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Proteomic approaches for characterizing 
renal cell carcinoma
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Abstract 

Renal cell carcinoma is among the top 15 most commonly diagnosed cancers worldwide, comprising multiple sub-
histologies with distinct genomic, proteomic, and clinicopathological features. Proteomic methodologies enable the 
detection and quantitation of protein profiles associated with the disease state and have been explored to delineate 
the dysregulated cellular processes associated with renal cell carcinoma. In this review we highlight the reports that 
employed proteomic technologies to characterize tissue, blood, and urine samples obtained from renal cell carci-
noma patients. We describe the proteomic approaches utilized and relate the results of studies in the larger context 
of renal cell carcinoma biology. Moreover, we discuss some unmet clinical needs and how emerging proteomic 
approaches can seek to address them. There has been significant progress to characterize the molecular features of 
renal cell carcinoma; however, despite the large-scale studies that have characterized the genomic and transcriptomic 
profiles, curative treatments are still elusive. Proteomics facilitates a direct evaluation of the functional modules that 
drive pathobiology, and the resulting protein profiles would have applications in diagnostics, patient stratification, 
and identification of novel therapeutic interventions.
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Background
Renal cell carcinoma (RCC) is among the top 15 most 
commonly diagnosed cancers in men and women, 
with an estimated 73,000 newly diagnosed cases in 
the United States and 403,000 newly diagnosed cases 
worldwide [1, 2]. RCC is a heterogeneous disease com-
prised of three major histopathological subtypes: clear 
cell renal cell carcinoma (ccRCC), papillary renal cell 
carcinoma (pRCC), and chromophobe renal cell car-
cinoma (chRCC); in addition to more rare and benign 
subtypes that include collecting duct RCC, papillary 
adenoma, hybrid oncocytic chromophobe, multilocular 
cystic clear cell carcinoma and oncocytomas [3, 4]. The 
predominant histology of RCC is ccRCC accounting 
for ~ 75% of cases, followed by pRCC, which is further 

divided into two distinct subtypes accounting for 15% 
of cases, and chRCC which accounts for ~ 5% of cases 
[5]. To understand the underlying molecular alterations 
that drive RCC oncogenesis, The Cancer Genome Atlas 
(TCGA) has performed extensive genomic, epigenomic 
and transcriptomic profiling of ccRCC, pRCC, and 
chRCC [6–8]. Unique to ccRCC was the dysregulation 
of chromosome 3p and associated genes, including the 
ubiquitous loss of the hypoxic signaling regulator VHL 
and the genes BAP1, PBRM1, SETD2, which have been 
shown to follow loss of VHL and are linked to aggres-
sive disease [9, 10]. Type I pRCC was observed to have 
a high frequency of chromosome 7, 16, and 17 gain 
and genomic aberrations involving MET, while Type 
2 pRCC showed a strong association with CDKN2A 
dysregulation [8]. Genomic alterations in chRCC were 
quite distinct relative to ccRCC, pRCC, and even other 
cancer types, observing substantial chromosome copy-
number loss, with the majority of tumors displaying 
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loss of chromosomes 1, 2, 6, 10, 13, and 17 [6]. Sub-
sequent pan-renal studies have attempted to delineate 
the unique and shared features of each histology [11, 
12], revealing a high degree of molecular heterogene-
ity across RCC tumors that could be used to identify 
up-regulated cellular pathways, immune-related sig-
natures, and patient survival with respect to each his-
tology. Moreover, this molecular information, when 
combined with histopathological examination, has also 
provided insight into the nephron cell types from which 
RCC originates, revealing ccRCC and pRCC arise from 
proximal tubule epithelial, while chRCC is associated 
with the distal tubule epithelium [13]. Overall, the 
genomic and transcriptomic profiling of RCC has pro-
vided unique insight into the molecular basis of renal 
oncogenesis that is complementary to histopathological 
examination.

Genomic profiling techniques, such as next genera-
tion sequencing (NGS), can identify the altered DNA 
sequences resulting from somatic mutations that are 
associated with carcinogenesis, as well as serve as a 
potential screening tool for early diagnosis [14]. How-
ever, sequencing DNA and cataloging the altered base-
pair profiles provides little information related to the 
functional consequences of a mutation, and some have 
questioned the utility genomic-based approaches for 
identifying actionable targets for therapeutic interven-
tion [15]. Similarly, although transcriptomic analyses 
offer a high-throughput methodology for assessing 
gene expression via the measurement of protein-coding 
mRNA transcript abundance, transcriptomic profil-
ing cannot fully elucidate the functional modules that 
regulate cellular processes. Mounting evidence has 
indicated that paired mRNA transcript and protein 
expression is not robustly correlated in normal tissues 
or in tumors [16–20], highlighting the rationale for pri-
oritizing protein measurements for an accurate repre-
sentation of biological systems. Furthermore, mRNA 
transcript abundance offers minimal insight into post-
translational modifications (PTMs) of proteins, such 
as phosphorylation, glycosylation, or ubiquitination, 
which serve as additional layers of gene regulation by 
impacting protein function, stability, protein–protein 
interactions, and cellular location [21]. Finally, con-
sidering that the majority of drug targets are proteins 
and protein-based analysis is the most common tech-
nique utilized in the clinical setting [22, 23], delineat-
ing target proteins of interest have direct translational 
applications. Seeking to address the shortcomings of 
genomic and transcriptomic profiling, proteomic tech-
nologies offer a comprehensive methodology for deter-
mining differential global protein and PTM abundance, 
facilitating a direct analysis of the functionally active 

molecules and cellular mechanisms dysregulated in the 
disease state.

There have been a myriad of studies that have utilized 
proteomic technologies to explore the protein profiles 
of tissues and biological fluids in an effort to identify the 
differentially expressed proteins associated with RCC 
(Fig. 1). In this review, we summarize the details of these 
studies, focusing our discussion on the samples analyzed, 
experimental design, proteomic techniques employed, 
and the results reported in the context of RCC charac-
terization at the protein level. In addition, our review 
encompasses several emerging approaches and future 
directions that can be explored to provide further insight 
into altered protein profiles associated with RCC.

Tissue profiling
Analysis of tumor tissues offers the most direct method to 
identify dysregulated protein expression or protein PTM 
profiles resulting from aberrant genomic events in RCC. 
Including additional examination of benign or normal 
adjacent tissues (NATs) facilitates comparative proteomic 
profiling to identify differentially expressed proteins, with 
the end goal of delineating the aberrant cellular processes 
associated with RCC or elucidating potential disease pro-
tein biomarkers (Table  1). As a result of these features, 
the majority of the studies discussed in this review have 
examined tumor tissues from RCC patients; with these 
studies representative of various proteomic technologies, 
RCC histologies, and disease severity.

ccRCC tissue profiling
ccRCC accounts for the majority of RCC cases and as a 
result studies focused on profiling ccRCC are far more 
numerous than studies examining other RCC histologies. 
Potentially confounding the summarization of proteomic 
experiments in this review is the classification of ccRCC 
as RCC in several studies, resulting from RCC initially 
being divided into two major histologies prior to 2004 
and ccRCC being viewed as conventional RCC [24, 25]. 
For the purposes of this review, we will consider studies 
describing the characterization of kidney tumors as RCC 
to be ccRCC unless additional information related to the 
genomic background, pathological classification, or ana-
tomical location would suggest a different histology.

Two-dimensional electrophoresis (2-DE) is an early 
proteomic technology, utilizing a dual separation 
approach based on a protein’s isoelectric point and 
molecular weight on a polyacrylamide gel. The indi-
vidual spots visualized by this methodology are then 
excised and subjected to mass spectrometry analysis 
to identify and annotate the protein spots, with differ-
ences in protein spot intensity between experimental 
conditions inferring differential protein abundance and 
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identification of dysregulated proteins. Multiple stud-
ies have leveraged this technique to identify differential 
expressed protein profiles between ccRCC and NAT 
samples, followed by immunoblotting or immunohis-
tochemical validation in independent samples [26–30]. 

Perroud et  al. [26], identified 31 proteins that were dif-
ferentially expressed between ccRCC tumor tissues and 
NATs derived from four patients, validating the overex-
pression of HSP27 (HSPB1) and PKM2 via immunoblot-
ting. Pathway analysis indicated most of the differential 

Fig. 1  Established proteomic approaches used for investigation of RCC biological samples. Comparative two-dimension electrophoresis (left) 
assesses protein abundance differences based on spot intensity (Quantitation), with subsequent mass spectrometry analysis identifying the 
proteins from the excised spot (Identification). Label-free quantitation (middle) entails mass spectrometry analysis of individual samples, with 
peptides identified at the MS2 level (Identification), and peptide abundance based on peak intensity determined at the MS1 level (Quantitation). 
Protein abundance is inferred from peptide abundance measurements. In some label-free quantitation-based experiments, spectral counting 
is employed, wherein protein abundance is inferred by the number of mass spectrometry spectra generated for each peptide derived from the 
precursor protein. Isobaric labeling (right) methods involve the labeling of peptides derived from individual samples with mass tags that include 
reporter ions and mixing of samples prior to mass spectrometry analysis. Peptide Identification and Quantitation information is obtained at the MS2 
level in the same spectra. Protein abundance is inferred from peptide abundance measurements



Page 4 of 18Clark and Zhang ﻿Clin Proteom           (2020) 17:28 

Table 1  Proteins commonly identified as overexpressed in RCC tissues, plasma, serum, urine, or other biological sources

T tissue, P plasma, S serum, U urine, O other
a   Subset of Uniprot gene ontology (GO) assigned biological processes (https​://www.unipr​ot.org/)

Protein accession Gene name Protein name Biological 
source

GO annotationa Citing report

P04075 ALDOA Fructose-bisphosphate aldolase A T Canonical glycolysis; actin filament 
organization

[20, 42, 49]

P05062 ALDOB Fructose-bisphosphate aldolase B T,S Canonical glycolysis [42, 80]

P09972 ALDOC Fructose-bisphosphate aldolase C T Canonical glycolysis; epithelial cell 
differentiation

[20, 40, 42]

P04083 ANXA1 Annexin A1 T,S,U Actin cytoskeleton organization; 
adaptive immune response

[20, 80, 93]

P07355 ANXA2 Annexin A2 T,U Angiogenesis [20, 26, 32, 93]

Q6P452 ANXA4 Annexin A4 T,O Negative regulation of coagulation [20, 26, 29, 37, 40, 42, 103, 118]

P52566 ARHGDIB Rho GDP-dissociation inhibitor 2 T,U Cellular response to redox state [63, 93, 119]

P31146 CORO1A Coronin-1A T,U Actin cytoskeleton organization; 
calcium ion transport

[20, 37, 42, 119]

P02511 CRYAB Alpha-crystalline B chain T Apoptotic process involved in 
morphogenesis

[20, 28, 30, 40]

P06733 ENO1 Alpha enolase T Canonical glycolysis [28, 41, 42, 64]

P09104 ENO2 Enolase 2 T,O Canonical glycolysis [20, 26, 29, 37, 42, 63, 103]

O15540 FABP7 Fatty acid-binding protein, brain T Epithelial cell proliferation; triglycer-
ide catabolic process

[26, 27, 37, 40, 61, 63]

P02751 FN1 Fibronectin T,P Angiogenesis; cell adhesion [42, 76, 78]

P00738 HP Haptoglobin T,S,U Acute inflammatory response [64, 79, 92, 93]

P11142 HSPA8 Heat shock cognate 71 kDa protein T,S ATP metabolic process; regulation of 
protein complex stability

[42, 63, 79, 80]

P04792 HSPB1 Heat shock protein beta-1 T Cellular response to vascular 
endothelial growth factor stimulus

[26, 41, 64]

P00338 LDHA l-lactate dehydrogenase A chain T Glycolytic process; response to 
hypoxia

[20, 26, 29, 40–42, 118]

P09382 LGALS1 Galectin-1 T,O Apoptotic process; cellular response 
to glucose stimulus

[20, 27, 46, 103]

Q92597 NDRG1 Protein NDRG1 T Cellular response to hypoxia; regula-
tion of apoptotic process

[29, 42, 63]

P40261 NNMT Nicotinamide N-methyltransferase T,O NAD biosynthesis via nicotinamide 
riboside salvage pathway

[20, 37, 40, 49, 103, 118]

Q01813 PFKP ATP-dependent 6-phosphofructoki-
nase, platelet type

T Canonical glycolysis [20, 37, 42]

P07737 PFN1 Profilin-1 T Positive regulation of epithelial cell 
migration

[20, 46, 49]

P14618 PKM Pyruvate kinase PKM T,P Canonical glycolysis; positive regula-
tion of sprouting angiogenesis

[20, 26, 42, 81]

Q99541 PLIN2 Perilipin-2 (Adipose differentiation-
related protein)

T Regulation of lipid metabolic 
process

[37, 40, 42, 118]

P31949 S100A11 Protein A100-A11 T,U Negative regulation of DNA replica-
tion; neutrophil degranulation

[20, 56, 93]

P06702 S100A9 Protein S100-A9 T,S Innate immune response; neutrophil 
degranulation

[20, 42, 44, 80]

P63313 TMSB10 Thymosin beta-10 T Actin filament organization; regula-
tion of cell migration

[20, 56, 61]

P19320 VCAM1 Vascular cell adhesion protein 1 T,P Cell adhesion; regulation of immune 
response

[20, 78, 81]

P08670 VIM Vimentin T Cellular response to interferon-
gamma; SMAD protein signal 
transduction

[20, 29, 40, 42, 62, 63]

https://www.uniprot.org/
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expressed proteins were annotated as metabolic-related, 
prompting their investigation of the metabolite profiles 
in pooled urine samples, which revealed increased abun-
dance of glycolysis by-product sorbitol. Raimondo et al. 
[27] also showed metabolic profiles are altered in ccRCC, 
and found immune response to be up-regulated in tumor 
tissues. Validation focused on the proteins that were up-
regulated, with the authors verifying overexpression of 
ANXA2, LGALS1, PPIA, and FABP7. ANXA2 overex-
pression was primarily associated with the plasma mem-
brane, and prompted several follow-up studies by this 
same group focused on delineating differences in pro-
tein abundance of plasma membrane domains between 
tumors and NATs [31, 32]. In addition to identifying sev-
eral other proteins of interest, including VDAC1, BSG, 
and THY1, these studies described a strategy of annotat-
ing the cell surface proteome of renal cancer cells that 
may have applications in identifying novel therapeutic 
targets [33]. In another study, comparison of nine cases 
of ccRCC (paired tumor tissue and NAT) revealed the 
differential expression of 34 proteins, including the pro-
tein NDRG1, which was found to be elevated in ccRCC 
tissues, with subsequent validation experiments via IHC 
revealing the protein’s nuclear localization (versus mem-
brane localization) was associated with a favorable prog-
nosis, and functional assays revealing a potential tumor 
suppressor role of NDRG1 in ccRCC [29].

There are several inherent disadvantages of 2-DE pro-
filing, including issues related to reproducibility, solu-
bilization and visualization of hydrophobic proteins, 
low-throughput, and a narrow dynamic range of protein 
expression detection [34]. To circumvent these draw-
backs, Multidimensional Protein Identification Technol-
ogy (MudPIT) was developed, which relies on proteolytic 
digestion of proteins into peptide products and subse-
quent fractionation prior to mass spectrometry analysis. 
This “shotgun proteomic” approach facilitates several 
strategies for quantitation, including label-free quanti-
tation (LFQ), and isobaric reporter tag labelling of pep-
tides. Reports leveraging LFQ to profile ccRCC have 
mirrored earlier 2-DE studies in terms of the altered cel-
lular pathways resulting from ccRCC pathobiology, albeit 
identifying far more differentially expressed proteins 
between tumors and NATs [35, 36]. Atrih et al. [37] used 
LFQ to examine the disparate protein profiles between 
ccRCC tissues and NATs, revealing almost 600 proteins 
to be differentially expressed. Using IHC, the authors val-
idated the expression pattern of two proteins, CORO1A 
and ADFP, which were shown to have increased in abun-
dance in ccRCC samples. Interestingly, the authors found 
that CORO1A was not overexpressed in renal cancer 
cells, but instead in the infiltrating lymphocytes local-
ized in the tumor microenvironment, whereas ADFP 

overexpression was associated with tumor cells. This lat-
ter result highlights one drawback of bulk tissues analy-
ses that many proteomic studies employ, specifically the 
loss of spatial information related to protein expression, 
as well as the mixing of different cell populations during 
sample homogenization.

Isobaric labelling, including technologies such as iso-
baric tags for relative and absolute quantitation (iTRAQ) 
and tandem-mass-tag (TMT), offer a strategy to reduce 
the time needed for data acquisition via sample multi-
plexing [38]. Following proteolytic digestion, samples are 
labelled with a mass tag reporter ion that when subjected 
to fragmentation in the mass spectrometer, enables the 
measurement of peptide (and subsequently, protein) 
abundance across multiple samples [39]. An early report 
applied this approach, identifying a total 324 differen-
tially expressed proteins between a tumor and NAT sam-
ple, with 99 robustly detected in replicate analyses [40]. 
Included in their iTRAQ experiment were two “control” 
samples, a transitional cell carcinoma (TCC) case and a 
kidney tissue sample from a patient with end stage glo-
merulonephritis, facilitating a comparison of other renal 
disorders and ccRCC. Although the authors examined 
their dataset in relation to several previous publications 
and validated several proteins, including VIM, SERP-
ING1, NNMT, and LDHA via IHC or immunoblotting, 
they did not report the expression pattern of these pro-
teins in their “control” samples, thus missing the oppor-
tunity to identify ccRCC-specific protein candidates. In 
another study that incorporated sample fractionation 
for deeper profiling, a larger cohort of patients were 
examined using the iTRAQ approach, wherein a pooled 
reference sample was included to link multiple iTRAQ 
sample plexes. In this proteomic-based discovery phase, 
the authors identified 55 proteins differentially expressed 
between ccRCC and NAT samples [41]. From this list 
of proteins, the authors prioritized candidates that had 
gene ontology (GO) annotation as “secretory” and could 
serve as potential serum biomarkers, validating five pro-
teins—ENO1, HSPE1, HSPB1, AHNAK, and LDHA via 
immunoblotting and/or IHC tissue microarray (TMA) 
profiling. Mirroring their proteomic results, the proteins 
ENO1, HSPB1, LDHA, and AHNAK were elevated in 
ccRCC, while HSPE1 was down-regulated. Of note, the 
authors did not verify any of these candidates in serum 
samples, missing the opportunity to link tissue protein 
profiles to circulating serum protein profiles.

Moving beyond comparisons of ccRCC tumor and 
NATs tissues only, several studies have sought to delin-
eate protein expression patterns associated with disease 
severity, including stratifying patient samples based on 
tumor grade, tumor stage or comparisons of primary 
and metastatic lesions. Perroud et  al. [42] leveraged a 
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LFQ approach to characterize the proteome of fifty kid-
ney tissues comprising equal number of normal tissues 
and Fuhrman grades 1–4 of ccRCC tissues. Prior to their 
evaluation of archival formalin-fixed paraffin embed-
ded (FFPE) tissues, the authors first assessed whether 
the FFPE process introduced any bias in the proteomic 
data, finding only a few proteins displayed varied abun-
dance between sample matched frozen tissues. Following 
this preliminary result, the authors then examined the 50 
FFPE tissues, wherein they identified 105 proteins that 
showed significant differential abundance across the four 
grades and normal tissues. The protein NPM1, which has 
been shown to impact nucleolar morphology, showed 
increasing expression from normal tissue and G1 tumors 
to G2, G3, and G4 tumors. Considering the Fuhrman 
grading system is based on the nucleolus morphology 
and sizing, the increasing expression of NPM1 in higher 
grade tissues served as a robust, positive control. Pathway 
analysis of the differentially expressed proteins revealed 
higher expression proteins involved in glycolysis (PGK1, 
ALDOA-C, ENO1) xenobiotic metabolism (ALDH4A1, 
ALDH1A1, ALDH9A1), and down-regulation of proteins 
associated with apoptosis (AIFM1) were associated with 
higher tumor grade and are representative of the cellu-
lar mechanisms involved in ccRCC progression. Inter-
estingly, the authors found that proteins clusters could 
differentiate G1/2 tumors and G3/4 tumors, mirroring 
the disparate prognosis of patients and morphological dif-
ferences observed between low grade ccRCC versus high 
grade ccRCC [43]. Another study examining proteome 
profiles associated with tumor stage in ccRCC using a 
modified 2-DE approach (2D-DIGE), with the resulting 
protein profiles visualized using a principle component 
analysis (PCA) showing a clear separation between non-
neoplastic kidney tissues and pT1, pT2, and pT3 staged 
tumors [44]. Similar to increasing tumor grade, increas-
ing ccRCC tumor stage associated with alterations in 
metabolism, specifically up-regulation of glycolysis with 
a parallel decrease in TCA cycle protein expression. The 
authors highlighted and validated the differential expres-
sion of several select proteins, PHB, PRDX3, and S100A9, 
using IHC and immunoblotting. While PRDX3 down-
regulation was associated with increasing tumor stage, 
S100A9 and PHB increased in abundance and were also 
associated with tumor grade. An interesting feature was 
detected in the immunoblot results for PHB, wherein the 
expected 30 kD band showed minimal difference across 
the four experimental conditions, while a slightly larger 
band at 40  kD was discriminatory and may suggest a 
post-translation modification on PHB increased in higher 
stage disease. To investigate the protein alterations asso-
ciated with metastatic disease, Laird et  al. [45] used an 
immunofluorescence antibody-based approach to profile 

a TMA composed of 138 ccRCC tissues, 14 papillary tis-
sues, 103 renal vein tumor thrombus (VTT) tissues, and 
69 metastatic tissues. Evaluating a panel of antibodies 
comprised of MKI67, TP53, VEGFR1 (FLT1), VEGFD, 
SNAIL (SNAI1), and SLUG (SNAI2) paired with a tech-
nology called Automated Quantitative Analysis (AQUA) 
that allows for an unbiased assessment of protein expres-
sion, the authors showed all the proteins, except for 
VEGFD, were significantly elevated in metastatic disease 
relative to VTT and primary lesions. Although VEGFD 
did not show an association with disease severity, both 
VEGFD and VEGFR1 expression were prognostic in pri-
mary tumors, with elevated expression associated with 
reduced cancer specific survival. Less clear was any dis-
criminatory value for these markers between ccRCC and 
papillary primary tumors, which would be relevant in the 
context of ccRCC displaying elevated angiogenic signal-
ing resulting from a pseudo-hypoxia phenotype due to 
VHL inactivation. Using an iTRAQ-based approach, 
Masui et  al. [46] characterized six cases of ccRCC tis-
sues and patient-matched NATs, and six unmatched 
metastatic tissues, identifying 29 proteins that were dif-
ferentially expressed between primary and metastatic 
lesions. Three proteins, LGALS1, PFN1, and YWHAZ, 
were selected for validation via immunoblot in the same 
patient cohort and IHC using TMAs derived from an 
independent cohort, which showed increased expres-
sion in primary ccRCC relative to NATs, and increased 
expression in metastatic lesions relative to primary 
tumors. An additional assessment was done to determine 
the prognostic value of these three candidate proteins 
which showed PFN1 was associated with a poor prog-
nosis. In a follow-up study, the same team performed a 
deeper investigation of this proteomic dataset to identify 
the cellular pathways associated with metastasis, reveal-
ing the metabolic pathways glycolysis, pyruvate metabo-
lism, and the TCA cycle to be highly dysregulated [47]. 
They validated the proteomic results using a PCR array of 
metabolic genes and found a high degree of concordance 
for select pathways between the two datasets. Overall, 
these studies reveal that many of the cellular processes 
that are dysregulated in early stage ccRCC tumors, in 
particular metabolism-related pathways, are maintained 
and amplified during disease progression [48].

With the advent of high-throughput technologies for 
genomic, transcriptomic, and proteomic characteriza-
tion, several studies have begun to incorporate multiple 
levels of molecular information to facilitate “multi-omic” 
profiling of tissue samples. Integration of multiple 
omic data types allows for researchers to begin to link 
genomic alterations to observed phenotypes, as well 
as identify aberrant regulatory mechanisms that may 
not be detected with a single omic dataset. Leveraging 
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a proteotranscriptomic approach, Neely et  al. [49] per-
formed a series of comparative transcriptomic and pro-
teomic experiments to identify altered gene profiles 
associated with the molecular phenotype of ccRCC. 
The authors identified 342 proteins that were differen-
tially expressed between ccRCC and NATs samples, with 
subsequent pathway analysis results further supporting 
ccRCC to be defined as disease with significant metabolic 
dysfunction. A subset of the samples were previously 
characterized at the transcript level, and integration of 
both data types revealed ~ 70% of the transcripts and pro-
teins showed a positive correlation, ~ 94% of the differen-
tially expressed mRNA–protein pairs showed a positive 
correlation, although the authors noted this correlation 
was not linear. In this same report, the authors also iden-
tified several candidate proteins associated with aggres-
sive ccRCC, including CFL1, PFN1, NNMT, and ALDOA 
that were found to be elevated in Stage 4 disease. Interest-
ingly, in this particular dataset, CFL1, PFN1, and ALDOA 
were found to be decreased in early stages relative to 
NATs. In another study, FFPE ccRCC tissues and patient 
matched NATs that were previously characterized at the 
transcript level, were characterized at the protein level, 
wherein the authors found disparate cellular pathways 
over-represented at each biological domain [50]. At the 
protein level, metabolic pathways were robustly shown 
to be altered, whereas transcriptomics indicated immune 
response pathways were more significantly impacted. The 
antigen presentation pathway was observed to be dysreg-
ulated in both datasets, with CD74 showing significant 
differential expression at both the mRNA and protein lev-
els. Specific to the proteomics results was the observed 
down-regulation of SIRT3, which was not detected at the 
transcriptomic level, and highlights the added benefit of 
employing complementary technologies for molecular 
characterization. Recently, our lab led the Clinical Pro-
teomics Tumor Analysis Consortium (CPTAC) effort 
to interrogate ccRCC tumors using a proteogenomic 
approach, comprehensively profiling and integrating 
genomic, epigenomic, transcriptomic, proteomic, and 
phosphoproteomic measurements [20]. In addition to 
delineating novel features of ccRCC at the genomic level, 
including the identification of a subset of tumors display-
ing a high degree of chromosome instability and chromo-
somal translocation involving 3p as a prominent event, 
we also showed there are four major subtypes of ccRCC 
defined by disparate tumor microenvironment composi-
tions and proteomic signatures. These four subtypes—
CD8+ Inflamed, CD8− Inflamed, VEGF Immune Desert, 
and Metabolic Immune Desert—were not only predicted 
to have distinct responses to immune checkpoint and 
anti-VEGF therapies, but also predicted patient survival. 
In an effort to expand therapeutic options available to 

ccRCC patients in the clinical setting, we leveraged our 
phosphoproteomic results to prioritize the identifica-
tion of phospho-substrates of kinases with current FDA-
approved inhibitors, revealing signaling associated with 
MAPK/ERK, PI3K/AKT/mTOR, and G2/M cell cycle 
stalling to be elevated in ccRCC tumors and potential 
druggable targets. Global proteomic results revealed the 
up-regulation of immune response pathways and hypoxic 
signaling, as well as the previously described alterations 
in cellular metabolic pathways. Interestingly, we showed 
that the down-regulation of oxidative phosphoryla-
tion was only detectable at the protein level, and not the 
mRNA level, which not only highlights the added benefit 
of multi-omic profiling to gain unique insight into ccRCC 
biology, but also cautions against using mRNA levels as 
a surrogate for protein expression. The continual obser-
vation of altered metabolic profiles in ccRCC prompted 
Zhang et al. [51] to examine alterations lysine succinyla-
tion between ccRCC and NATs, which has been previ-
ously linked to metabolism regulation and is an abundant 
PTM on mitochondrial proteins [52]. Employing a TMT 
quantitation strategy and antibody-based enrichment of 
succinylated peptides, the authors integrated global and 
succinlyome measurements, finding many of the abun-
dances changes of succinylated peptides were the result 
of global protein changes. Together, these results show 
the utility of multi-omic profiling using complementary 
technologies to deepen our understanding of ccRCC, and 
the unique insight that can be gained when integrating 
measurements at various levels of gene expression and 
regulation.

IHC serves as an orthogonal methodology to vali-
date protein expression patterns and enables research-
ers to determine the spatial distribution of a protein 
across different areas of the tumor and surrounding 
tumor microenvironment. Although IHC multiplexing 
technologies are emerging [53], the number of proteins 
that can be simultaneously profiled is still relatively low. 
MALDI Mass Spectrometry Imaging (MALDI-MSI) is 
an established technique that greatly expands the types 
of biomolecules that can be directly measured, including 
proteins, peptides, lipids, glycans, and small molecules, 
and links these molecular profiles to specific anatomical 
locations [54, 55]. Oppenheimer et  al. [56] used MSI to 
assess the tumor margin of ccRCC resected tissues from 
75 patients and determined the distribution of protein 
abundance across four distinct regions: tumor, tumor-
margin, NAT margin, and NAT. Their results robustly 
showed the up-regulation of S100A10, S100A11, MIF, 
and TMSB10 in tumors, while mitochondrial proteins 
such as COX6C, COX5B, COX7C, UQCRG, and CYCS 
were down-regulated, mirroring previous studies exam-
ining lysed bulk tissue samples. Interestingly, the authors 
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found many of the down-regulated proteins were also 
dysregulated in the tumor margins of the resected tissue, 
suggesting that molecular alterations precede changes 
in cell morphology, a feature that has been well estab-
lished in other tumor types [57–60]. Utilizing MALDI-
MSI, another study examined the spatial distribution of 
protein and lipid profiles across ccRCC tumor and NAT 
samples to delineate differential abundance of these bio-
molecules [61]. Proteins significantly up-regulated in 
tumors included TMSB10, TMSB4X, HBB, HBD, HBG1, 
and FABP7, while COX5B, COX5A, FABP1 were down-
regulated. This particular cohort of patient samples 
included information related to disease recurrence, facili-
tating the identification of protein profiles that could dis-
tinguish non-recurrent and recurrent ccRCC. Only two 
proteins—DEFA1 (elevated in tumors) and LYZ (signifi-
cantly decreased in tumors)—could robustly differentiate 
disease recurrence, whereas the authors found lipid pro-
files were more discriminatory for disease recurrence in 
addition to discriminating tumor versus NAT. To deter-
mine if MALDI-MSI could delineate protein expression 
patterns associated with tumor grade, Stella et  al. [62] 
examined 14 samples from 13 patients with various intra-
tumor histological grades. The resulting spectra showed 
a clear separation of tumor and NAT regions via PCA, 
in addition to distinguishing normal cortex tissue from 
normal medulla tissue. Only G1 tumors could be robustly 
separated from G4 tumors. Further investigation of the 
features that could discriminate G1 and G4 tumors found 
the identified peaks were derived from VIM, which was 
elevated in G4 tumors and histone subunits H2A and H4, 
which were elevated in G1 tumors. These studies show 
the complementary results of MSI approaches to current 
proteomic characterization techniques, with the added 
benefit of gaining information related to the spatial dis-
tribution and localization of molecules of interest across 
resected tissues samples.

Multiple RCC histology tissue profiling
With substantial evidence of the disparate genomic back-
grounds of the various histological subtypes of RCC [11], 
identifying discriminatory protein features would be rel-
evant in confirming pathological annotation, as well as 
understanding the contrasting prognosis associated with 
each RCC subtype. Towards this goal, an early report 
from Lichtenfels et al. [63] first profiled ccRCC and paired 
NAT samples to identify differentially expressed pro-
teins using a 2-DE approach. A total of 248 proteins were 
found to be differentially expressed, with three proteins—
CALB1, GSN, and FABP3—selected for examination in a 
TMA panel comprised of ccRCC (n = 40), pRCC (n = 31), 
chRCC (n = 16), and renal oncocytic lesions (n = 9) with 
corresponding NATs. CALB1 staining was weak in many 

of the RCC tissue samples, but robustly detected in 
oncocytic and NAT regions indicating negative CALB1 
expression was a robust marker of malignant renal dis-
ease. GSN expression in NAT was primarily detected in 
distal tubule and collecting duct cells, while proximal 
tubule and glomeruli cells were negative. In RCC tissues, 
almost a third of ccRCC and pRCC tissues were nega-
tive for GSN, while > 50% of chRCC and oncocytic tis-
sues were positive for GSN. This pattern of nephron cell 
type specificity for GSN expression seemed to reflect the 
cells of origin from which chRCC and oncocytomas arise, 
specifically distal tubule and collecting duct cells [13]. 
FABP3 showed the most promise for discriminating the 
various RCC histological subtypes, with FABP3 expres-
sion highest in chRCC and oncocytic RCC lesions, nega-
tive in pRCC tissues, and heterogeneous in ccRCC, with 
approximately 40% of samples showing positive staining. 
Valera et al. [64] used a very similar experimental design, 
wherein they utilized 2-DE based approach to identify 
the differential protein patterns associated with ccRCC, 
pRCC, chRCC, and renal oncocytomas relative to cor-
responding NATs. The authors highlighted proteins that 
showed significant differential expression between NATs 
and ccRCC (HSPB1, TPI1, HBB, APOA1, and PRDX2), 
chRCC (SOD1, RAD23B, and SERPINA1), and oncocytic 
lesions (ENOA1), whereas no differentially expressed 
proteins were identified between pRCC and patient 
matched NATs. HSPB1 and TPI1 were selected for IHC 
validation in ccRCC tissues, with the staining pattern 
concordant with the proteomic analysis results; however, 
the authors missed the opportunity to further assess the 
expression of these proteins in other RCC lesions. Con-
sidering several of the proteins (ENOA1 and SOD1) have 
been associated with ccRCC in previous reports [35, 47], 
the utility of several of the candidate markers may be 
negligible for discriminating various RCC histologies. 
Using an antibody panel composed of MKI67, CRP, CA9, 
HIF1A and HIF2A, Abel et  al. [65] sought to assess the 
expression patterns of these proteins in a TMA compris-
ing ccRCC (n = 42), pRCC (n = 11), and chRCC (n = 1) 
tumors and NATs, and link these results to clinicopatho-
logical outcomes. Although CA9, HIF1A and HIF2A were 
elevated in tumors, the observed differential expression 
was not determined to be significant. CRP was shown to 
be reduced in tumors, whereas MKI67 was elevated and 
found to associate with disease recurrence. Similar to the 
previous report, there was no assessment of differential 
abundance of this antibody panel across the three RCC 
histologies; albeit with only one case of chRCC, interpre-
tation of any potential results would be minimal. Onco-
cytomas and chRCC are both thought to arise from the 
distal tubule epithelium [66], and Drendel et al. [67] pro-
filed oncocytoma and chRCC FFPE samples to identify 
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markers that would discriminate between benign and 
malignant RCC lesions. PCA showed the resulting pro-
tein profiles were clearly separated, with 51 proteins and 
59 proteins enriched in oncocytoma and chRCC tissues, 
respectively. Two proteins—LAMP1 and ITGAV—were 
selected for verification in an independent cohort of 
oncocytomas and chRCC, with ITGAV1 expression to 
exhibit strong staining in oncocytomas, whereas LAMP1 
staining was robustly detected in chRCC.

Two studies explored the phosphorylation patterns 
in RCC using antibodies targeting phosphorylated sub-
strates in RCC cell lines, and primary and metastatic 
tissues [68, 69]. Lin et al. [68] constructed a TMA com-
prised of 70 ccRCC, 40 pRCC, and 18 chRCC primary 
tumors, 22 metastatic RCCs, and 24 NAT and probed 
phospho-substrates associated with mTOR signaling 
(AKT-S473, mTOR-S2448, and p70S6-T389). Almost all 
of the malignant samples showed strong positive stain-
ing for these various phospho-substrates relative to NATs 
indicative of constitutive mTOR signaling and provid-
ing robust evidence for the rationale of selecting mTOR 
inhibitors for treatment of RCC. Of note, the authors did 
acknowledge the mixed efficacy of targeting mTOR in the 
clinical setting and need to identify other cellular path-
ways that may contribute to mTOR inhibition resistance. 
Haake et  al. [69] leveraged a pan-tyrosine enrichment 
approach to identify activate signaling cascades in ccRCC 
and pRCC tumors and RCC cell lines. Their results 
showed PTK2 phosphorylation to be ubiquitous across 
all RCC samples analyzed, with a tyrosine kinase inhibi-
tor screen consisting of 63 compounds showing those 
targeting PTK2 to have the most robust response in vitro. 
Interestingly, when evaluating differential expression of 
phospho-substrates in ccRCC and pRCC tumors, EGFR-
Y1197, ERK2-Y187, ERK1-Y204, and TENC1-Y483 were 
elevated in ccRCC, while DDR1-Y792/6 and PP4B-Y849 
were elevated in pRCC. These latter results suggest dis-
parate signaling pathways activated in ccRCC and pRCC, 
respectively, and provide rationale for exploring targeting 
these signaling cascades as a therapeutic intervention in 
these RCC subtypes.

Biological fluid profiling
Tissue biopsy sampling is a routine procedure that ena-
bles clinicians to obtain a small portion of the malignant 
tissue to investigate the histopathological and molecu-
lar features for diagnostic and prognostic information. 
However, tissue biopsies are considered an invasive pro-
cedure and due to the limited sampling area, may not 
be fully representative of the tumor, which are known 
to be heterogeneous [70]. Utilizing biological fluids as a 
liquid biopsy would offer a minimally invasive strategy 
for repeat sampling to monitor disease progression and 

possibly be more representative of the molecular fea-
tures associated with tumorigenesis [71]. With the ulti-
mate goal of identifying candidates for disease diagnosis 
and early detection in RCC (Table 1), many studies have 
applied proteomic approaches to characterize serum/
plasma and urine protein profiles.

Serum/plasma profiling
Of the multiple biological fluids found in the human 
body, blood is often considered to be the ideal source for 
protein candidates. The relatively non-invasive, simple 
procedure involved in specimen collection would cir-
cumvent the challenges and expertise involved in tissue 
biopsy acquisition, and the network of arteries, veins, 
and capillaries that come in contact with organs offers 
a means for proteins that are secreted, shed, or oth-
erwise released by tumor tissues to be circulated [72]. 
Several inherent challenges in characterizing protein 
profiles in serum or plasma, include the dynamic range 
of protein concentration, which spans up to 12 orders of 
magnitude, as well as the presence of a small number of 
highly abundant proteins that mask more low abundant 
proteins [73, 74]. To address this, a variety of strategies 
have been performed to investigate and identify differ-
entially abundant proteins related to RCC in plasma or 
serum samples, including immunodepletion to remove 
highly abundant plasma proteins (i.e. albumin, transfer-
rin, haptoglobin) and protein pre-fractionation [75]. One 
study used 2-Dimensional Image Converted Analysis of 
Liquid chromatography mass spectrometry (2DICAL) 
to profile plasma samples from twenty RCC patients and 
20 healthy controls [76]. The 2DICAL strategy is equivo-
cal to shotgun proteomic approaches, and the resulting 
profiles showed that FN1 was elevated in RCC patient 
plasma relative to controls. Considering many proteins 
that are secreted or localized to the plasma membrane 
are N-linked glycosylated, thus having a higher chance of 
being shed into the extracellular space, multiple studies 
have included N-linked glycoprotein enrichment strate-
gies for biomarker detection [77]. Gbormittah et al. [78] 
characterized global proteome, N-linked glycoproteome, 
and N-glycome plasma profiles of RCC patients before 
and after nephrectomy using a combined approach of 
immunodepletion and lectin enrichment. The author’s 
global proteomic results revealed several proteins (i.e. 
HSPG2, CD146, VCAM1) associated with metabolic 
processes, immune response, and various signal trans-
duction pathways were all reduced following surgical 
intervention. Glycoproteomics identified another sub-
set of proteins that were reduced after nephrectomy, 
such as APOB, LGALS3BP, and FN1, while glycomics 
indicated sialylation and high mannose glycan struc-
tures were associated with pre-treatment RCC plasma 
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profiles. In another study, the authors focused on delin-
eating alterations in the serum proteome associated with 
early stage ccRCC using a paired immunodepletion and 
iTRAQ approach [79]. Pooling serum samples from ten 
ccRCC patients and ten healthy controls, they identified 
30 differentially abundant proteins, with HSC71 (HSPA8) 
showing greatest abundance difference. The authors then 
validated HSC71 expression using ELISA, profiling the 
serum of ccRCC patients, healthy controls, and patients 
with other urological diseases such as angiomyolipoma 
of the kidney, benign prostatic hyperplasia, urinary tract 
infection, and urolithiasis, showing HSC71 was elevated 
in ccRCC patient serums relative to healthy controls and 
non-ccRCC patients. An independent study examined 
the serum of a larger cohort of patients that included 
twenty-nine early stage ccRCC patients, 20 patients with 
transitional cell carcinoma, 24 patients with benign kid-
ney neoplasia, 18 healthy controls, and eight patients 
with prostate cancer [80]. A total of 74 proteins were 
found to have differential abundance between ccRCC 
and healthy controls serum samples, and 27 proteins 
that were differentially abundant between ccRCC and 
the other three groups. Leveraging the results from the 
TCGA characterization of ccRCC, the authors sought to 
link their serum profiles to tissue gene expression pro-
files, identifying 11 proteins, including C1QB, C1QC, 
ANXA1, LYZ, S100A9, and SERPINA4, that were differ-
entially abundant in both datasets and were associated 
with RCC tumor stage and grade. An important caveat 
of many of these studies is that few have directly linked 
the resulting plasma/serum profiles to RCC tissue signa-
tures. An exception was an early report that described a 
combined tumor-plasma proteome analysis on a single 
patient, examining tumor tissue, NAT, and pre-operative 
plasma sample [81]. To identify candidates of interest, 
the authors prioritized proteins that met four criteria: 
(1) identified in tumor tissue, (2) not identified in NAT, 
(3) identified in plasma, and (4) higher abundance in 
tumor relative to plasma. This approach and filtering cri-
teria identified eight proteins of interest—CDH11, PKM 
(KPYM), VCAM1, CDH5, DDX23, WWC1, CHD4, and 
NCOA6—with subsequent validation of the presence 
of CDH5, CDH11, DDX23, and PKM via immunoblot-
ting in the plasma of the same patient and four others. 
Although samples analyzed were from only one patient in 
the initial proteomic characterization, the overall experi-
mental design is ideal for the identification of potential 
candidate protein biomarkers. This approach would not 
only determine the differential expression of proteins 
between tumor and NAT, but also identify tumor-related 
proteins that are detectable in the circulation.

Several reports have focused on examining “biologi-
cal trash” in circulating profiles, specifically focusing 

on examining low molecular weight endogenous pep-
tide fragments. Peptidome profiling is thought to offer 
a higher degree of sensitivity and specificity relative to 
other approaches, relying on the aberrant biological 
activity of disease-related proteases, enzymatic reactions, 
and degradation products [82]. Using C18-functionalized 
beads to enrich peptide fragments paired with MADLI-
TOF data acquisition, Gianazza et  al. [83] profiled the 
serum of eight-five ccRCC patients, 92 controls, and 29 
patients with histologically defined non-ccRCC. Cluster-
ing patients into three groups: malignant tumors, benign 
renal masses, and healthy controls, resulted in the iden-
tification of 5 peptides that were discriminatory for the 
three groups. Incorporating the results of subsequent 
ESI-LC–MS–MS analysis allowed for the identification of 
the endogenous peptides, revealing peptides from SDPR 
and ZYX to be decreased and peptides from SRGN and 
TMSL3 to be increased in the serum of ccRCC patients. 
Huang et al. [84] also performed peptidome profiling of 
serum samples derived from RCC patients and healthy 
controls, identifying 19 peptides that were differentially 
abundant between the two groups. Of these, four pep-
tides showed high specificity for discriminating RCC and 
controls, with three trending downward in abundance, 
and one trending upward. Highlighting one drawback 
of peptidome profiling, only two of these four peptides 
could be identified, derived from the proteins CUBN 
(decreased) and APOA1 (increased), respectively. In an 
attempt to identify peptidome profiles associated with 
RCC, Kodera et  al. [85] examined plasma samples from 
RCC patients before and after nephrectomy. Although 
the authors were able to find a peptide reduced in abun-
dance following surgical intervention and show it was 
specific to RCC relative to bladder cancer, the authors 
were unable to annotate the protein it was derived from. 
In a larger cohort that examined serum samples from 64 
healthy controls and 78 ccRCC patient, including 20 that 
had pre- and post-nephrectomy serum samples, Yang 
et  al. [86] identified 24 peptides that were differentially 
abundant across all groups. Three peptides were found to 
up-regulated in ccRCC that then returned to levels simi-
lar to healthy controls following nephrectomy, derived 
from the proteins RBP6, TUBB, and ZFP3. Together, 
these studies suggest peptidome profiling has the poten-
tial to elucidate candidates of interest; however, the mini-
mal overlap between independent studies and lack of 
validation in independent cohorts suggest this methodol-
ogy warrants further development.

Urine profiling
The kidneys function to balance electrolyte levels, regu-
late blood pressure, as well as filter circulating blood to 
remove waste, resulting in urine profiles mirroring the 
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physiological status of an individual. Relative to plasma, 
urine has a narrower dynamic range of protein concen-
tration, and the reduced abundance of proteins, such as 
albumin, transferrin, and haptoglobin, enables the detec-
tion of lower abundant proteins [87, 88]. With respect to 
malignancies associated with the kidney, prostate, and 
bladder, urine is a proximal biological fluid that may offer 
a richer source of proteins of interest relative to blood. 
Albeit, the composition of urine, which includes proteins, 
urea, inorganic salts, and other biomolecules, presents 
a unique challenge for sample processing prior to prot-
eomic characterization; however, a myriad of techniques 
have been developed to isolate or enrich proteins from 
urine, including analytical ultracentrifugation, precipita-
tion, ultrafiltration, and tip-based approaches [89–91]. 
Sandim et al. [92] examined the urine of ccRCC patients, 
grouped by prognosis (good versus poor) and healthy 
controls. Pooling the urine samples of each group and 
then performing ultrafiltration as a proteomic-compati-
ble preparatory step, the authors applied a multi-faceted 
approach that included 1-DE, 2-DE, and LFQ to identify 
differentially abundance proteins across the three sample 
classifications. Qualitative assessment via 1-DE revealed 
the proteins CO3, FIBG, MGAT4A, and APO1A to only 
be detected in ccRCC samples, while CDH13, AMYA, 
and APOD were only identified in the urine of healthy 
controls. Quantitative assessment via LFQ or 2-DE pro-
filing revealed the increasing expression of APOA, FN, 
HP, and MGAT4A in controls, good prognosis ccRCC 
samples, and poor prognosis samples, with a concordant 
decrease in abundance of the proteins KNG1, UMOD, 
APOD, UBC, CD59, and HSPG2. Chinello et  al. [93] 
stratified ccRCC patients based on the degree venous 
infiltration of RCC tumors, as assessed by Computed 
Assisted Tomography, generating three distinct group-
ings: vascular infiltration, renal vein infiltration, and renal 
vein thrombosis. Three proteins—UMOD, RALA, and 
CNDP1—displayed decreased expression proportional to 
RCC infiltration, while 26 proteins (i.e. HP, LUM, CRNN, 
ANXA2) were increased in abundance in the pooled 
patient samples. The authors also examined plasma pro-
tein profiles from these same patients, and unlike the 
urine proteome alterations, no proteins showed concord-
ance with the degree of increasing vein infiltration, while 
two were inversely correlated—APOA1 and K2C1. When 
interpreting this latter result, the authors acknowledged a 
high degree of overlap between the datasets derived from 
different biological fluids in terms of differentially abun-
dant proteins, but the loss of discriminatory proteins 
for disease severity in plasma samples may be related to 
the loss of kidney function or architecture during renal 
oncogenesis. Santorelli et al. [94] also sought to identify 
urinary proteins that could differentiate disease severity, 

focusing on alterations in the N-linked glycoproteome 
profiles. Employing the N-glyco-FASP technique [95], 
which uses lectin enrichment of glycopeptides prior 
to mass spectrometry analysis, the authors examined 
ccRCC patients with early stage disease (pT1) and late 
stage disease (pT3), as well as healthy controls. Generat-
ing three patient urine pools and precipitating the pro-
tein component, the resulting profiles showed a trend of 
protein expression associated with ccRCC stage. Three 
proteins—CD97, COCH, and P3IP (PIK3IP1)—showed 
elevated abundance in the urine of low-stage patients 
relative to healthy controls, and then increasing abun-
dance in urine from low stage to high stage. Proteins 
found to be decreased in abundance in low stage ccRCC 
relative to healthy controls included APOB, FINC, CERU, 
CFAH, HPT, and PLPT; however, these proteins levels 
were slightly elevated in the urine of pT3 ccRCC patients, 
albeit still lower than levels in healthy controls. In the lat-
ter study, the authors highlighted the benefit of glycopro-
tein enrichment, which facilitated the detection of several 
proteins that might have otherwise not been identified 
and quantified. Other studies have sought to differentiate 
the urine protein profiles of ccRCC patients from those 
of other renal disorders, including patients with oncocy-
tomas or hereditary VHL mutations. Mandili et  al. [96] 
used a 2-DE approach to identify proteins that could dis-
criminate patients with sporadic ccRCC from those with 
VHL disease (VHLD) and healthy controls, respectively. 
The authors performed several paired analyses to eluci-
date the differentially expressed proteins between healthy 
controls, patients with sporadic ccRCC, and VHLD 
patients, including subsets of those VHLD patients with 
and without a history of ccRCC. While the authors iden-
tified proteins that differentiated sporadic ccRCC and 
VHLD patients from healthy controls, as well as sporadic 
ccRCC patients from VHLD patients with distinct ccRCC 
diagnoses backgrounds, the authors chose to validate two 
proteins—A1AT and APOH—which were found to be 
elevated in the urine of VHLD-ccRCC-positive patients 
relative to the other three groups. Considering both 
ccRCC and VHLD share a similar genotype profile (loss 
of VHL), delineating differences in urine proteome pro-
files would be challenging. However, the unique expres-
sion pattern of the proteins highlighted by the authors 
(A1AT and APOH) might suggest a disparate progres-
sion of diseases between VHLD patients with ccRCC 
and those with sporadic ccRCC. Another report focused 
on identifying proteins that would differentiate healthy 
controls, patients with ccRCC, and patients with onco-
cytomas [97]. In a discovery phase, the authors pooled 
urine samples from healthy controls, oncocytomas, and 
ccRCC patients with progressive disease and non-pro-
gressive/early stage disease (pT1a, tumor size ≤ 4  cm). 
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A total of 131 proteins showed differential abundance 
between healthy controls and ccRCC patients with 
early stage disease, while 71 proteins were differentially 
abundant between ccRCC patients with early stage dis-
ease and oncocytomas. The authors sought to verify the 
abundance profiles of several proteins in an independent 
cohort using parallel reaction monitoring (PRM), finding 
concordance of increased abundance of GLRX, CST3, 
SLC9A3R1, HSPE1, FKBP1A, and EEF1G in early stage 
patients relative to healthy controls, and increased abun-
dance of C12orf49 and EHD4 in early stage disease urine 
samples relative to oncocytomas. When comparing early 
stage urine samples to those from patients with higher 
staged disease (progressive ccRCC group), five proteins 
were elevated EPS8L2, CHMP2A, PDCDPI6, CNDP2, 
and CEACAM1, with authors finding the combined uri-
nary abundance of EPS8L2 and another protein, CCT6A, 
to have prognostic value in ccRCC.

In addition to investigation of urinary proteome in 
ccRCC, peptidome profiling has also been examined. 
With evidence of disparate endogenous peptide profiles 
between plasma and urine [98], potentially resulting from 
the physiological activity of the kidney, exploration of 
the peptidome in urine is warranted. Frantzi et  al. [99] 
using capillary electrophoresis coupled with mass spec-
trometry analysis (CE-MS) profiled forty RCC cases and 
68 non-diseased controls; the latter group included nor-
mal controls, non-RCC reference patients, and patients 
with pre-disposing factors towards RCC. In this training 
phase, the authors revealed 86 peptides (40 which were 
subsequently identified) with differential abundance 
between the two groups. In a validation cohort that 
comprised of RCC cases (n = 30), non-diseased controls 
(n = 46), and additional patient groups consisting of dia-
betic nephropathy (n = 195), focal segmental glomerulo-
sclerosis (n = 54), membrane glomerulonephritis (n = 65), 
systemic lupus erythematosus (n = 46), IgA nephropathy 
(n = 126), vasculitis (n = 121), cardiovascular disease 
(n = 33), and bladder cancer (n = 219), the authors found 
their 86 peptide classifier was discriminatory for RCC 
against all groups except for vasculitis (64% specificity) 
and bladder cancer (76% specificity). Interestingly, when 
exploring the identified peptides, the authors found the 
resulting profiles to be reflective of the physiological 
dysfunction of the RCC microenvironment, including 
reduced abundance of > 1.4 kDa collagen fragments due 
to extracellular matrix remodeling in renal carcinogen-
esis and increased abundance of peptides from plasma 
proteins due to renal function dysregulation. Chinello 
et  al. [100] also examined urinary peptidome profiles 
derived from healthy controls, ccRCC patients, histo-
logically defined non-ccRCC patients, and renal benign 
masses. In the discovery phase, the authors found 12 

urinary peptides that could discriminate patients with 
malignant disease from those with benign disease. In an 
independent cohort, the 12 peptide panel displayed 87% 
specific and 76% sensitivity for discriminating malignant 
and benign/control patients, with identification showing 
peptide fragments from the proteins SCTM1, UROM, 
MEP1A, KPB1, OSTP, and FIBA to be increased in abun-
dance in malignant urine samples. In a follow-up study, 
the same group sought to link peptidome profiles to clin-
icopathological features such as grade, stage, and tumor 
size [101]. Examining urine samples from ccRCC patients 
and healthy controls, the authors identified 15 peptides 
that associated with tumor size and 9 that were differen-
tially abundant relative to controls. A total of 26 peptides 
associated with tumor stage, including 15 that discrimi-
nated ccRCC and controls, and 5 peptides that associated 
with tumor grade, 4 of which were differentially abun-
dant. Subsequent identification of the peptides found 
that a peptide fragment from C1RL was elevated in the 
urine of ccRCC patients, but showed decreasing expres-
sion in the urine of patients with higher grade disease, 
while GAPDHS, which was also reduced in ccRCC urine 
samples, showed increasing abundance in higher grade 
disease. Several stage associated peptides included frag-
ments from FIBA and NOTCH2, with the latter showing 
no differential abundance between ccRCC and control 
urine samples. Overall, urine is a rich source of candi-
dates of interest for RCC, however, the lack of any FDA-
approved urinary markers for RCC suggests more work 
is to be done to prioritize candidates that may offer diag-
nostic and discriminatory benefit in the clinical setting.

Profiling other biological fluids and sources
In addition to blood and urine profiling, several other bio-
logical sources have been characterized using proteom-
ics. Interstitial fluid not only serves as transport medium 
for secreted proteins, nutrients and waste materials 
between cells and capillaries, but tumor interstitial fluid 
(TIF) could serve as a rich source of candidate markers 
due to the proximity of this biological fluid to the tumor 
[102]. Teng et  al. [103] profiled the TIF obtained from 
ten patients with ccRCC and matched NATs. With previ-
ous reports have indicated that TIF contains a significant 
portion of highly abundant plasma proteins, the authors 
employed immunodepletion prior to analysis, result-
ing in the identification of 539 proteins, including 138 
with differential abundance between ccRCC and NAT 
TIF samples. GO annotation revealed many of the pro-
teins increased in abundance in ccRCC TIF localized to 
the plasma membrane, and included proteins previously 
identified in more distal biological fluids such as urine 
or plasma/serum. This supports the hypothesis that the 
TIF proteome is primarily comprised of shed or secreted 
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proteins that are eventually found in the circulation. 
Eight proteins (NNMT, ENO2, TSP1, CD14, LGALB1, 
TBG (SERPINA7), ANXA4, and FTH1) were selected 
for validation, with increased abundance verified via 
immunoblotting, selective reaction monitoring (SRM), or 
ELISA in TIF samples or patient-derived serum samples. 
SRM showed robust concordance of increased expres-
sion of all selected protein in TIF samples, and increased 
abundance of CD14, TBG, and TSP1 (THBS1) in ccRCC 
serum samples relative to a healthy control serum sam-
ples, while ELISA showed elevated abundance of ENO2 
and TSP1 in ccRCC patient-derived serum. Using fluid 
from a renal cyst, Minamida et al. [104] leveraged a 2-DE 
approach to identify differentially abundant proteins 
profiled in cyst fluid derived ccRCC tumors compared 
to cyst fluid derived from NAT. The authors identified 
over 200 proteins across the samples, and selected only 
one protein, YWHAB, for verification via immunoblot-
ting due to its previous lack of association with RCC. 
Increased abundance of YWHAB was robustly observed 
in ccRCC cyst fluid and the urine from RCC patients, 
whereas exploration of tumor tissue and serum showed 
equal abundance. Validation in an independent cohort 
of urine from RCC patients (n = 89) and healthy controls 
(n = 76) via ELISA, showed elevated expression in RCC 
urine samples and a corresponding decrease in the urine 
of RCC patients following nephrectomy. The authors did 
mention several caveats regarding the utility of the candi-
date protein, including the lack of detection of YWHAB 
in the urine of all RCC patients, detection of YWHAB in 
the urine of patients with other cancer types, and limita-
tion of the marker as an indicator of malignancy, but not 
a marker to assess response to treatment.

Extracellular vesicles (EVs) are secreted microvesicles 
that have been shown to have a role in proximal and distal 
intercellular communication. EVs are comprised of sev-
eral classes, including exosomes (30–100 nm) and ecto-
somes (100–1000 nm), with reports describing disparate 
mechanisms of cellular release into the extracellular space 
[105]. Several studies have shown that EVs are function-
ally active and can modulate recipient cell phenotypes 
via the transfer of proteins and nucleic acids (mRNA, 
miRNA, and DNA) [106–110]. Seeking to identify poten-
tial EV-based protein candidates for RCC, Raimondo 
et al. [111] performed a comparative proteomic analysis 
of exosomes derived from the urine of RCC patients and 
healthy controls. After verifying the presence of several 
EV-positive markers and morphological characteristics 
using electron microscopy, the resulting protein profiles 
were assessed using a qualitative approach, determining 
the disparate detection of select proteins in either RCC 
patient derived exosomes, or healthy control derived 
exosomes. Ten proteins were selected for validation, with 

proteins CD10, EMMPRIN, DPEP1, SDCB1, and AQP1 
decreased in abundance in RCC-derived exosomes, and 
CP, MMP9, PODXL, CAIX, and DKK4 increased in 
abundance. Another report described the development 
of ex vivo models of ccRCC and NATs, and subsequent 
enrichment of EVs secreted from both tissue types [112]. 
In this manner, the authors could circumvent the chal-
lenge of delineating tumor-derived EVs from the total 
populations of EVs in a biological fluid, as well as exam-
ine a more clinically relevant model. Proteomics identi-
fied proteins that were only detected in one pathological 
EV condition, as well as 397 proteins that were differen-
tially abundant. The protein, AZU1, showed the highest 
fold-change between RCC-derived EVs and NAT-derived 
EVs, and displayed increasing abundance in advanced 
ccRCC. Validation in the EVs derived from the sera of 
patients showed elevated levels in ccRCC relative to sera 
from healthy controls. Together, these studies are repre-
sentative of the novel insight that can be gained by exam-
ining other sources that are not routinely collected in the 
clinical setting.

Future directions
As we look to the future, there are still several aspects of 
RCC-related biology that have yet to be explored at the 
protein-level, as well as several unmet clinical needs. The 
continual utilization of established proteomics technolo-
gies, and the application of those currently in develop-
ment will be the first step in addressing some of these 
areas that were not discussed previously in this review. 
Despite the multitude of studies examining the protein 
profiles of ccRCC (Table  2), studies focusing on rarer 
histological subtypes are less frequent, and large-scale, 
deep proteomic characterization of hundreds of RCC 
cases that include all the various histologies have yet to 
be carried out. Although it may be of interest to identify 
the disparate protein profiles associated with different 
histological subtypes of RCC for diagnostic information, 
identifying shared cellular pathways could potentially 
open the door for therapeutic approaches that can be uti-
lized for patients with different RCC etiologies. Addition-
ally, as more and more large-scale studies are performed 
for distinct cancer types, developing methodologies and 
bioinformatics approaches that allow for cross-platform 
comparisons would begin to link the common molecular 
features of histologically and anatomically distinct can-
cers. From these results, we can begin to use rationalized, 
precision-based therapies currently approved for one 
cancer type as viable therapeutic options in other cancer 
types. Several reports have already attempted this under-
taking using publicly available datasets, including explo-
ration of TCGA somatic, transcriptomics, and RPPA data 
[113], CPTAC gene expression data [114], and peptidome 
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profiles [115], however, the results of these pan-cancer 
efforts are still preliminary. One approach that may find 
more utility as larger and larger sample sets are being 
investigated is data-independent data acquisition (DIA), 
which achieves similar, if not more, depth of proteomic 
characterization, with the added benefits of robust 
sample-to-sample quantitation and reduced instru-
ment time needed for analysis [116]. Previous reports 
have used DIA to characterize tissues, serum, and urine 
from RCC patients [117–120], revealing similar profiles 
of dysregulated protein and cellular pathways expression 
compared to more traditional proteomic data acquisition 
approaches (i.e. data-independent data acquisition).

Another area in RCC biology that has yet to be fully 
examined at the protein level is an assessment of intra-
tumor heterogeneity (ITH). It is well-established that 
individual tumors are heterogeneous, and previous 
reports characterizing ccRCC biopsies obtained from 
the same tumor have revealed genomic alterations 
thought to be mutually exclusive occurring in sub-
clones in distinct anatomical regions of the tumor [121, 
122]. To date, there have been no large scale proteomic 
assessments of ITH in RCC, thus information related to 
how individual subclones within the same tumor may 
influence protein expression is currently unknown. 
Determination of the heterogeneity of genetic, and 
subsequent proteomic profiles would aid in our under-
standing as to why patients develop disease recurrence 
or resistance to therapeutic intervention, as well as the 
selective intratumor/microenvironment influences that 

result in altered protein expression. Moreover, delinea-
tion of the degree of protein-level heterogeneity would 
confirm the validity of using tissue-based biopsies 
in the context of patient stratification for prognostic 
information and selection of targeted therapies. IHC is 
routinely utilized to visualize the abundance and spatial 
distribution of proteins, however, this technique does 
not allow for a full characterization of the proteome in 
a single analysis. As noted previously, tissue biopsies 
are routinely used for histopathological examination, 
and these sample sources may also prove useful for pro-
teomic characterization. A more precise technique of 
tissue sampling is laser capture microdissection (LCM), 
which enables the isolation and separation of distinct 
cell types (e.g. epithelial, fibroblasts, immune cells) 
to reduce the degree of heterogeneity associated with 
resected tumors [123, 124]. Several “proof of concept” 
reports have shown the feasibility of pairing LCM and 
proteomic profiling to gain insight into the biological 
variations of distinct cell populations, albeit requir-
ing the pooling of multiple samples to obtain sufficient 
material for analysis [125, 126]. Potentially illustrated 
in these studies is the major hurdle in ITH-based pro-
teome characterization, specifically the limited amount 
of material available from individual tumors available 
for proteomic analysis. As genomic- and transcrip-
tomic-based single cell analyses become more wide-
spread [127], complementary mass spectrometry-based 
proteomic approaches that enable a relatively deep 
proteomic characterization of tissues using minimal 

Table 2  Examples of  proteomic approaches for  characterizing RCC tissue, blood-associated (plasma/serum), or  urine 
specimens

Biological source # of samples Experimental approach # of differentially 
expressed targets

Citing report

Tissue 50 Used LFQ approach to identify proteins associated with tumor grade, profiling 
NAT and ccRCC tissues with Furman grades between 1 and 4

105 [42]

Tissue 75 Employed MALDI-MSI to identify differential expressed proteins associated 
with the tumor, tumor margin, and NAT regions

12 [56]

Tissue 194 Utilized proteogenomic approach; TMT-based quantitation for delineating dif-
ferential global protein and phosphopeptide/phosphosite profiles between 
tumors and NATs

820 [20]

Serum 162 Profiled the serum peptidome in healthy controls, ccRCC patients, and ccRCC 
patients before and after surgical resection

18 [86]

Serum 99 Examined urine proteome profiles to discriminate ccRCC from healthy con-
trols, benign kidney masses, and non-ccRCC urological tumors

27 [80]

Urine 254 Examined serum peptidome profiles to discriminate ccRCC from healthy 
controls, prioritizing discriminatory clinicopathological-associated features 
(stage, grade, tumor size)

15 [101]

Urine 90 Used LFQ to characterize the urinary proteome of ccRCC patients and healthy 
controls; stratifying ccRCC patients into good or poor prognosis groups 
based on Furhman grading

49 [92]

Tissue/EVs 40 Used an ex vivo model to profile extracellular vesicles (EVs) derived from 
ccRCC tumors and NATs

397 [112]
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sample input or single cells will be further developed 
[128–131], and will be applicable to explore this area of 
RCC biology.

Conclusions
Proteomic technologies offer a comprehensive method 
for characterizing the functional biomolecules that reg-
ulate cellular processes, and determination of the aber-
rant protein expression patterns that are impacted by 
the disease state. The multitude of studies highlighted in 
this review are representative of the myriad of proteomic 
approaches that have been developed and leveraged to 
gain insight and a deeper understanding of RCC, and 
reflect the advancement in the field in terms of sample 
preparation strategies, instrumentation, and integration 
with other data types. Although there are several unmet 
clinical related to RCC, including discriminating various 
subtypes at the protein-level and an assessment of RCC 
intratumor protein expression, proteomics will continue 
to offer a complementary, yet robust technology for dis-
ease characterization.
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