
Veyssière et al. Clinical Proteomics           (2022) 19:25  
https://doi.org/10.1186/s12014-022-09362-0

REVIEW

Circulating proteins as predictive 
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Abstract 

Breast cancer (BC) is the most common cancer and among the leading causes of cancer death in women. It is a 
heterogeneous group of tumours with numerous morphological and molecular subtypes, making predictions of 
disease evolution and patient outcomes difficult. Therefore, biomarkers are needed to help clinicians choose the best 
treatment for each patient. For the last years, studies have increasingly focused on biomarkers obtainable by liquid 
biopsy. Circulating proteins (from serum or plasma) can be used for inexpensive and minimally invasive determination 
of disease risk, early diagnosis, treatment adjusting, prognostication and disease progression monitoring. We provide 
here a review of the main published studies on serum proteins in breast cancer and elaborate on the potential of 
circulating proteins to be predictive and/or prognostic biomarkers in breast cancer.
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Background
Breast cancer (BC) is the most common cancer and 
among the main causes of cancer death in women [1]. 
It is a heterogeneous disease, consisting of a number of 
morphological and molecular subtypes. Molecular anal-
yses allow dividing BC into three groups: luminal BC 
(expressing estrogen receptor /ER + / or progesterone 
receptor /PR + /), HER2-enriched BC (overexpressing 
human epidermal growth factor receptor 2 and/or hav-
ing the HER2 gene amplified, without expression of ER or 
PR) and triple negative breast cancer (TNBC, ER, PR − , 
and HER2 −) [2, 3]. ER + BC are divided into luminal 
A and luminal B tumours. Luminal A is the most com-
mon subtype (40% of all BC), and is associated with low 

expression of proliferation-related genes. Among all 
BC, this is the subtype with the best prognosis and the 
lowest risk of recurrence [4]. Luminal B subtype repre-
sents almost 20% of all BC and is associated with high 
expression of proliferation-related genes and high risk 
of recurrence [4]. Hormone therapy remains the opti-
mal treatment for luminal BC. In HER2-enriched BC 
(10–15% of all BC) the presence of amplified ERBB2, the 
HER2 gene, allows the use of targeted anti-HER2 ther-
apy which has significantly improved the prognosis of 
HER2 + BC in recent years. Finally, TNBC, that accounts 
for 10 to 20% of all BC, is the most heterogeneous and 
aggressive subtype. Due to ER, PR, and HER2 negativ-
ity, TNBC is treated by chemotherapy, to which is more 
sensitive than other types of BC, however still has a poor 
prognosis due to high rate of metastatic recurrence. 
Most TNBC recurrences occur during the five years after 
the diagnosis and the median survival of patients in the 
metastatic phase is inferior than 15 months [5, 6]. TNBC 
heterogeneity and aggressiveness have led during the last 
decades to massive efforts to find reliable prognostic and 
predictive biomarkers in this subtype of BC. Therefore, a 
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large majority of recent studies on BC biomarkers focus 
on TNBC.

Biological and clinical behaviour of breast cancer 
clearly varies from one patient to another, making pre-
dictions of disease evolution and patient outcomes diffi-
cult. Therefore, biomarkers are needed to help clinicians 
choose the best treatment for each patient. For years, 
breast cancer treatment has been led by tissue-based bio-
markers, like estrogen receptor, progesterone receptor 
and HER2 status [7]. However, many studies on breast 
cancer have also demonstrated that almost all cancers 
release their components into the circulation [8–10]. 
Thus, blood can be used to analyze biomolecules origi-
nating from tumours.

Consequently, “liquid biopsies” are more and more 
frequently performed. They are less invasive than tissue 
biopsies and appear as an alternative for discovering new 
biomarkers. Numerous studies focused on potential bio-
markers in blood such as circulating tumour cells, blood 
cells, circulating genetic material (circulating tumoral 
DNA, miRNA or exosomes) [11–13] or proteins. Cir-
culating proteins, blood components or secreted by 
tumours, are involved in various biological functions 
and, as such, are an important source of cancer biomark-
ers. Blood proteome contains a set of tissue proteome 
[14]. Thus, plasma proteins and/or plasma protein level 
changes provide information about the physical condi-
tion and health status of patients and can be used to track 
disease progression [15]. Cancer cells acquire several 
capabilities for facilitating progression and metastasis 
such as manipulation of the immune response, growth 
stimulation, or induction of angiogenesis and inva-
sion [16]. These acquired abilities can be promoted or 
reflected, among other elements, by circulating proteins.

Circulating proteins, from tumours or produced by the 
immune system, play an important role in the develop-
ment and progression of breast cancers [17]. Proteins can 
act as the primary bioeffectors of metastasis. The cancer 
secretome consists of all proteins secreted or shed by 
cancer cells into the extracellular compartment or bod-
ily fluids, and can promote cancer progression [18, 19]. 
The cancer-secreted proteins (enzymes, cytokines, and 
growth factors) are involved in various biological and 
physiological processes such as immune response and 
cell–cell communication. An important part of the can-
cer secretome can be found in measurable amounts in 
blood. Those proteins are potential biomarkers, easier to 
access than the proteins within the tumour tissue. Vari-
ous teams studied the cancer cell secretome through 
mass spectrometry or antibody array, two major tech-
niques of proteome analysis [8].

Secretome analysis is one of the ways to get insight 
into the tumour microenvironment. The tumour 

microenvironment consists of the extracellular matrix, 
immune and non-immune benign cells, blood vessels 
and a plethora of secreted molecules, mostly proteins. 
This microenvironment and the tumour interact with 
each other, and exchanges between them can induce 
the stimulation and/or activation of signaling path-
ways contributing to tumour progression, including the 
acquisition of a malignant phenotype [20]. The cancer 
secretome stimulates tumour evolution by promoting 
invasion and metastasis [18]. Functional analyses in 
32 cancer types demonstrated that cancer cells secrete 
proteins which promote proliferation and invasion [21].

The promotion of metastasis by the cancer secretome 
is one of the key features of instigation, a process by 
which the primary tumour stimulates dormant can-
cer cells at distance or prepares a metastatic niche to 
accept the circulating metastatic cells [22, 23]. The 
existence of instigation is the basis for the search of 
metastatic recurrence biomarkers among the molecules 
circulating in blood [24, 25]. McAllister et  al. demon-
strated that dormant cancer cells can be stimulated by 
cytokines secreted by the bone marrow-derived mesen-
chymal cells to develop into the metastatic collections 
[21]. Today, no circulating protein is considered to be 
the specific reactivator of dormant cells. However, high 
concentrations of some proteins involved in inflam-
mation, such as interleukin-6 (IL-6) and interleukin-8 
(IL-8), or in angiogenesis, such as angiopoietin-like 
proteins, have been shown to be associated with a high 
risk of metastatic progression of breast cancer [27–29].

Today, non-invasive methods for sampling materials 
for biomarkers are being intensely developed. Blood 
protein assessment is a straightforward method that 
can be performed routinely and frequently. The quanti-
fication of circulating proteins has been a part of clini-
cal analysis for a long time. In addition, a wide range of 
techniques for protein assessment, including enzyme-
linked immunosorbent assay (ELISA), mass spectrome-
try (MS), antibody array or aptamer-based proteomics, 
has been developed during the last decades. Recently, 
the capacity and the specificity of these assays have 
been significantly increased through the development 
of technologies that allow the assay of hundreds or even 
thousands of proteins, including the low-abundant 
ones. Thus, targeted blood proteomics appears as a 
promising way to discover new biomarkers, thanks to 
the use of high-throughput techniques.

In this review, we summarize about the tumour-
produced circulating proteins (Table1) and circulating 
proteins produced by the immune system (Table 2) that 
have a potential to serve as predictive or prognostic 
biomarkers in breast cancers. Proteins detailed in this 
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review are involved in most of the hallmarks of cancer 
established by Hanahan and Weinberg (Fig. 1) [10].

Methods of circulating protein analysis
Mass spectrometry
MS technology allows large-scale untargeted proteomic 
and targeted analysis and molecular profiling of tissues 
or bodily fluids in a rapid and accurate way [30]. A mass 
spectrometer is composed of an ion source, a mass ana-
lyser and a detector, and mass spectrometry techniques 
separate peptides/proteins according to their mass-to-
charge ratio. These techniques have seen a rapid develop-
ment and several types exist. Indeed, several studies have 
focused on protein profiling using the matrix-assisted 
laser desorption/ionisation time-of-flight (MALDI-TOF) 
MS to determine prostate [31, 32], colorectal [33, 34] 
or breast [35, 36] cancer biomarkers. As an alternative, 
surface-enhanced laser desorption/ionisation time-of-
flight (SELDI-TOF) MS can be performed. For instance, 
SELDI-TOF–MS technology was used to screen serum-
specific proteins in gastric cancer patients and found a 
potential biomarker (ApoCIII) for early detection [37]. 
In ovarian cancer, the profile of serum proteins has also 
been investigated by SELDI-TOF MS and was useful for 
the discovery of biomarkers (CA125, haptoglobin, trans-
ferrin) [38, 39]. As a consequence, this technology has 
been recognized for a number of years as an effective 
technique for finding new biomarkers for cancer diagno-
sis and prognosis [40]. Today, nano-flow liquid chroma-
tography-MS/MS-based (LC–MS/MS) is the system of 

choice to assess variations in global blood protein levels 
[41, 42]. For a few years now, data-independent acquisi-
tion has been increasingly performed in wide-scale blood 
MS studies [43]. It allows provides fragmentation data for 
many analytes in a specific mass range. Using a method 
based on LC–MS/MS detection and data-independent 
acquisition MS, Bruderer et al. were able to identify and 
quantify more than 560 proteins in around 1500 plasma 
samples [44].

Immunoassays
As mentioned above, ELISA is also a well-established 
technique for quantifying proteins in blood and bodily 
fluids. Briefly, ELISA assays rely on the use of a solid-
phase  enzyme immunoassay to detect a  protein in a 
liquid sample using antibodies [45]. ELISA is the most 
commonly used method to measure serum/plasma pro-
tein concentrations in lung [46] and breast cancer [14]. 
By using ELISA to assess serum/plasma proteins, many 
potential markers of lung cancer (p53, NY-ESO-1, Sox-2) 
and breast cancer such as CA15-3 have been discovered 
[46, 47]. Nowadays, ELISA multiplex allows for the meas-
ure of multiple proteins in the same sample and at the 
same time, which markedly improves our ability to detect 
and quantify circulating proteins. More recently, the 
proximity extension assay (PEA), a technology developed 
by Olink Proteomics, allows to analyze secreted proteins 
in blood [48]. PEA is based on the combination of quan-
titative real-time PCR with multiplex immunoassays and 
uses a pair of DNA oligonucleotides linked to antibodies 

Table 2 Studies of interest presenting circulating proteins produced by the immune system in plasma and serum of patients with 
breast cancer

BC: Breast cancer, IL6 and 8: Interleukins 6 and 8, LCN2: Lipocalin 2, MIP-1: Macrophage Inflammatory Proteins-1 alpha M + : metastatic, OS: Overall survival, TNBC: 
Triple negative breast cancer

Protein Function Studied population Number of patients Clinical association with elevated 
blood levels

Refs

IL‑6 and Il8 Hormone resistant BC 87 Prognostic factor of survival. Associated 
with a poor survival

[98]

BC 110 High serum IL‑6 and IL‑8 associated with 
advanced clinical disease stages and 
lymph node metastasis

[137]

TNBC 110 High risk of recurrence and metastasis, 
and poor survival rate

[28]

M + BC 181 Poor progression‑free survival and poor 
OS

[108]

HER2 + 249 High risk of distant recurrence [138]

IFN‑γ ER + BC 72 Favourable disease outcome [139]

InterleukinsMIP‑1α 
and β

BC 11 High levels of IL‑8, MIP‑1 alpha, and MIP‑1 
beta in BC patients

[52]

LCN2 Involved in inflammatory 
response, and cancer 
growth

BC and healthy participants 113 (BC)
30 (healthy patients)

Poor clinical outcome [142]

BC 303 Poor disease‑free survival [143]
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against proteins of interest. In recent years, the PEA tech-
nology has even become the most widely used for blood 
biomarker research in various diseases [48].

Antibody arrays
Finally, antibody arrays represent another relatively 
high-throughput technology that enables profiling of a 
set of proteins of interest at the same time [49]. They 
are based on the enzyme-linked immunosorbent assay. 
In antibody arrays, antibodies are fixed on a solid sur-
face and the antibody/antigen interaction is detected by 
an immunofluorescent reaction. As with ELISA, they 
are used to profile proteins from tissue or blood sam-
ples. In 2003, Miller et al. were the first to perform an 
antibody microarray to detect biomarkers in the serum 
of patients with cancers, namely with prostate cancer 
[50]. In 2010, a team screened the serum expression 

profiles of 507 proteins in ovarian cancer patients and 
healthy individuals in an antibody array-based study 
and found different protein expressions between nor-
mal and cancer samples [51]. Recently, the ability of 
antibody array to screen new biomarkers was validated 
by ELISA in gastric and breast cancer [52, 53].

Aptamer based proteomic
In 2010, Gold et al. and Somalogic developed a new prot-
eomic technology based on aptamers which are short sin-
gle-stranded oligonucleotides that bind with high affinity 
and specificity to proteins [54, 55]. Since 2010, aptamer 
based proteomic has been used to determine blood bio-
markers in various diseases including ovarian cancer 
[56], lung cancer [57] or cardiovascular diseases [58].

Fig. 1 Proteins detailed in this review cover most of the hallmarks of cancer established by Hanahan and Weinberg. This adapted figure from 
Hanahan and Weinberg’s review [16] shows the impact of circulating blood proteins involved in breast cancer on different cancer hallmarks
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Circulating proteins produced by tumour tissue
Transforming growth factor beta
Transforming growth factor β1 (TGF-β1) is known 
to play a significant role in the promotion of tumoral 
progression at the tissue level [59, 60]. Previous stud-
ies on serum TGF-β1 in patients with breast cancer 
showed its correlation with response to treatment and 
the risk of recurrence [61, 62]. In a study conducted on 
44 breast cancer patients, plasma TGF-β1 levels were 
significantly elevated in advanced-stage (stage IIIB 
and IV) patients compared with healthy participants, 
regardless of BC subtype [61]. In six patients undergo-
ing therapy for metastatic disease, the study revealed 
a decrease in TGF-β1 levels (21 to 51%) for patients 
who responded to treatment and an increase in TGF-
β1 levels (34 to 69%) for BC patients who failed to 
respond to systemic treatment. Sheen-Chen et al.also 
demonstrated that breast cancer patients (n = 60) in 
advanced stages of the disease had high serum TGF-
β1 levels [62]. In 2015, one study evaluated the prog-
nostic and predictive values of serum TGF-β1 in triple 
negative breast cancer (TNBC) (n = 43) [63]. Quanti-
fication of TGF-β1 levels before and after chemother-
apy has shown a correlation between a high incidence 
of metastasis, relapse, and poor response to neoadju-
vant chemotherapy (NAC) and high serum levels of 
TGF-β1. For instance, reduced disease-free survival 
was significantly correlated with high serum levels of 
TGF-β1. However, TGF-β1 did not appear to differ-
entiate between TNBC and non-TNBC patients. Very 
recently, quantitative analysis of plasma proteomes 
was performed to discover proteins predictive of pro-
gression and metastases in 48 TNBC patients [64]. A 
plasma protein-derived TGF-β signature, composed 
of three proteins (CLIC1, MAPRE1 and SERPINA3), 
was found. These plasma proteins form a TGF-β-
regulated network. High plasma levels of these three 
TGF-β-related proteins were associated with TNBC 
tumour progression and poor outcomes. In a larger 
validation cohort, the cancers of metastatic patients 
with high levels of CLIC1, MAPRE1 and SERPINA3 
recurred within 1.0 to 3.3  years from diagnosis, 
whereas non-metastatic patients with low levels were 
recurrence-free during the 3.4 to 4.6  years of follow-
up. Interestingly, in patients with oesophageal adeno-
carcinoma, a cancer transposable to TNBC, Steins 
et  al. revealed that high TGF-β serum levels during 
neoadjuvant treatment could differentiate the patients 
with a high risk of metastasis [65]. TGF-β serum levels 
in metastatic patients were significantly higher com-
pared to patients with non-metastatic disease (45.73 
vs 36.25 pg/mL).

HER2
The extracellular domain (ECD) of the epidermal 
growth factor receptor 2 (HER2) is the major exam-
ple of a protein shed by cancer cells It is a transmem-
brane protein overexpressed in 15% of breast cancers. 
A proteolytic process releases the HER2 ECD from 
the receptor and the HER2 ECD is shed from can-
cer cells into blood circulation [17]. ECD HER2 is 
considered as a prognosis biomarker in breast can-
cers that overexpress HER2. Indeed, high HER2 ECD 
levels correlated positively with parameters such as 
vascular invasion or angiogenesis in patients carry-
ing a breast cancer belonging to the HER2-enriched 
molecular subtype [5]. For years, the prognostic value 
of HER2 in the human serum (sHER2 or ECD HER2) 
of breast cancer patients, especially HER2 enriched 
cancers, has been studied [66–68]. In 2015, by moni-
toring sHER2 in 118 HER2 + breast cancer patients, 
a high sHER2 preoperative value was found to corre-
late with a worse prognosis [69]. Disease recurrence 
occurred in 12 patients over a median follow-up of 
19 months. In these patients, and compared to patients 
who remained disease-free, higher baseline sHER2 lev-
els were observed. In HER2 + metastatic breast cancer 
patients (n = 537), high serum HER2 and TIMP1 levels 
before any treatment predicted a short progression free 
survival (PFS) [70]. By evaluating serum HER2 through 
ELISA, Shukla et  al. concluded that high levels were 
associated with poor outcomes and HER2 tissue lev-
els in breast cancer patients [71]. The authors noted a 
significant correlation of high serum HER2 levels with 
tumour size, stage of disease and histological grade. In 
2016, a retrospective study on metastatic breast cancers 
(HR + , HER2 + or TNBC) was conducted to investi-
gate the predictive value of serum matrix metallopro-
teinases (MMP9) and HER2 [72]. HER2 and MMP-9 
levels were significantly higher in the brain metastasis 
group (n = 88) than in the control group (n = 162). In 
the brain metastasis group, the overall survival (OS) 
was 9.8 months for patients with low serum MMP9 lev-
els compared to 2.6  months in the high-MMP9-level 
patients.

Tissue inhibitor of metalloproteinase 1
The tissue inhibitor of metalloproteinase 1 (TIMP-1) 
inhibits matrix metalloproteinases (MMPs) and thus may 
influence tumour growth and invasion. TIMP‐1 levels 
are higher in tumour tissues than in normal tissues and 
promotes cell growth, tumorigenesis, and angiogenesis 
[73]. The negative prognostic impact of serum TIMP-1 
as well as tissue protein levels was observed in breast 
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cancer and other cancers. Elevated serum levels of the 
invasion markers TIMP-1 in metastatic breast cancer 
are prognostic markers [74]. Müller et al. worked on 253 
patients with metastatic breast cancer (HR + , HER2 + , 
and TNBC) and evaluated serum TIMP-1 concentra-
tion by means of ELISA. Median PFS was 7.2  months 
with high TIMP-1 and 11.4  months with low levels. It 
has also been shown that patients with elevated serum 
vascular endothelial growth factor (sVEGF) were signifi-
cantly more likely to present with elevated TIMP1, and 
both were associated with poor OS [75]. In a 2008 study 
conducted on 60 breast cancer patients, high serum lev-
els of both MMP-9 and TIMP-1 were also associated 
with lower progression-free and OS rates [76]. Thus, 
high serum levels of TIMP-1 before surgery were associ-
ated with a 53% OS rate and a 42% relapse-free survival 
rate. When serum TIMP-1 levels were low, the OS rate 
and the relapse-free survival rate were respectively 82% 
and 83%. More recently, TIMP-1 levels were described 
as prognostic factors of shorter PFS in patients with a 
metastatic HER2 + breast cancer treated with lapatinib or 
trastuzumab [70]. Serum HER2 and TIMP-1 before any 
treatment were quantified using ELISA in 472 patients. 
The median PFS in patients with high TIMP-1 levels was 
shorter (approximately 8 months) than in the group with 
low TIMP-1 levels (approximately 11 months).

LRP6N
LRP6 ectodomain (LRP6N) functions as a co-receptor 
for Wnt signal induction and is involved in activating the 
β-catenin–dependent canonical Wnt signalling pathway, 
known to promote tumour progression. A team analysed 
LRP6N serum levels in vitro and in vivo in patients with 
metastatic breast cancer and demonstrated that it could 
be a diagnostic marker for the early detection of breast 
cancer metastasis [77]. Indeed, serum LRP6N was down-
regulated in the metastasis groups (both in mice and in 
patients with breast cancer). Moreover, LRP6N inhib-
its SDF-1/CXCR4 signal transduction involved in metas-
tasis promotion.

Hepatocyte growth factor
Hepatocyte growth factor (HGF) is involved in vari-
ous biological processes such as morphogenesis, cell 
and tissue survival, and cellular growth. By activating 
its receptor cMet, it also facilitates tumour invasion and 
metastasis. In 1995, serum HGF in hormone receptor 
positive or negative breast cancer patients (n = 134) was 
studied using ELISA [78]. High levels correlated with 
the appearance of metastases, and 29 of 35 patients with 
recurrent breast cancer had an increase in serum HGF 
level. In a similar way, serum HGF, measured by ELISA, 

was correlated with a poor prognosis and a high risk of 
progression in metastatic (n = 34) breast cancer patients 
[79]. 56% (6 patients) of patients had died in the high 
HGF group and only 9% (2 patients) had died in the low 
HGF group. Later, in an attempt to demonstrate the 
prognostic role of HGF in breast cancer, Kim et al. used 
ELISA to measure the HGF serum levels of 121 female 
patients before neoadjuvant treatment [80]. They found 
that high levels of HGF correlated with metastasis. Para-
doxically, they were also associated with a long relapse-
free survival (106 vs. 85 months).

Vascular endothelial‑cadherin
VE-cadherin, also known as cadherin 5, plays a crucial 
role in endothelial adherens junction assembly and main-
tenance. It controls the integrity and permeability of ves-
sels [81]. Labelle et  al. demonstrated that VE-cadherin 
could stimulate the TGF-β pathway—involved in cell 
tumour proliferation—and thus promote tumour pro-
gression [82]. In primary luminal, HER2 + and TN breast 
cancers (n = 48), assessment of VE-cadherin serum levels 
is sufficient to distinguish recurrent cancers from non-
recurrent ones [83]. VE-cadherin levels were elevated in 
sera from patients with metastatic breast cancer com-
pared to those from patients with no recurrence. More 
interestingly, serum VE-cadherin appears as a prognos-
tic factor for both PFS and OS in hormone-resistant 
metastatic breast cancer (n = 141) [84]. An elevated 
serum VE-cadherin level was associated with shorter 
PFS (median PFS = 9.7  months vs 5.8  months) and OS 
(median OS = 34 months vs 14.8 months) than was a nor-
mal or low one.

Matrix metalloproteinase 9
Matrix metalloproteinases (MMPs) are intracellular 
zinc (Zn2+) dependent endopeptidases [85]. They are 
involved in the degradation of extracellular matrix (ECM) 
proteins such as collagen or fibronectin and help in the 
extracellular matrix remodelling in physiological and 
pathological processes [86]. MMP levels are increased in 
many cancers and are associated with increased metasta-
ses and poor clinical outcomes [87]. MMP9 expression is 
high in breast cancer tissues [88, 89].

The potential of MMP9 for the prediction of metastasis 
in BC has been explored over the past few years. Many 
studies demonstrated a correlation between high serum 
MMP9 levels and metastasis in BC patients [72, 76, 
90–92]. In a study conducted in 2014, the serum levels 
of MMP-9 in 77 patients with breast cancer were quan-
tified through ELISA [91]. MMP9 levels were signifi-
cantly higher in the breast cancer group, regardless of BC 
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subtype, compared to the benign tumour group (n = 10). 
As previously written, Darlix et  al. demonstrated that 
elevated serum HER2 and MMP9 levels were associated 
with brain metastases in HER2 + breast cancer patients 
[72].

Moreover, a high tissue MMP9 level is a clear feature 
of TNBC and is correlated with poor prognosis [39]. 
Wang et  al. investigated the predictive and prognostic 
value of MMP9 for patients with TNBC (n = 303). Using 
ELISA, they measured serum MMP9 levels at baseline 
and before surgery in patients with a non-pathological 
complete response [93]. High serum MMP9 correlated 
with a decrease in pathological complete response (pCR) 
rate and thus with a worse response to NAC. Interest-
ingly, they demonstrated that each 1  ng/ml decrease 
in sMMP-9 after NAC was shown to result in a 0.3% 
increase in pCR rate. They also demonstrated that serum 
MMP9 levels are concordant with MMP9 protein levels 
detected by immunohistochemistry. However, histologi-
cal MMP9 levels appeared to be a slightly better prognos-
tic marker than serum levels.

Vascular endothelial growth factor
Angiogenesis factors, such as VEGF, have been exten-
sively studied in cancers. Indeed, angiogenesis influences 
the development and the spread of cancer. And VEGF is 
well known to play an important role in tumour angio-
genesis, blood vessel permeability and metastases [94, 
95]. In 2006, a study using ELISA demonstrated a close 
correlation between serum VEGF level and disease prog-
nosis [96]. In 44 patients, the VEGF level at day one after 
breast surgery decreased significantly compared to its 
level before surgery. At day 120 after surgery, only 15 
patients had higher VEGF levels than before or right after 
surgery. Globally, late clinical stages were found in these 
15 patients with high VEGF levels [96]. Many studies 
emphasize that high VEGF plasma levels are associated 
with a poor outcome in breast cancer patients [75, 97, 98]. 
For instance, in a study of 253 metastatic breast cancer 
patients, those with elevated levels of sVEGF had signifi-
cantly worse clinical outcomes [75]. Specifically, median 
PFS and median OS were 4.8  months and 10.2  months 
respectively for patients with high sVEGF levels against 
a PFS of 9.1 months for patients with lower sVEGF lev-
els while median OS had not been reached in this group. 
In 2003, Bachelot et al. conducted a study on 87 patients 
with hormone-resistant metastatic breast cancer in order 
to investigate the prognostic value of serum and plasma 
VEGF. The median survival was 9  months for patients 
with low VEGF levels versus 13 months for patients with 
high VEGF levels [98].

VEGF is highly expressed in around 30–60% of patients 
with triple negative breast cancer, a heterogeneous 

cancer that accounts for 10–20% of all breast cancers. In 
a clinical study conducted by Taha et al. on 21 patients, 
serum VEGF-A levels were measured at baseline, and 
after the 3rd and 6th NAC cycles in patients with meta-
static TNBC [99]. Serum VEGF-A at baseline—in par-
ticular, high levels thereof—was associated with a better 
overall survival (10.2  months versus 4.2  months in the 
low VEGF levels group). These results highlight the prog-
nostic value of VEGF. Later, Bahhnassy et al. [63] quanti-
fied serum VEGF-A expression before and after standard 
chemotherapy using ELISA. The study was conducted 
on 43 TNBC patients, 53 non-TNBC patients and 20 
normal control participants. A high expression of VEGF 
in TNBC patients correlated with a worse response to 
NAC, metastasis and a poorer OS (median OS around 
22  months). More recently, serum levels of VEGF have 
been demonstrated to predict NAC response of patients 
with TNBC [100]. Wang et al. analysed serum samples of 
303 TNBC patients prior to NAC, prior to the third cycle 
of NAC and prior to surgery. They found that an increase 
in serum VEGF prior to the third cycle of NAC has a pre-
dictive value for pCR with high sensitivity and high spec-
ificity. It is also an interesting predictor of non-response. 
Interestingly, high levels of VEGF are also associated with 
an unfavourable outcome, with a 3-year disease-free sur-
vival (DFS) of 53% (vs 85% with low serum VEGF levels).

TIE‑1/2 and angiopoietin 2
The angiopoietins family is composed of secreted pro-
teins that all bind to the endothelial receptor called Tie2 
(tyrosine kinase with immunoglobulin and epidermal 
growth factor homology domains 2) and are mediated by 
both Tie1 and Tie2. Ang-2 is notably involved in angio-
genesis in presence of VEGF. And Tie2 controls tumour 
development (angiogenesis and growth) and metastatic 
production through the Ang/Tie axis [101]. Over years, 
the correlation between Ang-2 levels and the progres-
sion and/or outcome of patients with various cancers 
has been investigated [102–105]. Several studies dem-
onstrated that aberrant expression of Ang-2 promotes 
tumorigenesis and cancer progression [102, 103]. A study 
conducted by Li et al. showed that serum Ang-2 in breast 
cancer patients (n = 143) was higher than in the healthy 
group (n = 100) and was associated with a worse OS and 
metastasis [106]. These results were similar regardless 
of breast cancer subtypes. In the high Ang-2 expression 
group, the 5-year OS and the 5-year disease-free sur-
vival rates were 55.9% and 46.0% respectively, while they 
were 83% and 68.7% in the low Ang-2 expression group. 
These results highlighted the potential of serum Ang-2 as 
an early detection and prognostic biomarker in patients 
with breast cancer. In 2011, serum angiogenesis factors 
were investigated to assess their diagnostic value and 
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their association with the clinico-pathological data of 127 
breast cancer patients [107]. Serum Ang-2 was clearly 
overexpressed in breast cancer patients compared to 
benign breast disease patients, but there was no evidence 
of an existing relationship between serum Ang-2 lev-
els and clinical-pathologic parameters of breast cancer. 
Interestingly, the authors did not observe any correlation 
between histological type and angiogenesis markers lev-
els. In a similar way, in metastatic breast cancer, a team 
analysed serum angiogenesis- and hypoxia-associated 
proteins to determine their potential association with 
patient outcomes [108]. Among other proteins, high 
Ang-2 levels at baseline were significantly associated 
with poor PFS. Moreover, both Ang-2 and serum Tie2 
appeared as prognostic factors of poor OS. Tiainen et al. 
examined the concentration of Ang-2 and took interest 
in the soluble extracellular domain of Tie1 (sTie1) in the 
plasma of patients with metastatic breast cancer (n = 58) 
[109]. Concentrations of both sTie1 and Ang-2 were 
measured before, during and after the first-line treatment 
by ELISA assay. A high baseline Tie1 level was found to 
have a significant prognostic value and was associated 
with short median OS (around 20  months) and short 
median PFS (around 10 months). Moreover, patients with 
both high baseline Tie1 and Ang-2 levels had the worst 
median OS (21.5 months vs 46.8 months for patients with 
low Tie1 and Ang-2).

Insulin growth factor 1 and platelet‑derived growth factor
Insulin like growth factor I (IGF I) is an important regu-
lator of growth, survival, migration and invasion and is 
clearly implicated in BC. Indeed, high serum levels of 
IGF I were associated with metastasis and recurrence 
in TNBC patients [52]. By analysing the serum of 110 
postmenopausal breast cancer patients, Pasanisi et  al. 
showed the impact of serum IGF I and platelet-derived 
growth factor (PDGF) levels on the risk of recurrence 
[110]. The hazard ratio (HR) of recurrence of the high 
PDGF group with reference to the low PDGF group was 
2.8. The HR of recurrence for high IGF-I versus the low 
PDGF group was 3.7. Interestingly, they observed that 
IGF-I may increase this risk of recurrence in the presence 
of high serum PDGF levels. PDGF is another growth fac-
tor known to interact and act synergistically with IGF-I. 
Together, they promote cell proliferation [110].

Haptoglobin
Haptoglobin (HP) is a plasma glycoprotein that binds 
free haemoglobin, prevents the loss of iron and inhibits 
oxidative activity [111]. Overexpression of serum HP has 
been detected in many cancers, including gastric cancer, 
oesophageal cancer, leukaemia, bladder cancer, and lung 
cancer [112]. In some studies, high serum levels of HP 

were also observed in patients with BC and have been 
linked to poor clinical outcomes [113]. A study analysing 
serum HP expression in patients with TNBC suggested 
that it could be a potential biomarker [114]. Indeed, 
Tabassum et  al. correlated blood HP levels with patient 
outcomes by demonstrating that patients with the high-
est levels had the worst prognosis and the lowest survival 
rate. After 44  months, 54.0% of low HP-level patients 
had DFS. They also pointed to the possibility of using 
haptoglobin as a therapeutic target for TNBC. In a study 
published in 2014, serum proteomes were examined by 
mass spectrometry in TNBC patients (n = 30) and non-
TNBC patients (n = 30) and a screening of differentially 
expressed proteins was performed [115]. In the two 
groups, serum samples were collected prior to any treat-
ment. Serum haptoglobin, but also transthyretin (TTR) 
and antitrypsin (A1AT), had a significantly increase in 
expression in the TNBC group. Thus, haptoglobin, TTR 
and A1AT are credible candidates for the early detection 
of TNBC. However, the authors emphasized the need 
to investigate its role as a TNBC biomarker more pre-
cisely. Recently, in a human triple-negative breast cancer 
xenograft model, dramatic up-regulation of plasma hap-
toglobin was observed after metastasis, suggesting the 
potential of HP as a biomarker for metastasis [116]. They 
also noticed a significant decrease in serum HP before 
the development of metastases.

Cancer antigen 15–3 and carcinoembryonic antigen
Serum cancer antigen 15–3 (CA15-3) and carcinoem-
bryonic antigen (CEA) are prognostic markers for BC 
that have been studied for decades. CA15-3 is a mem-
ber of the mucin-1 family of glycoproteins that are 
overexpressed in cancers [117]. CEA is a cell-surface gly-
coprotein—identified as a tumour-specific antigen—and 
a clinically useful tumour marker in some adenocarcino-
mas. It is the most widely accepted serum breast tumour 
marker.

In 2016, Dai et al. collected and analysed serum CA15-
3, CEA levels and other factors of patients (n = 247) with 
TNBC prior to NAC [118]. They showed that elevated 
CEA (HR: 2.293) and CA15-3 (HR: 2.627) levels were 
associated with shorter OS than those in the low-level 
groups. They were also associated with short DFS rates. 
Similarly, a study conducted on 604 TNBC patients 
aimed to analyse serum CEA, CA15-3 and other fac-
tors [119]. High serum levels of these two proteins were 
associated with a high risk of death. The authors demon-
strated that serum CEA and CA15-3 were independent 
prognostic factors for OS in patients with TNBC. Impor-
tantly, tumour location, number of positive lymph nodes, 
and histological grade also appeared as significant prog-
nostic factors. Recently, however, a retrospective study 
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conducted by Nam et al. showed discordant results [120]. 
They measured CA15-3 and CEA serum levels prior to 
surgery in BC patients. The CA15-3 and CEA-elevated 
group had a HR of 2.14. The CA15-3-elevated group had 
an HR of 2.38 and the CEA-elevated group had an HR 
of 1.79 compared to the normal group. However, while 
serum CEA and CA15-3 elevation appear to be signifi-
cant prognostic factors in luminal breast cancers; this is 
not the case for TNBC. The authors justify the conflict 
of their results with those of Dai et  al. by noting that 
the latter included stage IV patients in their study and, 
thus, results may be dependent on the stage of patients’ 
cancers.

Cancer PD‑1/PD‑L1
Programmed cell death protein 1 (PD-1) is an immune 
checkpoint receptor that regulates T-cell activation and 
immune surveillance [121]. Programmed death ligand 
1 (PD-L1) is the principal ligand of programmed death 
1 (PD-1), a co-inhibitory receptor that can be consti-
tutively expressed or induced in myeloid, lymphoid, 
and normal epithelial cells as well as in cancer. Under 
physiological conditions, the PD-1/PD-L1 interaction 
is essential in the development of immune tolerance, as 
it prevents excessive immune cell activity that can lead 
to tissue destruction and autoimmunity [121]. PD-L1 
expression is an immune evasion mechanism exploited 
by numerous cancers and is also suggested as a predic-
tive biomarker of response to immunotherapies. Over 
recent years, PD-1/PD-L1 inhibitory therapies have 
developed rapidly and have gained interest as novel 
anticancer therapeutics in different types of cancers 
such as metastatic lung cancer, melanoma and many 
others [121]. In breast cancer patients, PD-L1’s expres-
sion in cancer cells is associated with response to NAC 
and OS [103, 104]. Interestingly, PD-L1 in exosomes 
and more specifically soluble PD-L1 appears as a cred-
ible predictive and prognostic marker to monitor treat-
ment efficacy in a myriad of cancers including breast, 
gastric, urothelial, esophageal or hepatocellular cancers 
[124–130]. In addition, serum PD-L1 mRNA expression 
in blood mononuclear cells could be associated with 
disease progression in breast cancer [131]. In TNBC, 
Li and his team [132] took an interest in soluble PD-L1 
and PD-1. Their serum concentrations were quantified 
through ELISA in 66 TNBC patients treated with neo-
adjuvant chemotherapy. As a result, before NAC, high 
levels of PD-L1 (227.7 pg/mL) and PD-1 (549.3 pg/mL) 
were observed in TNBC patients compared to healthy 
women (195.0  pg/mL and 379.2  pg/mL respectively). 
More interestingly, TNBC patients with a complete or 
partial response presented significantly lower serum 
PD-L1 and PD-1 levels after NAC compared to before 

NAC. Serum PD-1 and PD-L1 are predictive factors of 
treatment response in TNBC patients. A recent study 
evaluated the prognostic and predictive value of serum 
PD-L1 levels in HER2-positive metastatic breast can-
cer treated with trastuzumab or lapatinib [133]. High 
serum PD-L1 level before treatment was strongly 
linked to longer OS in the lapatinib group compared to 
the trastuzumab group. A recent study took interest in 
the prognostic value of sPD-L1 in patients with meta-
static breast cancer [134].  sPD-L1 levels were quanti-
fied by ELISA in 208 patients. The authors found that 
elevated sPD-L1 level (> 8.774  ng/ml) before first-line 
treatment was associated with a short PFS of metastatic 
breast cancer and a poor prognosis [134]. However, 
in a recent study, Yazdanpanah et  al. found no differ-
ence in serum levels of sPD-L1between TNBC patients 
(n = 72) and healthy women (n = 40) and no correla-
tion between tumour PD-L1 expression and sPD-L1 in 
TNBC patients [135].

Circulating proteins produced by the immune 
system
Interleukin‑6
Interleukin 6 (IL-6) is a cytokine produced in par-
ticular by endothelial cells and normal haematopoi-
etic cells. IL-6 is involved in the upregulation of acute 
phase response proteins implicated in various processes 
including cell proliferation or inflammation. IL-6 clearly 
acts as a tumour promotion and progression factor. For 
example, IL-6 regulates the TP53 gene and this way pro-
motes growth [136]; it also mediates tumour invasion 
and metastasis and many other tumour processes. Inter-
estingly, IL-6 could be implicated in the production of 
VEGF and more specifically in its upregulation. In 2003, 
as mentioned above, Bachelot et  al. tested the prognos-
tic value of serum levels of interleukin 6 and vascular 
endothelial growth factor in 87 hormone-resistant meta-
static breast cancer patients [98] and identified IL6 as a 
potential prognostic factor of survival. High serum IL-6 
levels were associated with a poor survival. Indeed, high 
serum IL-6 levels were associated with a median survival 
of 4 months, whereas patients with low serum IL-6 levels 
had a median survival of 13 months. A study conducted 
on 110 patients diagnosed with ductal carcinoma high-
lighted the correlation of high serum IL-6 and IL-8 lev-
els with advanced clinical disease stages and lymph node 
metastasis [137]. In 2017, sera from 110 breast cancer 
patients were collected and evaluated for serum levels 
of sonic hedgehog (Shh) and IL-6 independently of their 
progesterone, estrogen or HER2 status [28]. Both high 
serum levels of Shh and IL-6 had a significantly higher 
risk of recurrence and metastasis, and were associated 
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with a worse chance of survival. Median survival was sig-
nificantly shorter for patients with high serum IL-6 and 
Shh levels (10.2 and 12 months respectively).

Cytokines
More globally, as mentioned above, inflammation and 
cancer are intrinsically associated. Changes in cytokine 
levels influence cancer development and progression. 
For instance, a team determined a correlation between 
serum angiogenesis- and hypoxia-associated proteins 
and patient outcome in breast cancer patients treated 
with paclitaxel and bevacizumab without or with capecit-
abine [108]. They showed, in 181 patients, that high IL-6 
and IL-8 levels at baseline were associated with poor 
progression-free survival and poor OS. Interestingly, 
patients who responded to the treatment presented a 
relative decrease in IL8 levels whereas a relative increase 
was observed in non-responders (median relative change 
19.4% vs. 22.3%). Li et  al. analysed serum cytokine pro-
files in breast cancer patients through ELISA [52]. 
Among other cytokines, IL-8, Macrophage Inflamma-
tory Proteins-1 alpha and Macrophage Inflammatory 
Proteins-1 beta were significantly higher in breast can-
cer patients. These cytokines could be useful inflamma-
tory markers in breast cancer patients. More recently, 
Sparano et  al.demonstrated an association between 
serum IL-6 and an elevated risk of distant recurrence in 
HER2 + patients [138]. In 2022, a study conducted on 72 
premenopausal ER + breast cancer patients evaluated the 
prognostic significance of serum IFN-γ. The authors clas-
sified the patients into two groups depending on baseline 
serum levels of IFN-γ: IFN-γhigh subgroup and IFN-γlow 
subgroup [139]. Interestingly, distant recurrence inci-
dence was 4% for the IFN-γhigh subgroup and 33% for 
the IFN-γlow subgroup. Elevated serum IFN-γ levels were 
associated with favourable disease outcome in ER + BC.

LCN2
The glycoprotein Lipocalin 2 (LCN2), also called neutro-
phil gelatinase-associated lipocalin, is mainly known to 
act as a factor limiting bacterial growth involved in innate 
immunity. It is notably well-expressed in neutrophils and 
was initially discovered in complex with matrix metal-
loproteinase-9 (MMP-9) [140]. We know that it partici-
pates in acute organ injury and is specifically used as an 
acute kidney injury marker [141]. But LCN2 appears to 
play a role in various biological processes such as inflam-
matory response, transport of some lipophilic molecules 
and cancer growth. Today, some studies highlight its 
role in the development of some cancers and especially 
of human breast cancer. A study led by Provatopoulou 
et al. focused on the circulation of LCN2 and MMP9 at 

diagnosis in 113 women with breast cancer [142]. Higher 
serum levels of LCN2 were observed in breast cancer 
patients compared to healthy women. In invasive ductal 
carcinoma, high concentrations—measured by ELISA—
correlated with a high severity score. Moreover, MMP9 
and LCN2 serum levels were correlated. In 2012, a 
Korean team also found that patients (n = 303) with ele-
vated serum levels of LCN2 or MMP-9 at diagnosis had a 
poor disease-free survival [143]. High MMP9 and LCN2 
serum levels were correlated and associated with poor 
DFS, respectively or in association.

Conclusions
This review summarizes recent literature on plasma or 
serum proteins described as potential predictive and 
prognostic biomarkers in breast cancer. Blood protein 
studies in breast cancer have mostly evaluated the capac-
ity of circulating proteins to predict patient outcome. For 
example, high serum levels of TIMP1 are promising indi-
cators of poor overall survival of breast cancer patients 
[76], whereas high serum levels of MMP-9 have been 
demonstrated to strongly predict response to treatment 
and metastasis [72, 144]. The assessment of MMP9 and 
LCN2 serum levels could be of great interest to predict 
PFS but further investigations need to be done to ensure 
the clinical relevance of this association [143]. Moreover, 
high serum levels of VEGF and TGF-β1 remain impor-
tant biomarkers of short OS, either used alone or in 
combination with other proteins such as Ang-2 and its 
mediator Tie-2 [106, 107, 109]. Serum PD-L1 appears 
as an interesting candidate biomarker in cancer immu-
notherapy, worth further validation [122, 132, 133]. 
Serum HER2 is also a reliable prognostic biomarker in 
HER2 + BC, nevertheless tissue HER2 remains more 
clinically relevant. Interestingly and globally, we can see 
similar observations across studies on the role and the 
clinical relevance of each of the proteins presented in our 
review. This overall homogeneity confirms the impor-
tance of conducting further investigations. However, BC 
biomarker studies are mostly based either on a single 
protein or on a group of proteins with similar functions. 
We believe that the study of a panel of proteins with vari-
ous functions could strengthen the prognostic and pre-
dictive value of the biomarkers highlighted in this review. 
This is the objective of an ongoing study in our team 
which focuses on the predictive value of a group of pro-
teins including TGF- β1, VEGF, MMP9, TIMP1 or PD-L1 
(NCT04438681) [145].

The proteins found in blood have a long-standing his-
tory as cancer biomarkers, longer than several classes of 
biomarkers introduced more recently for liquid biopsy 
such as ctDNA, or miRNA. Blood profiling has recently 
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gained momentum, especially in search for biomarkers 
useful in immuno-oncology and in monitoring of can-
cer patient response to neoadjuvant treatments [146–
149]. However, despite technological improvements, 
protein detection sensitivity remains slightly poorer 
than ctDNA detection sensitivity. Consequently, liquid 
biopsies should explore proteins but should be com-
plemented by other usual biomarkers such as ctDNA 
or circulating tumour cells [150]. Contrary to proteins 
biomarkers, ctDNA can also identify new mecha-
nisms of therapy resistance and potential new targets 
for treatment. Thus, liquid biopsy exploring composite 
biomarkers could describe the overall proteomic and 
genomic landscape of the tumour, both in space and in 
time which gives it a definite advantage compared to 
the more invasive tissue biopsy. Moreover, it can easily 
be repeatedly performed during patient follow-up, and 
could facilitate the assessment of treatment efficacy. For 
now, liquid biopsy is not routinely used in clinical prac-
tice despite the growing interest in implementing it into 
the multidisciplinary decision-making. However, it is 
being increasingly evaluated in translational studies in 
oncology, so it is expected to improve the personalized 
management of cancer patients in the coming years.
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