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Abstract 

Mass spectrometry-based phosphoproteomics is becoming an essential methodology for the study of global cellular 
signaling. Numerous bioinformatics resources are available to facilitate the translation of phosphopeptide identifica-
tion and quantification results into novel biological and clinical insights, a critical step in phosphoproteomics data 
analysis. These resources include knowledge bases of kinases and phosphatases, phosphorylation sites, kinase inhibi-
tors, and sequence variants affecting kinase function, and bioinformatics tools that can predict phosphorylation sites 
in addition to the kinase that phosphorylates them, infer kinase activity, and predict the effect of mutations on kinase 
signaling. However, these resources exist in silos and it is challenging to select among multiple resources with simi-
lar functions. Therefore, we put together a comprehensive collection of resources related to phosphoproteomics 
data interpretation, compared the use of tools with similar functions, and assessed the usability from the standpoint 
of typical biologists or clinicians. Overall, tools could be improved by standardization of enzyme names, flexibility 
of data input and output format, consistent maintenance, and detailed manuals.
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Background
Kinase signaling, the reversible enzymatic addition of 
a phosphate group to a substrate, is an essential part of 
cellular activity. Because its dysregulation contributes to 
many diseases, numerous clinical trials have been per-
formed with kinase inhibitors resulting in over 50 FDA-
approved small molecules and targeted antibodies [1, 

2]. Therefore, detailed knowledge of the kinase signaling 
process is essential for the understanding of diseases and 
the development of new therapies.

While kinase signaling has been studied for over 
100  years using a variety of experimental methods, the 
recent generation of mass spectrometry-based phos-
phoproteomic profiling allows for an unprecedented 
global exploration of phosphorylation. Phosphoprot-
eomics data analysis involves two major steps. The first 
step includes the identification, phosphosite localiza-
tion, and quantification of phosphopeptides. The second 
step aims to translate phosphopeptide identification and 
quantification results into novel biological and clinical 
insights. Although analyses in the first step are typically 
performed by the proteomics cores using standardized 
computational tools, those in the second step require 
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and can benefit from active involvement of biologists and 
clinicians.

A vast array of resources and tools are available to facil-
itate the interpretation of phosphopeptide identification 
and quantification results. However, each of these tools 
exists as a silo without connection to tools with comple-
mentary functions. In addition, many tools have overlap-
ping functions but differ in underlying knowledge bases, 
algorithms, input and output format of data, accessibil-
ity, advantages, limitations, and maintenance. Although 
newly developed tools are usually compared to similar, 
previously published tools, comparisons often do not 
include real-world, biological use-cases. For example, 
inference of kinase activity based on the observed phos-
phorylation of its substrates is a powerful application 
of phosphoproteomics profiling, and multiple methods 
have been developed to address this need [3, 4]. However, 
there has been little validation of the methods and only 
one benchmarking study comparing a few of the methods 
has been published [3].

Biological and clinical scientists are in the best posi-
tion to extract biologically and clinically relevant findings 
from phosphoproteomics data, however, they are rarely 
consulted for tool design input or requested to test the 
final product. Furthermore, there is no comprehensive 
list of tools to aid those using phosphoproteomic data 
in their research. Therefore, this article aims to pro-
vide a comprehensive collection of resources that can 
be used to gain insights from phosphoproteomic data, 
including knowledge bases of kinases and phosphatases, 
phosphorylation sites, kinase inhibitors, and sequence 
variants affecting kinase function, and bioinformatics 
tools that can predict phosphorylation sites in addition to 
the kinase that phosphorylates them, infer kinase activ-
ity, and predict the effect of mutations on kinase signal-
ing. We perform some benchmarking comparisons to 
determine the best tool available and assess usability 
of the tools from the standpoint of typical biologists or 
clinicians.

Main text
Collection of knowledge bases and tools
The OMICtools resource (https:// omict ools. com) is a 
manually curated collection of bioinformatics tools [5]. 
This site was searched in July 2019 for tools using the 
words ‘kinase’, ‘phosphorylation’, ‘phospho’, or ‘phos-
phatase’. In addition, several more tools were collected 
from the literature. Only tools that were freely available, 
still accessible, and non-obsolete were included, and tools 
specific for organisms other than human were discarded. 
The year of last update was assumed to be the year of 
publication unless otherwise noted on the website. These 
tools may be accessed by a downloadable, locally-run tool 

(Tool) or by a website (Web) that may have download-
able (DL) results or database information. The website 
URLs for all resources can be found in Additional file 1: 
Table S1. Each website was accessed in July 2019 and data 
statistics were collected for human proteins from down-
loadable files where possible and from websites or manu-
scripts for online-only resources.

Knowledge bases of kinases and phosphatases
General information about the components involved in 
kinase signaling is required throughout the analysis and 
interpretation of phosphoproteomics data. Knowledge 
bases for kinase signaling can be separated into those col-
lecting information on the enzymes, and those collecting 
experimentally validated phosphorylation sites. Of the 16 
different resources that collect information specifically 
on protein kinases and phosphatases, 13 provide data on 
kinases, while 5 provide data on phosphatases (Table 1). 
Only two resources, the Eukaryotic Protein Kinase & 
Protein Phosphatase Database (EKPD) and its updated 
version iEKPD contain information on both types of 
enzymes [6]. Most databases are only available as online 
websites, but some provide an option for downloading 
data (Table 1).

The kinase knowledge bases can be further separated 
into two different types: those that include comprehen-
sive data on all known protein kinases, and those that 
were developed for a specific purpose, such as collect-
ing driver mutations in kinases (Kin-Driver). Notably, 
no kinase resource collects data on non-protein kinases. 
KinBase, which was developed by Gerard Manning, con-
tains 538 protein kinases and is considered the primary 
source of human protein kinases and their classifica-
tion [7]. Many other resources base their kinase list on 
KinBase.

Kinomer and KinG are general kinase sequence data-
bases that provide very little other information [8, 9]. 
KinMutBase, a collection of disease-causing mutations 
in protein kinase domains, is outdated, contains data on 
only 31 kinases, and primarily consists of broken links 
[10]. KinWeb and EKPD provide gene and protein iden-
tifiers, classification, description, and sequence informa-
tion, but these data can also be found in other resources. 
However, KinWeb does have prediction of the disulfide 
bonding state of cysteines in the protein, as well as pre-
diction of alpha helices, and EKPD presents data in an 
easy-to-read format [6, 11].

Use of the remaining general resources depends on 
which data one wants to access. KinaseNET, ProKinO, 
and iEKPD contain the most comprehensive data on pro-
tein kinases, but KinaseNET and ProKinO are only avail-
able as online resources [12, 13]. They include protein 
sequences, links to the kinases in other databases (e.g., 

https://omictools.com
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UniProt, Ensembl, Entrez), information on the kinase 
domains, expression in tissue, and disease associations. 
ProKinO specifically contains pathway information, 
mutations and their disease associations, chromosomal 
location of the kinase, and links to published manu-
scripts. KinaseNET includes PTMs, known binding 
partners, inhibitors, upstream kinases, downstream sub-
strates, and information about regulation. KinaseNET 
provides all data on a single page, ProKinO requires more 
than 10 clicks on separate tabs and pages to obtain all 
information on a kinase, and iEKPD contains links for 13 
additional annotations.

For disease studies, MOKCa and Kin-Driver spe-
cifically have data on protein kinase mutations [14, 15]. 
MOKCa has tissue specificity of mutations while Kin-
Driver focuses on driver mutations and reports whether 
the mutation is activating or inactivating. KLIFS provides 
structural information for approximately half of the pro-
tein kinases bound to various ligands [16]. Finally, KID-
FamMap combines structural data with known kinase 
inhibitors and diseases [17].

Because phosphatases are less well studied than 
kinases, there are fewer resources dedicated to their col-
lection. EKPD and iEKPD provide the same information 
for phosphatases as they do for kinases. HuPho, however, 
was the first comprehensive collection of phosphatases 
and the database includes pathway and substrate data, 
as well as siRNA phenotype data and links to orthologs 
in other species [18]. DEPOD also includes pathways, 
substrates, and links to orthologs in addition to inter-
acting partners and upstream kinases [19]. Finally, 

Phosphatome.Net is the phosphatase version of Kin-
Base [20]. The website contains basic classification and 
sequence information.

Knowledge bases of phosphorylation sites
Besides information about specific kinases and phos-
phatases, data on phosphorylation sites are important for 
studying the signaling process. Phosphorylation site data-
bases collect information on the location of phosphoryl-
ated residues in proteins from experimental data. These 
experiments can be low-throughput or high-throughput. 
High-throughput phosphorylation site identifications are 
assigned by probability unlike the more stringent experi-
mental validation in low-throughput experiments, but 
some databases combine sites from both types of experi-
ments without identifying the source experiment type.

In addition to phosphorylation site information, 16 
of the 27 (60%) resources collect interactions between 
kinases or phosphatases and their substrates (Table  2). 
These often do not include the exact phosphorylation 
site, but instead provide interactions between an enzyme 
and its substrate at the gene level.

The four main resources for phosphorylation sites 
curated data manually from the literature (Fig. 1). HPRD 
and Swiss-Prot are general databases of all proteins [21, 
22]. The remaining two, PhosphoSitePlus and Phospho.
ELM, specifically contain phosphorylation site infor-
mation [23, 24]. Both PhosphoSitePlus and Swiss-Prot 
are frequently updated, while HPRD and Phospho.ELM 
were last updated in 2010. All four of these databases also 
include kinase information for sites if known.

Table 1 Knowledge bases of human kinases and phosphatases

Name Last update Method of access Version Enzyme Human enzyme 
number

References

KinWeb 2005 Web Protein Kinases 519 [11]

Kinomer 2008 Web|DL 1 Protein Kinases 505 [8]

MOKCa 2008 Web Protein Kinases 423 [14]

HuPho 2012 Web|DL Phosphatases 313 [18]

KIDFamMap 2012 Web Protein Kinases 399 [17]

EKPD 2013 Web 1.1 Protein Kinases and Phosphatases 676 [6]

KinBase 2014 Web Protein Kinases 538 [7]

KinMutBase 2015 Web|DL 4 Protein Kinases 31 [10]

DEPOD 2016 Web|DL 1.1 Phosphatases 239 [19]

KinaseNET 2017 Web Protein Kinases >530

Kin-Driver 2017 Web|DL 82 Protein Kinases 518 [15]

Phosphatome 2017 Web 3 Phosphatases 189 [20]

iEKPD 2018 Web|DL 2.0 Protein kinases and Phosphatases 695 [105]

KLIFS 2018 Web|DL 2.4 Protein Kinases 292 [16, 106]

KinG 2019 Web|DL Protein Kinases 1502 [9]

ProKinO 2019 Web 2 Protein Kinases 538 [12]
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Other smaller databases were generated through 
manual curation or publication of a laboratory’s own 
phosphorylation site data. KANPHOS collects phos-
phorylation sites in neural signaling identified by high-
throughput experiments [25]. LymPHOS, PhosphoDB, 
Phosphopedia, and PHOSIDA are collections of data 
that were primarily produced in cell lines [26–29]. 
PhosphoPEP integrates mass spectrometry experiments 
from Cell Signaling Technology and their own labora-
tory [30, 31]. PTMfunc and qPhos both collect mass 
spectrometry experiments and add functional predic-
tions and kinase activity from various tools [32, 33]. 
Signor extracts high quality signaling interactions from 
the literature [34]. Finally, ANIA, PTMD, and Phospho-
Networks curate the literature for a specific purpose. 
ANIA collects phosphorylation sites that serve as bind-
ing sites for 14-3-3 proteins, while PhosphoNetworks 
creates a kinase-substrate network curated from the 

literature and a protein microarray experiment, and 
PTMD collects disease-related phosphorylation sites 
[35–37].

The remaining resources integrate phosphoryla-
tion sites and kinase information from other databases 
(Fig.  1). The database dbPAF collects phosphorylation 
sites from several databases [38]. ProteomeScout also 
collects phosphorylation sites from other databases along 
with literature-curated experiments and provides a tool 
for analyzing a user’s data [39]. The database dbPTM col-
lects all PTMs and the responsible enzyme from several 
sources [40]. Kinome NetworkX, RegPhos, and Phos-
phoAtlas curate and integrate data specifically to create 
kinase-substrate networks [1, 41, 42]. PhosphoNET is an 
online-only tool that includes predicted phosphoryla-
tion sites in addition to those with experimental evidence 
[43]. Finally, Phospho3D specifically collects phosphoryl-
ation sites with 3D structures [44].

Table 2 Databases of phosphorylation sites

The number of unique kinases and phosphatases reported to phosphorylate sites in the database is included. For some databases, these numbers include enzyme 
groups in addition to individual enzymes. Data type indicates whether the data are from mass spectrometry (MS) experiments, separated high-throughput (HT) and 
low-throughput (LT) experiments, or whether the database combines data from both HT and LT experiments without specifying (UNSP)
a Indicates inclusion of predicted phosphorylation sites (pred)

Name Last update Method of access Version Sites Proteins Kinases Phosphatases Data Type References

PhosphoPep 2007 Web|DL 2.0 3980 MS [30, 31]

HPRD 2010 Web|DL 9 78,005 11,807 291 42 UNSP [21, 107, 108]

Phospho.ELM 2010 Web|DL 9.0 26,651 5374 250 HT, LT [24, 109, 110]

Phospho3D 2010 Web|DL 2.0 1770 59 HT, LT [44]

PHOSIDA 2011 Web|DL 3.24 24,262 8283 MS [26, 111]

HuPho 2012 Web|DL 190 121 55 UNSP [18]

PTMfunc 2012 Web 31,165 MS [32]

ANIA 2013 Web|DL 305 220 LT [35, 112]

PhosphoNetworks 2013 Web|DL 1140 255 UNSP [36]

RegPhos 2013 Web|DL 2.0 66,301 10,849 380 UNSP [42, 113]

Kinome NetworkX 2014 DL 173,460 18,610 357 UNSP [41]

ProteomeScout 2014 Web|DL 2 290,007 23,387 MS [39, 114]

LymPHOS 2015 Web|DL 2 15,566 4937 MS [27, 115]

PhosphoDB 2015 Web 25,864 6222 MS [29]

dbPAF 2016 Web|DL 1.0 244,034 18,773 UNSP [38]

DEPOD 2016 Web|DL 1.1 253 210 88 UNSP [19]

KANPHOS 2016 Web β 73 MS [25]

PhosphoAtlas 2016 DL 2595 1284 501 UNSP [1]

Phosphopedia 2016 Web 1.0 109,611 11,428 MS [28]

Phosphatome 2017 Web 3 6008 2000 319 106 UNSP [20]

PhosphoNET 2017 Web 966,817a 22,698 488 UNSP + pred [43]

PTMD 2018 Web|DL 1.0 690 434 UNSP [37]

qPhos 2018 Web|DL 199,071 18,402 MS [33]

dbPTM 2019 Web|DL v2019 257,527 19,713 25 UNSP [40, 64, 116, 117]

PhosphoSitePlus 2019 Web|DL Aug-19 239,664 20,115 372 HT, LT [23]

Signor 2019 Web|DL May-19 3593 1285 336 70 UNSP [34, 118]

Swiss-Prot 2019 Web|DL Jun-19 40,135 7965 352 UNSP [22, 119]
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Five databases collect information on phosphatase-
substrate interactions. As mentioned, DEPOD, HuPho, 
and Phosphatome.Net all curate enzyme interactions 
from the literature. HPRD and Signor also collect some 
site-specific phosphatase information.

Each database contains a different number of phos-
phorylation sites and enzyme–substrate relationships 
depending on the source and method of collection 
(Table  2). ProteomeScout, PhosphoSitePlus, dbPTM, 
and dbPAF contain the most experimentally validated, 
downloadable sites. The site numbers for these four data-
bases include specific protein isoforms, as do several 
other resources. PhosphoAtlas contains substrates for 
the largest number of individual kinases. Signor, Swiss-
Prot, RegPhos, Phospho3D, dbPTM, and Phospho.ELM 
have substrates for individual kinases and kinase families. 
Finally, PhosphoSitePlus has substrates for some specific 
kinase isoforms.

Errors in substrate databases
Based on our examination, PhosphoSitePlus is the pre-
ferred resource for experimentally-identified phospho-
rylation sites and kinases for phosphorylation sites. 
PhosphoSitePlus is frequently updated, well-curated, and 
distinguishes between low and high-throughput identi-
fied sites. The downstream integrating databases suffer 
from ID mapping errors. For example, in PhosphoAtlas 
there is an entry for PEG (paternally expressed gene 3) 
phosphorylating CDC25B. PEG is not a known kinase, 
but pEg3 kinase (also known as maternal embryonic leu-
cine zipper kinase, MELK) is known to phosphorylate 

CDC25B [45]. Many of the downstream databases also 
have issues with PDPK1 and PDK1. The gene PDPK1, 
3-phosphoinositide-dependent protein kinase 1, pro-
duces a protein known to the biological community as 
PDK1. However, there is an additional kinase, pyru-
vate dehydrogenase kinase, that is produced by the gene 
PDK1. Databases that try to integrate sites frequently 
attribute the substrates of PDPK1 to PDK1. Finally, inte-
grating databases propagate errors from the original 
databases. For example, HPRD contains an entry for 
PTPN11 phosphorylating PTK2B although PTPN11 is a 
known phosphatase and not a kinase. The original manu-
script connected to this entry confirmed that PTPN11 is 
a phosphatase and that it just binds to PTK2B at that par-
ticular site [46]. Databases that collect information from 
HPRD, such as RegPhos and PhosphoAtlas, include this 
incorrect entry for PTPN11.

Known substrates of kinases and phosphatases
The four main databases of kinases together produce 
485 substrate sets of individual kinases and kinase fami-
lies (Fig. 2a). PhosphoSitePlus contains the most unique 
sites, while other databases contribute only a few addi-
tional sites per kinase. CSNK2A1 has the most substrates 
(596), while over half of the sets contain fewer than 10 
substrates.

For substrates of phosphatases, DEPOD, HPRD, and 
Phosphatome.Net combined produce sets for 83 phos-
phatases. The most unique information comes from 
DEPOD and Phosphatome.Net. The number of known 
sites for each phosphatase is far fewer than that for 

Fig. 1 Network of phosphorylation site and kinase-substrate interaction databases. Gray nodes indicate databases that are no longer accessible. 
Arrows point from the knowledge source to the collecting database. Arrows originating from the four most highly used databases are colored 
by source (green = HPRD, blue = Swiss-Prot, red = PhosphoSitePlus, pink = Phospho.ELM)
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kinases. PPP2CA has the most substrates (167), while 
70% of the phosphatases have fewer than 10 substrates 
(Fig. 2b).

Phosphorylation site prediction tools
Despite decades of research, very few phosphorylation 
sites have known kinases or phosphatases. Of the sites in 
PhosphoSitePlus, only about 3% have an experimentally 
validated human kinase. Therefore, numerous tools have 
been developed to predict which sites in a protein can be 
phosphorylated and which kinases phosphorylate that 
given site.

These prediction tools were developed using a vari-
ety of features and methods and have been reviewed 

elsewhere [47, 48]. The early versions of phosphoryla-
tion site predictors were motif-based. They generated 
the frequency of amino acids surrounding a site and 
searched for that pattern in protein sequences. Later 
tools used more sophisticated methods such as sup-
port vector machines (SVM), random forest, Bayesian 
probability, position specific scoring matrices (PSSM), 
and deep neural networks [49–53]. Besides amino acid 
sequence, tools included a vast array of features such 
as the 3D structure of the phosphorylation site, disor-
der score, cell cycle data, and co-expression of kinases 
and substrates [54–56]. Others, like NetworKIN and 
iGPS, used protein–protein interaction data to filter 
predictions [57, 58]. Table  3 provides an overview of 

a

b

Fig. 2 Number of substrates per kinase and phosphatase. a Number of substrates for the top 100 kinases in four databases. Substrates present 
in more than one database are colored black while the remaining sites are unique to each database. b Number of substrates for each phosphatase 
in DEPOD (yellow), HPRD (green), Phosphatome.Net (blue), or in more than one database (black)
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Table 3 Available phosphorylation site and kinase-substrate prediction tools

Tool Last update Version Prediction type Method Kinases/
phosphatases

Type References

DISPHOS 2004 1.3 Phosphorylation sites Bagged logistic regression 0 Web [54]

PPSP 2006 1.06 Phosphorylation sites 
of kinases

Bayesian decision theory 68 Web [52]

KinasePhos2.0 2007 2.0 Phosphorylation sites 
of kinases

SVM 58 Web [51]

pkaPS 2007 Phosphorylation sites of PKA Scoring function 1 Web|DL [72]

PhoScan 2008 Phosphorylation sites 
of kinases

Scoring function 48 Web|Tool [60]

Phos3D 2009 Phosphorylation sites 
and some kinase specificity

SVM 5 Web [55]

Musite 2010 1 Phosphorylation sites 
and some kinase specificity

SVM 13 Web|DL [62]

PHOSIDA Predictor 2011 3.24 Phosphorylation S and T 
sites

SVM 0 Web [26]

Predikin 2011 Phosphorylation sites 
of kinases

PSSM any Web|DL [53]

GPS-Polo 2012 1.0 Phosphorylation sites of Plk Group-based scoring func-
tion PSSM

1 Web|Tool [120]

iGPS 2012 1.0.1 Phosphorylation sites 
of kinases in vivo

GPS with PPI 407 Tool [57]

CEASAR 2013 Kinases for known phospho-
rylation sites

Naïve Bayes 289 DL [56]

HMMpTM 2013 Phosphorylation sites 
of kinases and topology

HMM 9 Web|DL [121]

PKIS 2013 Phosphorylation sites 
of kinases

SVM 56 Web [122]

GPS 2014 5.0 Phosphorylation sites 
of kinases

Group-based scoring func-
tion PSSM

464 Web|DL|Tool [61]

NetPhorest 2014 2.1 Phosphorylation sites 
of kinases

ANN and PSSM 244 Web|DL|Tool [58, 65]

NetworKIN 2014 3.0 Phosphorylation sites 
of kinases in vivo

Naïve Bayes with PPI 123 Web|DL|Tool [58, 66]

phos_pred 2014 Predicts phosphorylation 
sites for kinases

Random forest 54 Toola [49]

PhosphoSVM 2014 Phosphorylation sites SVM 0 Web [123]

Ptpset 2014 Dephosphorylation sites 
of phosphatases

KNN 3 Web [124]

jEcho 2015 1.0 Phosphorylation sites 
of kinases

Weight vector 12 Tool [68]

KSP-PUEL 2015 Phosphorylation sites 
of kinases

SVM ensemble 2a Tool [63]

Scansite 2015 4 Kinase motifs in proteins PSSM 70 Web|DL [125]

DAPPLE 2016 2 Phosphorylation sites BLAST 0 Web|DL [126]

iPhos-PseEn 2016 Phosphorylation sites Random forest ensemble 0 Web [127]

PhosphoPICK 2016 Phosphorylation sites 
of kinases

Bayesian network 107 Web|DL [70]

PhosD 2016 Kinase-substrate relation-
ships

Probabilistic model 399 DL [128]

MusiteDeep 2017 Phosphorylation sites 
and some kinase specificity

DNN 5 Toola [50]

NetPhos 2017 3.1 Phosphorylation sites 
and some kinase specificity

ANN 17 Web|Toola [59, 71]

PhosphoNET 2017 Phosphorylation sites 
of kinases

PSSM 488 Web [43]

PhosPred-RF 2017 Phosphorylation sites Random forest 0 Web [129]
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all currently available tools to predict phosphorylation 
sites or kinases for phosphorylation sites. While a few 
tools have been developed to predict sites for phos-
phatases, only Ptpset, NetPhorest, and NetworKIN are 
still accessible [49, 58].

Figure  3 shows phosphorylation site predictor tools 
and the resources they used to make predictions. 
Almost all phosphorylation site predictors were trained 
using data from Phospho.ELM. Swiss-Prot and Phos-
phoSitePlus were also heavily used resources. Notably, 
almost all tools were developed using experimentally 
verified substrate data as the training set. Therefore, the 
tools are only able to predict the responsible kinase if 
there is sufficient data for substrates of that kinase.

A researcher may utilize these prediction tools to 
identify kinases phosphorylating single substrates of 
interest, for which web-based tools would suffice. How-
ever, the limit on the number of sequences submitted 
for prediction and the lack of downloadable results 
prevent these same tools for being useful in large-scale 
phosphoproteomic studies. Unfortunately, many tools 
appropriate for large-scale studies have multiple issues 
limiting their use. First, tools can be difficult to install, 
platform-specific, and lack manuals on use. For exam-
ple, NetPhos [59] is downloadable but can only be run 
on Linux, whereas PhoScan [60] can only be run on 
Windows machines. Other tools require commercial 
software such as MATLAB or even require understand-
ing a programming language to modify hard-coded 
variables. Finally, tools like GPS [61] and phos_pred 
[49] provide pre-defined cutoffs for prediction, while 

others like musite [62] and KSP-PUEL [63] allow users 
to define their own thresholds or to train the models 
using their own data.

Testing kinase‑substrate relationship prediction tools
For large-scale kinase-substrate prediction, 14 pre-
trained tools were available that provide downloadable 
results. The best, unbiased way to test these tools is to use 
validated sites that were not used for the training of any 
tool. Unfortunately, most tools do not report the actual 
sites used for training and finding a set of sites to fit these 
criteria is nearly impossible. Therefore, we evaluated all 
14 tools using gold-standard positive and negative human 
phosphorylation sites downloaded from dbPTM [64] for 
four serine/threonine kinases (CDK1, CK2, MAPK1, and 
PKA). Positive sites were serines and threonines experi-
mentally validated to be phosphorylated by a particular 
kinase. Negative sites were serines and threonines not 
known to be phosphorylated on the same proteins. The 
outcomes might be biased in favor of newer tools and 
those that used some of these sites in their training.

Tools predicting kinases for phosphorylation sites 
(Table  3) were accessed through local tool installation 
or through the tool’s website. PhoScan [60] and phos_
pred [49] were run locally on a Windows laptop, while 
NetPhorest [65], NetworKIN [66], iGPS [57], GPS [61], 
DeepPhos [67], jEcho [68], and MusiteDeep [50] were run 
locally on a Mac laptop. AKID [69], PhosphoPICK [70], 
NetPhos [71], Musite [62], and pkaPS [72] were accessed 
via their websites. Tools were set with the lowest thresh-
old if they did not have an option to return scores for all 

a Indicates number of trained kinases, but tool can be trained with others

SVM support vector machine, PSSM position specific scoring matrix, GSEA gene set enrichment analysis, ANN artificial neural network, DNN deep neural network, HMM 
hidden Markov model, PPI protein–protein interaction, KNN K-nearest neighbor
a Indicates tool is not available for all three main operating systems (Linux, Mac, Windows)

Table 3 (continued)

Tool Last update Version Prediction type Method Kinases/
phosphatases

Type References

AKID 2018 Phosphorylation sites 
of kinases

DNN 496 Web|DL|Toola [69]

CapsNet_PTM 2018 Phosphorylation sites 
and some kinase specificity

DNN any Tool [130]

PTM-ssMP 2018 Phosphorylation sites 
and some kinase specificity

SVM 9 Web|DL [131]

Quokka 2018 Phosphorylation sites 
of kinase families

Logistic regression 65 Web|DL [132]

TyrPred 2018 Phosphorylation sites of Tyr 
kinases

Elastic net 15 Web [133]

CoPhosK 2019 Kinases of phosphorylation 
sites

Naïve Bayes 101 Web|Tool [134]

DeepPhos 2019 Phosphorylation sites 
and some kinase specificity

DNN 20 Tool [67]
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sites. For each site, the maximum score was retained if 
the tool predicted for more than kinase isoform (e.g., the 
maximum score of PKCalpha and PKCbeta on the same 
site). If a tool did not return a score for a site, the lowest 
possible score was given to the site. The receiver operat-
ing characteristic (ROC) curve and area under the ROC 
curve (AUROC) were calculated for the results from each 
tool using the R package ROCR [73].

ROC curves for four kinases (CDK1, CK2, MAPK1, 
and PKA) are shown in Fig. 4. Notably, musite was unable 
to predict for a few random protein sequences in each 
submission. DeepPhos and phos_pred both required 
manual edits of hard-coded variables. MusiteDeep and 
GPS had the highest area under the curve (AUC) for all 
kinases tested. The PKA-specific tool pkaPS also per-
formed well. Performance for most tools, however, varied 
across kinases.

Comparison of kinase activity tools
The known or predicted kinases for phosphorylation sites 
can be used to infer kinase activity from global phospho-
proteomic data. Tools and methods have been developed 
to predict kinase activity, but there has been little effort 
spent towards comparing these tools or determining the 
most biologically-relevant set of parameters. The avail-
able tools (PHOSIDA, KEA2, KSEA App, PHOXTRACK, 
INKA, and IKAP) each use a different algorithm to infer 
activity (Table  4). The PHOSIDA de novo motif finder 
uses a simple method of bootstrapping to determine 
enrichment of sequence motifs in a set of phosphoryl-
ated peptides and then matches those to known kinase 
motifs [26]. Kinase Enrichment Analysis 2 (KEA2) uses 
over-representation analysis to determine enrichment of 
kinase substrates in a condition [74]. Similarly, the KSEA 
App uses mean phosphorylation of substrates of kinases 

Fig. 3 Network of phosphorylation site predictor tools and the resources used to make predictions. Tools are colored purple while the databases 
used by the tools are colored blue
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as a proxy for activity [4]. PHOXTRACK modified pre-
ranked gene set enrichment analysis (GSEA) to deter-
mine enrichment of known kinase targets [75]. IKAP 
extended these methods using a cost function to infer the 
relative contributions of multiple kinases acting on the 
same site [76]. Finally, INKA combines the GSEA method 
with activating phosphorylation on kinases [77].

We used a phosphoproteomic dataset from a cell line 
experiment with 20 kinase inhibitors [78] to test four 
kinase activity prediction tools. Because PHOSIDA is 
only available online without downloadable results, we 
excluded this tool from further analysis. INKA was also 
excluded as it requires MaxQuant search result files. The 
R programming environment was used to create files in 
the input format for each tool. Significantly downregu-
lated sites for each inhibitor were submitted to KEA2 and 
significantly inhibited kinases were defined as those with 
false discovery rate (FDR) < 0.05 and at least 3 overlapping 

substrates [74]. The log2 fold change for each thirteen-
mer phosphorylation site (± 6 amino acids surrounding 
the phosphorylated site) was submitted to PHOXTRACK 
(1000 permutations, minimum number of substrates = 3, 
weighted statistics) [75]. Significantly inhibited kinases 
were defined as those with FDR < 0.05 and normalized 
enrichment value < 0. The fold change for each site with 
each inhibitor was submitted to the KSEA app website 
and significantly inhibited kinases were defined as those 
with FDR < 0.05, at least 3 substrates in the dataset, and 
a z score < 0 [4]. The substrates of kinases from Phospho-
SitePlus (version July 2017) and Signor (version October 
2017) were used for IKAP [23, 34, 76]. IKAP was run 
locally on a Mac laptop with the bounds between -11 and 
11 and 50 iterations. The 5 kinases with the lowest activ-
ity scores for each experiment were chosen. The positive 
set were kinases known to be inhibited by each drug (as 
reported in supplementary table in Ref. [78]); all other 

a b

c d

Fig. 4 ROC curves for substrate prediction of four kinases. The false positive and true positive rates of substrate prediction for a CDK1, b CK2, c 
MAPK1, and d PKA. The AUC for each tool is listed next to the tool name
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kinases predicted by the tools were considered to be neg-
ative. The significant kinases for each tool were counted 
for presence in the positive and negative sets.

Comparison of these tools is challenging because they 
use different input and underlying databases. KEA2 
requires a set of sites in the format of HGNC symbol and 
phosphorylated amino acid residue position separated by 
an underscore. It contains sets for 250 different kinases. 
KSEA App requires a strictly formatted comma-delim-
ited file with the HGNC symbol, phosphorylated posi-
tion, and non-log-transformed fold change. Users can 
choose between known sets from the July 2016 release 
of PhosphoSitePlus or the known + predicted site sets 
from PhosphoSitePlus and NetworKIN. PHOXTRACK 
requires a two-column file with a thirteenmer peptide 
and log-transformed fold change. It can use substrate 
sets from the four main databases or a user-supplied 
database. Finally, IKAP required tabular data entered 
into MATLAB, manual modification of MATLAB code 
to change parameters, and allowed a user to upload their 
own set of substrates. Because one thirteenmer might 
match multiple proteins and phosphorylated positions, 
the actual substrate list presented to each tool may differ 
slightly.

To determine how well each tool covered the known 
targets of kinases, we counted the number of significantly 
downregulated known kinases of each inhibitor and the 

significantly downregulated kinases of each inhibitor that 
were not known targets of that inhibitor. The KSEA App 
made the most true positive predictions across all experi-
ments, while IKAP made the fewest true positive pre-
dictions (Fig.  5a). PHOXTRACK made the fewest false 
positive predictions (Fig. 5b).

Besides upstream kinase activity, phosphoproteomics 
data could additionally be used to explore altered down-
stream pathways. While standard tools and methods 
such as GSEA are typically used for this analysis, all are 
limited to using overall gene-level phosphorylation [79]. 
Unfortunately the functional contribution of individual 
sites to pathway signaling is poorly annotated in gene set 
databases, although PTMsigDB has some limited path-
way sets [80]. Until new tools are built to handle indi-
vidual sites in pathway analysis, a user might combine 
the results from kinase activity prediction to assemble 
altered kinases into pathways using tools such as String, 
RegPhos2, or Wikipathways [42, 81, 82].

Differential and clustering analysis of phosphoproteomics 
data
Besides activity prediction, phosphoproteomic data 
can be used for other analyses. SELPHI is a good tool 
to first explore the data as it allows biologists to quickly 
and easily analyze phosphoproteomic data with cluster-
ing analyses, kinase-substrate correlation, and pathway 

Table 4 Kinase activity prediction and phosphoproteomic dataset analysis tools

GSEA gene set enrichment analysis

Tool Last update Prediction type Method Input Type References

PHOSIDA Motif Finder 2011 Sequence motifs Bootstrap Phosphosite 13mer Web [26]

CellNOpt 2012 Time-course analysis Logic formalisms Interactions and phospho-
proteomic data

Tool [85]

KEA2 2012 Kinase activity Fisher’s exact test Gene symbols and phos-
phosite

Web|DL|Tool [74]

Sorad 2013 Time-course analysis Ordinary differential equa-
tions

Phosphoproteomic data Tool [86]

PHOXTRACK 2014 Kinase activity GSEA Phosphosite 13mer 
and log2 expression

Web|DL [75]

PhosFox 2015 Phosphorylation site com-
parison between groups

Comparison Phosphoproteomic data Tool [84]

SELPHI 2015 Phosphoproteomic data 
analysis

Multiple functions Phosphoproteomic data Web|DL [83]

DynaPho 2016 Phosphoproteomic analy-
sis for multiple conditions

Activity modules phosphoproteomic data Web|DL [87]

IKAP 2016 Kinase activity Cost function Phosphoproteomic data Tool [76]

KinasePA 2016 Kinase perturbation 
in multiple treatments

Directional hypothesis 
testing framework

Phosphoproteomic data Web|Tool [88]

KSEA 2017 Kinase activity Z score Phosphoproteomic data Web|DL|Tool [4]

CLUE 2018 Time-course kinase 
activity

k-Means clustering Phosphoproteomic data Tool [41]

INKA 2019 Kinase activity GSEA and phosphoryla-
tion

Phosphoproteomic data Web|DL [77]
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enrichment [83]. PhosFox then compares phosphorylated 
peptides between conditions [84]. Finally, a set of tools 
(CellNOpt, Sorad, CLUE, DynaPho, and KinasePA) were 
developed specifically for phosphoproteomic time-course 
or multiple condition analyses (Table 4) [41, 85–88].

Prediction of mutation effect
Analysis and interpretation of phosphoproteomic data 
can be enhanced with other multi-omics data types. For 
example, sequence variants can affect kinase function 
or presence of a phosphorylation site. The databases 
PhosSNP [89] and ActiveDriverDB [90] collect gene 
polymorphisms and somatic mutations, respectively, 
near phosphorylation sites and categorize them based on 
suspected effect (Table 5). ActiveDriverDB also includes 
predictions from Mutations Impact on Phosphoryla-
tion (MIMP), which uses Bayesian statistics to predict 
whether mutations around a phosphorylation site will 
change which kinase binds to that site [91]. It can predict 
rewiring for 124 kinases using experimentally validated 
data, or it can be extended to predict for 322 kinases 
using predicted kinase-substrate relationships. ReKINect 

also predicts rewiring from mutations, but it further 
predicts the destruction or creation of phosphorylation 
sites and inactivation or constitutive activation of kinases 
[92]. PhosphoPICK-SNP is also similar to MIMP. It pre-
dicts the kinase responsible for phosphorylating a site, 
and whether a mutation affects its ability to phosphoryl-
ate the site [93]. While all of the tools are easy to use, the 
databases are better for individual searches and the three 
prediction tools are better for analysis of a user’s muta-
tion data.

Resources for kinase inhibitors
After discovering altered kinases from phosphopro-
teomic data to use as therapeutic targets, identifying 
inhibitors is essential. Most available resources connect 
known drugs to their known kinase targets (Table  6). 
DrugKiNET shows the known inhibitors for kinases, and 
the kinases that a compound inhibits. It also predicts 
which kinases a drug can inhibit. K-Map extends these 
interactions to suggest the best compound to inhibit a set 
of kinases [94]. Finally, KinomeSelector groups kinases 
by sequence similarity and similarity of drug response. It 

a b

Fig. 5 True and false positive predictions for kinase activity prediction tools. a For all 20 inhibitors, the number of known targets predicted to be 
significantly downregulated by each tool. b For all inhibitors, the number of all significantly downregulated kinases that do not match known 
inhibitor targets

Table 5 Resources for studying the effect of mutations on kinases and phosphorylation sites

SNV single nucleotide variation, PSSM position specific scoring matrix

Tool Last update Version Prediction type Method Kinases Method of access References

PhosSNP 2009 1.0 SNVs that might influence phosphoryla-
tion status

Rules Tool [89]

MIMP 2015 Missense SNV impact on kinase-substrate Bayesian model 322 Web|DL|Tool [91]

ReKINect 2015 Effect of SNV on signaling network PSSM Web|DL [92]

PhosphoPICK-SNP 2016 Effect of SNV on phosphorylation level Bayesian models 107 Web|DL [93]

ActiveDriverDB 2017 Somatic variants affecting phosphoryla-
tion

Rules 322 Web|DL [90]
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then allows a user to choose a subset of kinases to target 
that cover the kinome [58].

Other kinase signaling tools
The final set of bioinformatics tools, summarized in 
Table  7, enhance phosphoproteomic analysis and cover 
visualization, data retrieval, and prediction tools. Addi-
tional kinases from a genome can be predicted by Kinan-
note [95] and KinConform can predict whether those 
kinases are active in structure files [96]. KinMap [97] is 
used to visualize the entire kinome tree and Phospho-
Logo [98] is used to generate sequence logos of kinases. 
On the other side, RLIMS-P and eFIP are both tools 
that extract data on phosphorylation interactions from 
the literature [99, 100]. Then CPhos identifies phospho-
rylation sites of interest that are conserved across species 
[101]. PyTMs [102] is a tool to visualize 3D structures 
of phosphorylation sites and ultimately RegPhos2.0 [42] 
can be used to visualize signaling networks. RegPhos2.0 

also provides heatmaps for kinase and substrate mRNA 
expression in cancer. Finally, 14-3-3-Pred predicts phos-
phorylation sites in protein sequences that might bind to 
14-3-3 proteins, further adding to the phosphorylation-
related signaling network [103].

Discussion
The available databases and tools for studying kinase 
signaling cover diverse functions and include information 
on enzymes and their substrates, inhibitors, activity, and 
mutations. Together these knowledge bases, prediction 
tools, and analysis tools comprise the current best stand-
ard for studying kinase signaling and many can be used 
without extensive computational knowledge. Overall, 
these tools allow a researcher to discover vast amounts 
of information from their phosphoproteomic data and 
some tools can even perform entire sets of analyses with 
a single button click [83].

Table 6 Kinase-inhibitor relationship resources

K-Map has two different databases—one with 178 drugs inhibiting 300 kinases and one with 72 drugs inhibiting 442 kinases

Tool Last update Description Kinases Inhibitors Method of access References

K-Map 2013 Best inhibitor for a set of kinases 300 or 442 178 or 72 Web|DL [94]

KinomeSelector 2014 Minimal set of kinases to inhibit > 500 NA Web|DL [58]

DrugKiNET 2017 Known and predicted drug activity 
on kinases

> 800 Web|DL

Table 7 Visualization, data retrieval, and prediction tools

Tool Last update Version Type Input Output Method of access References

CPhos 2012 1.3 Phosphorylation site 
conservation

Phosphopeptides Conservation scores Tool [101]

PhosphoLogo 2012 Visualization 
of sequence motifs

Sequence motifs Motif visualization Tool [98]

RegPhos2.0 2013 2.0 Visualization of kinase 
data

Gene names Network visualization 
or cancer gene expres-
sion

Web|DL [42, 113]

eFIP 2014 Returns publications 
involving phosphoryla-
tion

Gene names or words Publications matching 
those words

Web [100]

RLIMS-P 2014 2.0 returns protein phos-
phorylation information 
from literature

PMIDs or keywords kinase, substrate, 
and site

Web|DL [99]

PyTMs 2015 1.2 pyMOL plugin to add 
PTMs to protein models

Protein models, PTMs PTMs integrated in pro-
tein models

Tool [102]

14-3-3-Pred 2015 Predicts 14-3-3 binding 
phosphosite

Protein sequences Predicted 14-3-3 bind-
ing sites

Web|DL [103]

KinMap 2016 Kinome tree visualiza-
tion

Kinases Tree with highlighted 
branches

Web|DL [97]

KinConform 2017 Determines which struc-
tures are kinases

Structures Active or inactive kinase 
chains

Tool [96]

Kinannote 2017 1.0 Classifies sequences 
as kinases

Protein sequences Kinase annotation Tool [95]
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Despite the work that has been done, there is room 
for advancement to fully utilize phosphoproteomic data 
for use in the clinic. First, the majority of tools focus 
almost exclusively on the study of protein kinases. 
However, phosphatases are critical components of the 
kinase signaling cascade and are frequently dysregu-
lated in cancer. Understanding the role of the interplay 
between kinases and phosphatases on the net phospho-
rylation seen in global phosphoproteomic data is essen-
tial to identifying abnormal cell signaling in disease. 
Furthermore, while the current tools and research are 
aimed at studying dysregulated protein phosphoryla-
tion, non-protein phosphorylation is also often altered 
in disease. For example, hexokinases, which phospho-
rylate glucose, drive glucose metabolism and contribute 
to tumor initiation in mouse models of lung and breast 
cancers [104]. The development of resources and tools 
to study non-protein kinases and phosphatases could 
advance research in a variety of fields.

While the current tools provide critical functions, 
their error rate and accuracy could be improved. Errors 
are frequently propagated or amplified when tools col-
lect data from a variety of resources. However, the 
impact of these errors on downstream analyses and 
biological inferences remains to be determined.

For all tools, usability can be an issue, both for bio-
informaticians and biologists with no computational 
experience. Tools are frequently platform-dependent, 
do not allow downloadable results, and are not well 
annotated. Furthermore, tools are difficult to compare 
or to use more than one during analysis. The input and 
output formats are not standardized and use a variety 
of protein naming conventions.

The largest challenge was deciphering input limi-
tations and understanding results. For example, 
submitting a sequence with a large number of phospho-
rylatable residues to GPS caused the software to stall 
without an error message and no documentation men-
tioned a size limit. Musite did not provide results for a 
sequence or two each run without explanation. Further-
more, downloadable result files for many tools had no 
column headers so the column contents were unknown. 
For example, the downloadable file from musite has 
no column titles, so you have to check the table on the 
website to understand the results. Additionally, scores 
are usually presented without explanation. Only care-
ful reading of the manuscript or the manual elucidates 
what value signifies a “good” response. For example, in 
Scansite, the score 0 is the best, with scores closest to 
0 indicating the best match. But in PhosphoPICK, the 
score indicates the probability of being phosphoryl-
ated by a kinase at that site so a score closer to 1 is bet-
ter. Experts in machine learning might understand the 

score without explanation, but naïve users likely will 
not.

One way to fix this challenge is to have a detailed, easy-
to-find manual. The manual should include ways to run 
the tool, the underlying mechanism of the method, and 
detailed description of the results. The description of the 
results should also be available where results are visual-
ized. Furthermore, sample input is helpful for a new user 
to test the tool and determine whether the results will be 
useful for their experiment before preparing their own 
data files.

Conclusions
There are many tools and resources that can be used 
to study kinase signaling and these tools will become 
even more essential with the continued production of 
phosphoproteomic data. It is essential for the biological 
community to research under-studied enzymes and to 
validate specific substrates of kinases and phosphatases. 
Furthermore, bioinformaticians should consider creating 
tools that utilize information from both sides of the enzy-
matic phosphorylation reaction. Finally, resources should 
be carefully planned, easy to use, and well maintained 
and the community should work to standardize the use of 
enzyme IDs and phosphorylation site location.
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