared with age and sex matched healthy volunteers.

Sample collection
Blood samples were collected from healthy volunteers 
and from patients with severe sepsis/septic shock who 
were admitted into the ICUs of the participating hospitals 
after written informed consent was obtained from the 
participants or from their relatives. The prospective study 
was approved by the ethics committees of São Paulo Hos-
pital (Study number 1477/06), Albert Einstein Hospital 
(Study number 07/549) and Sírio Libanês Hospital (Study 
number 2006/27). Patients with AIDS, immunosuppres-
sive therapy or end stage chronic illness were excluded 
from the study. Fifty milliliters of blood was collected 
within 48 h of the first occurrence of organ dysfunction 
or septic shock (D0) and after 7 days of follow-up (D7). 
Plasma and blood cells were separated using a ficoll gra-
dient (Ficoll-Paque PLUS; GE Healthcare Bio-Sciences 
AB, Uppsala, Sweden). A total of 425 septic patients were 
enrolled in the cohort, from which 27 septic patients, 
who had HAP as their primary source of infection and 
were older than 40  years of age, were selected for this 
study, 8 of whom survived and 19 of whom died dur-
ing hospitalization (Fig. 1). Additionally, 23 healthy vol-
unteers, who were matched by age and gender with the 
HAP patients, were selected from the 82 initially enrolled 
subjects for the study.

Plasma sample processing
Plasma samples from septic patients were labeled as 
D0S and D7S, and D0NS and D7NS considering the day 
of collection and the outcomes, survivors (S) and non-
survivors (NS). We estimated the protein content and 
pooled equal concentration of plasma protein from each 
individual sample to corresponding group before deple-
tion. Healthy controls’ plasma samples were pooled in 
the same way.

Plasma albumin and immunoglobulins are major com-
ponents (> 90%) of human blood and mask low abundant 
proteins. To unmask low abundant proteins, we depleted 
high abundant proteins using a proteome minor kit (Bio-
Rad, USA) and the depleted plasma samples were passed 
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through a 3-kd filter with iTRAQ compatible buffer (Ab 
Sciex, USA). A total 100 μg of protein from all represent-
ative groups were transferred into separate tubes, and the 
volume was equalized with iTRAQ dissolution buffer. 
The cysteine disulfide bonds were reduced and alkylated 
using 50  mM TCEP and 200  mM methyl methanethio-
sulfate (MMTS). For protein digestion, 10  μg of trypsin 
was added to each vial, mixed and incubated at 37  °C 
overnight. The next day, the vial volume was reduced by 
SpeedVac and adjusted up to 30 μl using 1 M TEAB. A 
total of 60  μl of isopropanol was added to each iTRAQ 
reagent vial, mixed and quickly spun. The prepared 
iTRAQ reagent was added into the digested protein sam-
ple vial and incubated for 2 h at room temperature.

Sample fractionation using SCX chromatography
To reduce the complexity, labeled peptides were frac-
tionated using the SCX method. In brief, all sample vials 
were pooled into single vials and volume adjusted to 
pH < 2.7 using SCX-A buffer and 1 M hydrochloric acid. 
Then, the sample was applied to a PolySULFOETHYL A 
column and washed with 100% SCX-A at a rate of one 
ml per minute for 30 min. The labeled peptide mix was 

separated as described previously [18]. A total 20 frac-
tions were collected and desalted using zip tip.

LC–MS/MS analysis
Each fraction was applied to a nanoacquity UPLC nano-
flow liquid chromatography system coupled with a Syn-
apt G2 mass spectrometer (Waters, Milford, MA, USA). 
The fractions were further desalted in a trap column 
(180  µm × 2  cm, 5  µm, Waters, USA) at a flow rate of 
8 µl/min for 5 min and then resolved on a C18 column 
(75  µm × 15  cm, 1.7  µm, Waters, USA) with an applied 
voltage of 3 kV. The peptides were separated using a lin-
ear gradient of 7–30% solvent B (90% acetonitrile in 0.1% 
formic acid) for 90 min with a flow rate of 250 nL/min. 
The MS data were acquired for the separated peptides in 
a data dependent manner from m/z 300 to 1600 Da with 
the three most abundant ions in the survey scan. For the 
MS/MS data, collision-induced dissociation (CID) mode 
was used with 1.5 s per spectra acquisition.

After data acquisition, raw files were processed with 
mascot distiller (Matrix Science, USA), and all processed 
MS–MS peak list files were merged with mascot daemon. 
Then, the merged file was searched against the UniProt 
database (20,120 entries of reviewed proteins in humans). 
The parameters included trypsin as a protease (allowed 
one missed cleavage), iTRAQ label at N-terminus and 
lysine residues, cysteine modifications by MMTS were 
specified as fixed modifications, and oxidation of methio-
nine was specified as a modification variable. The pre-
cursor and product ion mass error tolerance were fixed 
at 20  ppm and 0.1  Da, respectively. The peptide and 
protein data were extracted using a high peptide confi-
dence (P ≤ 0.05) and a minimum of 2 peptides were used 
for protein identification. The false discovery rate (FDR) 
was calculated using decoy database searches. Peptides 
identified at 1% FDR were used for protein identification. 
The results from the mascot server were loaded into iso-
baricQ for iTRAQ quantitation [21].

Bioinformatic analysis of proteomics data
The identified proteins were converted to gene names/
gene symbols to further analyze gene ontology, altered 
functions and pathways.

a.	 Gene ontology annotations.

Gene ontology (GO) annotation was carried out using 
Toppgene suite, as described earlier [22]. In brief, a differ-
entially expressed gene list was uploaded in the ToppFun 
section of Toppgene suite with an FDR B&Y correction 
and a P value cut off 0.05. The resulting file, which con-
tained altered molecular functions and biological pro-
cesses, was analyzed.

Fig. 1  Schematic flow chart of the patient enrollment and selection. 
Patients admitted to intensive care units with severe sepsis and/
or septic shock were selected based on criteria that included blood 
sampling, source and site of infection, and were assigned to groups 
according to their outcomes (survivors and nonsurvivors)
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b.	 Function and pathway analysis.

The gene list of identified proteins was uploaded into 
the Ingenuity pathway knowledge database (IPA) and the 
fold change cut off was set at ± 1.3 for further functional, 
pathway and regulatory network analyses. The significant 
altered functions and signaling pathways (P < 0.05) were 
included.

Plasma protein quantitation and biochemical estimations
To validate the proteomics data, we selected altered 
plasma proteins and cholesterol fractions for biochemi-
cal assays in individual samples from patients and healthy 
volunteers. For analysis, the COBAS c311 automated 
system was used. Cholesterol fractions and triglycerides 
were estimated, per the manufacturer’s protocol, using 
enzymatic and colorimetric methods (CHOL HICo 
Gen.2, HDL-C Gen.3 and TRIGL, Roche, USA). Plasma 
lipoprotein, apolipoprotein A-1 and apolipoprotein B 
were quantified, per the manufacturer’s protocols, using 
immunoturbidimetric methods (Tina-quant Lipoprotein 
(a) Gen.2, Tina-quant Apoliprotein A-1 ver.2 and Tina-
quant Apoliprotein B ver.2, Roche, USA).

PON-1 and haptoglobin plasma levels were quanti-
fied by ELISA. PON-1 was measured with a human total 
PON1 DuoSet® IC (DYC5816-2, R&D Systems, USA) 
and haptoglobin with a human haptoglobin immunoas-
say Quantikine® ELISA (DHAPG0, R&D Systems, USA), 
following the manufacturer’s instructions.

Statistical analysis
The Shapiro–Wilk test was used to evaluate normality. 
For clinical data analysis, Fisher’s exact test was used for 
categorical variables and the unpaired t test was used for 
numerical variables. Differences in plasma levels of lipids 
and lipoproteins were analyzed by one-way ANOVA with 
the Bonferroni post hoc multiple comparison test. For 
PON-1 and haptoglobin ELISA analyses, the Kruskal–
Wallis test was used to evaluate differences between 
patients and healthy volunteers. All differences were con-
sidered significant when a P value was ≤ 0.05. Analyses 
were performed using Graph Pad Prism 6 (GraphPad 
Software, Inc., USA).

Results
Clinical data
Demographic and clinical data from patients are 
described in Table  1. The average age of the septic 
patients was 62  years old and 70% of them were males. 
Most patients acquired pneumonia prior to ICU admis-
sion, presented with septic shock, and cardiovascular and 
respiratory dysfunctions were their main organ dysfunc-
tions. Comparisons between the patients who survived 

and those who did not survive were not significantly dif-
ferent regarding the percentage of septic shock, severity 
scores, organ dysfunction or underlying conditions.

Most altered proteins were common in the patients’ 
groups, despite their outcomes
Using a quantitative proteomics approach, we selected 
159 proteins for analysis after removal of albumin, 
immunoglobulin and their isoforms from a total of 220 
proteins. At admission, 61 and 75 proteins were differ-
entially expressed in the septic survivors and nonsurvi-
vors, respectively, and 60 and 63 proteins were identified 
after 7 days in these groups when compared with healthy 
volunteers (Additional file  1). Venn diagram analysis 
enabled us to identify 14 proteins that were exclusively 
altered in survivors and 28 proteins in nonsurvivors, 
while 47 proteins were common in both groups at admis-
sion. Similarly, 20 proteins were identified exclusively in 
the survivors, 23 proteins were identified in the nonsur-
vivors and 40 proteins were identified that were common 
in both groups after 7 days (Fig. 2I, Additional file 2). We 
also analyzed the differentially expressed proteins from 
our previous community acquired pneumonia (CAP) 
results [18] and found that the majority of the proteins 
were different between HAP and CAP. We found that, 
at admission, 26 proteins were common, while 38 and 
35 proteins were specific to CAP and HAP survivors, 
respectively. Similarly, 33 proteins were common, while 
35 and 42 proteins were specific to septic nonsurvivors 
in the CAP and HAP groups, respectively. Furthermore, 
after 7  days, 22 and 27 proteins were common in the 
survivor and nonsurvivor groups, while 57 and 38 were 
specific to the CAP and HAP survivors, and 48 and 36 
proteins were specific to the CAP and HAP nonsurvi-
vors, respectively (Fig. 2II, Additional file 2).

Identification of altered pathways by gene ontology 
and ingenuity pathway analysis
The gene names that corresponded with the differentially 
expressed identified proteins were generated for GO 
analysis. The top altered molecular functions included 
lipid binding and cytoskeleton protein binding in the sur-
vivors and nonsurvivors at admission (Fig.  3a). The top 
altered biological processes were acute inflammatory 
response, response to wounding, blood coagulation and 
homeostasis in all septic patients, regardless of outcome 
or time of enrollment. We found that lipid localization, 
lipoprotein metabolic process, triglyceride metabolic 
process, VLDL particle remodeling and cell motility were 
altered in septic patients at admission, while humoral 
immune response was found after 7 days (Fig. 3b). When 
analyzing cellular components, the proteins were mostly 
localized in blood microparticles, extra cellular space, 
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HDL particles, plasma lipoprotein particles and protein 
lipid complexes (Fig. 3c).

Similar results were obtained when analyzing canoni-
cal pathways with IPA. Pathways such as LXR/RXR 
activation, FXR/RXR activation (both related to lipid 
homeostasis [23]), acute-phase response signaling and 
coagulation were found to be altered in all patient groups 
(Additional file 3).

The top IPA scored disease and functions in the septic 
patients at admission were lipid metabolism, molecular 
transport and small molecule biochemistry (Additional 
file  4). Interaction network analysis of those functions 
show that HDL was a central node protein in the net-
work, which interacts with downregulated proteins, such 
as APOA4, APOB, APOC1, APOL1, SAA4 and PON1. 
Upregulated proteins, such as CRP, HP, SAA1, FGA and 
LAMA3 also interacted with HDL, directly or indirectly 
(Fig.  4a, b). After 7  days, different functions were top 

scored, but HDL remained a central node in the inter-
action network, both in the survivor and nonsurvivor 
groups (Fig.  4c, d, Additional file  4). Finally, functions 
related to lipid metabolism were impaired in all patients 
(Additional file 5).

Altered proteins related to lipid metabolism and other 
biological functions
Proteomics analysis enabled us to identify several apoli-
poproteins that act on lipid transportation in sep-
tic patients. We identified decreased levels of Apo AI, 
Apo AIV, Apo B100, Apo CI, Apo CII, Apo CIII, Apo 
E and Apo L in septic patients. In addition to apolipo-
proteins, we identified other altered lipid binding pro-
teins. Serum paraoxonase 1 (PON1), complement (C3) 
and corticosteroid-binding globulin (SERPINA6) were 
lower in patients than in controls. The expression lev-
els of phosphatidylinositol 4-phosphate 3-kinase C2 

Table 1  Clinical variables and demographic data from septic patients

S survivor, NS non-survivor, NA not applicable, SOFA Sequential [Sepsis-related] Organ Failure Assessment, COPD chronic obstructive pulmonary disease
a  Fisher’s exact test or unpaired t-test were applied to determine the P value when comparing survival and non-survival groups

Control (n = 23) Sepsis (n = 27) Survival (n = 8) Non-survival (n = 19) P valuea S × NS

Demographic data

Age, mean ± SD, year 65 ± 14.6 62.4 ± 12.8 60 ± 15.8 63.4 ± 11.6 0.5357

Sex (% of male) 60.9 70.4 87.5 63.2 0.3645

Place of acquired infection (%)

 Prior to ICU NA 77.8 87.5 73.68 0.6334

 ICU acquired NA 22.2 12.5 26.32

Severity of disease

Septic shock (%) NA 77.8 87.5 73.68 0.6334

Severity scores, mean ± SD

 Apache II NA 17.1 ± 6.5 15.6 ± 7.6 17.7 ± 6 0.4483

 SOFA NA 8.3 ± 2.9 8.0 ± 2.9 8.4 ± 2.9 0.7709

 Delta-SOFA (D3-D0) NA (−) 0.4 ± 3.1 (−) 1.9 ± 3.4 0.7 ± 2.8 0.0666

Organ dysfunction (%)

 Cardiovascular NA 88.9 87.5 89.5 1

 Renal NA 37 37.5 36.8 1

 Respiratory NA 85.2 75 89.5 0.5583

 Hematological NA 11.1 0 15.8 0.5323

 Hepatological NA 33.3 25 36.8 0.6758

 Central nervous system NA 44.4 50 42 1

Underlying conditions

Chronic comorbidity (%)

 AIDS NA 0 0 0 –

 COPD NA 15.4 12.5 16.7 1

 Diabetes NA 30.8 12.5 38.9 0.3602

 Chronic renal disease NA 7.7 0 11.1 1

 Cardiovascular insufficiency NA 11.5 0 16.7 0.5292

Drugs (%)

 Corticosteroids NA 37 50 31.6 0.4147
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domain-containing subunit gamma (PIK3C2G), spectrin 
beta chain, nonerythrocytic 1 (SPTBN1) and C-reac-
tive protein (CRP) were higher in septic patients than 
in controls at day 0 and day 7, while girdin (CCDC88A) 
was only higher at day 0. Haptoglobin (HP), which is 
related to both lipid metabolism and inflammation, and 
phospholipid-transporting ATPase IA (ATP8A1) were 

expressed at higher levels in the septic patients (Fig.  5). 
These proteins are involved in several functions, such as 
lipid homeostasis, lipoprotein metabolic processes, lipid 
transport, lipid localization, lipid catabolic processes, 
cholesterol transport, cholesterol homeostasis, choles-
terol efflux, high-density lipoprotein particle remodeling 
and very-low-density lipoprotein particle remodeling.

Fig. 2  A Venn diagram showing differential proteome expression between the septic patient groups. I shows the differential protein expression 
levels in survivors and nonsurvivors at admission (Ia) and at D7 (Ib), and the differential expression levels at D0 and D7 in survivors and in 
nonsurvivors (Ic). II demonstrates the differential expression levels between community-acquired pneumonia and hospital-acquired pneumonia 
(a–d). CAP, community-acquired pneumonia; HAP, hospital-acquired pneumonia. D0S and D7S, admission and follow-up samples in survivors, and 
D0NS and D7 NS, admission and follow-up samples in nonsurvivors
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Fig. 3  Gene ontology annotations for the identified differentially expressed proteins. Altered molecular functions (a), biological processes (b) and 
cellular components (c) in septic survivors and nonsurvivors at admission and after 7 days. The altered functions are represented as − log10 (P 
value) with the highlighted dots representing the group with maximum changes for a function. The white squares represent P values that were not 
included in the range selected for each analysis
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In addition to lipid metabolism, proteins related to 
acute phase response were also altered in the patients. In 
addition to CRP and HP, alpha-1-antichymotrypsin (SER-
PINA3) and serum amyloid A-1 and A-2 proteins (SAA1 
and SAA2) were upregulated in patients at admission 

and after 7 days of follow-up, while serum amyloid A-4 
protein (SAA4) and prothrombin (F2) were downregu-
lated. These and other dysregulated proteins are related 
to inflammation (SERPINA3, SAA1, SAA2, SAA4, 
HP, C3, C6, C8B, F2, CRP, APOC3, APOE and KNG1), 

Fig. 4  Protein-protein interactions and functional networks. The red color represents upregulation and the green color represents downregulation. 
a–d corresponds to the D0 survivors, D0 nonsurvivors, D7 survivors and D7 nonsurvivors, respectively
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Fig. 5  Expression of lipid metabolism related proteins. The bar chart represents log2-fold-changes (patients vs. healthy volunteers) of altered 
proteins related to lipid metabolism. The dashed line represents the fold-change cut-off (log2-fold-change │0.3785│, corresponding to 
fold-change ± 1.3)

Table 2  Estimation of lipid moieties and proteins in blood plasma

*P ≤ 0.05 when comparing patients to healthy volunteers by Kruskal–Wallis test or one-way ANOVA with Bonferroni’s post hoc multiple comparison test
#  PON 1 measurements were performed in 11 individuals in control group, 11 in survivors and 12 in non-survivors group; haptoglobin measurements were performed 
in 8 controls, 4 survivors patients and 10 non-survivors patients

Plasma level median (IQR) Control (n = 10) Survivor patients (n = 6) Non-survivor patients (n = 11)

D0 D7 D0 D7

Total cholesterol (mg/dL) 198 90.5* 110.5* 105* 104*

(176.5–245.5) (79–121.5) (103–145.5) (86–125) (91–150)

HDL-C (mg/dL) 54.5 20* 33.5* 23* 20*

(45.8–59.3) (7.8–33.5) (17.8–42.5) (21–35) (12–48)

LDL-C (mg/dL) 121.5 51* 68* 56* 59*

(89–161.3) (39.8–79) (56.3–80) (52–68) (52–83)

Non-HDL-C (mg/dL) 148 70* 86* 79* 86*

(121.8–190.3) (54–99.5) (70–109.3) (72–97) (77–103)

Triglycerides (mg/dL) 144 89.5 103 125 127

(115–184.5) (64.5–165.3) (67.5–200) (85–179) (106–177)

APO A-I (mg/dL) 151.5 65* 92* 67* 67*

(139.8–177.5) (45.8–88.3) (58.8–109.8) (63–88) (49–91)

APO B (mg/dL) 104 56.5* 72.5* 71* 77

(85.5–141.5) (50.5–73) (68.3–78.5) (48–86) (71–112)

Lipoproteins (mg/dL) 15.5 5.8 5.9 6.5 13.2

(8.6–26.9) (3.27–25) (4.12–31.6) (4.9–14.9) (5.8–36.8)

PON 1 (ng/mL)# 210.2 106.3* 111.9* 110.2* 113.8*

(170.1–313.7) (78.9–141.5) (83.6–189.4) (93.5–183.6) (98.5–174.9)

Haptoglobin (mg/mL)# 0.98 1.6 1.4 1.3 1.5

(0.7–1.3) (0.9–2.1) (0.8–1.7) (0.9–1.7) (1.2–1.6)
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complement (C3, C6, C8B and CRP) and coagulation 
(SAA1, KIF15, FGA, C3, APOB, FGG, APOE, F2, TTN, 
SERPIND1 and KNG1). The expression data are available 
in Additional file 1.

To confirm the obtained results, we estimated the 
plasma levels of total cholesterol, HDL-C, LDL-C, tri-
glycerides, ApoA-I, Apo B and lipoproteins in individual 
samples from patients and healthy volunteers. We found 
that the total cholesterol, non-HDL cholesterol, HDL-
C, LDL-C, Apo AI and Apo B levels were significantly 
decreased in the septic patients. No significant changes 
were found in the total triglyceride and lipoprotein levels. 
Also related to lipid metabolism, the levels of serum par-
aoxonase (PON1) were decreased in the septic patients. 
In contrast, the HP levels tended to be increased in the 
septic patients (Table 2).

Discussion
Sepsis is a major cause of death in ICUs and the respira-
tory tract is the main primary infection site in septic 
patients. We previously evaluated the plasma proteome 
of patients with sepsis secondary to community-acquired 
pneumonia [18]. Here, we reported on plasma proteome 
alterations in patients with sepsis secondary to hospital-
acquired pneumonia.

Different bioinformatics analyses revealed changes in 
acute phase response, inflammatory response and blood 
coagulation in this septic patient cohort, as previously 
described [24–26]. Nevertheless, lipid metabolism pro-
cesses emerged as the main changes in the septic patients 
compared with healthy volunteers. These observations 
do not differ very much from what we found in the CAP 
patients [18], despite the fact that most altered proteins 
in the HAP patients were distinct from the CAP patients. 
A recent study that compared host responses to CAP and 
HAP described similar genomic alterations in both clini-
cal groups, despite differences in the pathogens and con-
ditions that lead to infection in each case [19].

HDL was found to be a central node in the interac-
tion network analysis in all patient groups, regardless 
of outcome or the time of enrollment. It is well known 
that, depending on the protein and lipid composition, 
HDL can develop an anti-inflammatory or an inflam-
matory profile [27, 28]; it is also well known that both 
infection and sepsis decrease the plasma levels of HDL 
in patients [29, 30]. HDL with an inflammatory profile 
is related to SOFA score [31] and elder patients with 
sepsis were reported to present with a lower cholesterol 
efflux capacity, which is the main function of HDL, and 
a higher HDL inflammatory index [32].

In our proteomics results, we found decreased 
expression of PON1 and the apolipoproteins related 
to HDL (APO A1, APO C and APO E), and increased 

levels of HP and SAA1/SAA2. Additionally, we 
observed by biochemical analysis that the total choles-
terol, HDL, APO A1 and PON 1 levels were decreased 
in the patients. These findings are similar to our previ-
ously reported changes in patients with sepsis and CAP 
[18] and are in accordance with the literature, which 
points to HDL turning into a pro-inflammatory media-
tor in septic patients. The reduction in APO A1 levels 
and increase of SAA levels is a characteristic change in 
the so-called acute-phase HDL [28] and was previously 
observed in sepsis [33]; furthermore, decreased APO 
A1 levels are related with mortality in septic patients 
[34].

Paraoxonase 1 is a component of HDL that acts as an 
antioxidant enzyme [35]. The reduction of PON1 in HDL 
is related to inflammatory conditions [35] and it was 
reported that PON1 has lower activity in septic patients, 
which is normalized after recovery [36]. Additionally, 
nonsurvivor patients presented with even lower activi-
ties than those who survived [37]. In addition, we found 
increased expression of HP in HAP patients, although 
this result was not significant in the validation step. 
However, data in the literature corroborate our observa-
tion. For example, HP was found to be a good biomarker 
for sepsis development in trauma patients [38]. HP is a 
scavenger of free hemoglobin [39] and it may play a pro-
tective role in septic patients, as they can present with 
elevated levels of cell-free hemoglobin [40]. In contrast, 
HP when associated with HDL can contribute to pro 
inflammatory responses [41]. It was described that HP 
binding to ApoA1 impairs HDL function and that pep-
tides that displace HP from ApoA1 can reverse this phe-
notype [42]. Additionally, HP gene polymorphisms were 
related to altered levels of LDL and CRP, and the ApoA1/
ApoA2 ratio in plasma [43]. Nevertheless, binding of HP 
to ApoA1 during an acute phase response can protect 
ApoA1 from oxidative damage [44].

Sepsis and systemic inflammation decrease not only 
the levels of HDL but also promote hypocholesterolemia, 
with lower levels of total cholesterol and LDL [28]. We 
observed reduced levels of total cholesterol in HAP 
patients, which was similar to what was observed in CAP 
patients. It was reported that hypocholesterolemia is 
related with severity and that cholesterol levels increase 
during convalescence in severely injured patients [45]. 
We also observed decreased levels of Apo B, LDL and 
non-HDL cholesterol in HAP patients, while in our pre-
vious work with CAP, the levels of these plasma compo-
nents were not significantly lower than controls [18].

Similar to HDL, LDL has an important role in neutral-
izing pathogen toxins, such as LPS [28]. Low LDL levels 
were associated with the presence of fever and sepsis in 
hospitalized patients [46] and with long-terms rates of 
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sepsis [47]. Additionally, it was observed that even with 
LDL levels below normal, septic patients present with 
higher levels of oxidized LDL, which is pro inflammatory 
[48]. The major apolipoprotein of LDL is Apo B, which 
was reduced in septic patients in our proteomic results. 
Apo B levels was reported to be increased after Escheri-
chia coli sepsis in an experimental model [49]; in human 
sepsis, LPS-binding protein—that interacts with ApoB 
was found to be associated with LDL and VLDL parti-
cles [50]. In this context, our results point to LDL as con-
tributing to inflammation and with impaired scavenger 
capacity. It is noteworthy, however, that while reduced 
LDL production is related to a complicated prognosis, 
LDL clearance can improve survival [51].

In conclusion, our proteomic study stresses the lipid 
metabolism as a major altered function in the plasma 
of patients with sepsis secondary to hospital acquired 
pneumonia, which is in accordance with previous reports 
supporting the role of lipid moieties in pathogen toxin 
clearance and in modulating inflammatory responses. 
Interestingly, HDL-C and cholesterol levels have been 
associated with risk of nosocomial infection acquisi-
tion [52]. These results reinforce the importance of lipid 
metabolism in sepsis pathogenesis and as a possible ther-
apeutic target.

Our study has some limitations. We used pools of 
samples to run proteomics for the different groups 
of patients, D0S and D7S, and D0NS and D7NS, and 
healthy volunteers. The characteristics and the limited 
number of tags available for quantification in the iTRAQ 
protocol favours the conduction of the experiments with 
pooled samples. Several other clinical proteomics studies 
with iTRAQ were performed with pooled samples [53]. 
However, we are aware of the limitations of using pooled 
samples. To overcome these limitations, for validation, 
we used individual samples for representative groups. By 
choosing healthy volunteers as controls, it is not possible 
to differentiate the changes in plasma proteome that are 
specific for the septic patients secondary to HAP from 
those that take place in another critical illnesses. Fur-
thermore, some underlying conditions not covered in our 
survey could be present in patients and influenced the 
proteome changes we are reporting.
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