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Abstract 

Background: Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma 
proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify 
novel biomarkers of sepsis in critically ill patients.

Methods: Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on 
intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 
plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with 
machine learning and then correlated with relevant clinical and laboratory variables.

Results: The median age for critically ill sepsis patients was 56 (IQR 51–61) years. The median MODS and SOFA values 
were 7 (IQR 5.0–8.0) and 7 (IQR 5.0–9.0) on ICU Day-1, and 4 (IQR 3.5–7.0) and 6 (IQR 3.5–7.0) on ICU Day-3, respec-
tively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis 
patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins 
on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the 
leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and 
ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and 
the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05).

Conclusions: Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients 
relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were 
identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-
driven sepsis research.
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Background
Sepsis refers to life-threatening organ dysfunction caused 
by a dysregulated host response to infection [1, 2]. Sep-
tic shock is sepsis with compounded circulatory, cellular, 
and metabolic dysfunction associated with a higher risk 

of mortality. Sepsis is a predominant contributor to hos-
pital admissions, as well as patient morbidity and mortal-
ity, representing as many as 50% of adult intensive care 
unit (ICU) admissions and 48% of ICU deaths [3].

Sepsis is manifested by complex immunologic, neu-
ronal, autonomic, hormonal, metabolic and coagula-
tion derangements. These are further influenced by host 
genetic predisposition and heterogeneity, as well as social 
determinants of health [4–9]. These dynamic interactions 
demonstrate the diversity in critical illness pathophysiol-
ogy, exemplifying the need for investigations rooted in 
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high-throughput technologies, to elucidate their com-
plexity. To this end, we have recently used targeted pro-
teomics to identify novel plasma biomarkers associated 
with disease outcome in critically ill COVID-19 patients; 
six novel proteins were identified that predicted ICU 
mortality with 100% accuracy [10]. Targeted proteomics 
is valuable for not only identifying proteomic associa-
tions with disease progression and outcome, but also for 
improved understanding of pathophysiology related to 
specific patient features.

Over the last decade, proteomic analysis of the blood 
from critically ill patients has provided novel insight into 
the molecular basis of sepsis [11]. One of the first stud-
ies identified inflammatory and acute phase response 
proteins upregulated in sepsis [11]. Others identified 
novel biomarkers of lipid transport and coagulation pro-
teins [12], followed by a host of mass spectroscopy and 
immunologic assays that increased our knowledge of 
the sepsis proteomes [13–17]. Despite numerous sepsis 
investigations, biomarkers for disease surveillance and 
organ dysfunction remain elusive. Moreover, temporal 
investigations to better understand disease evolution, as 
well as the host response to therapies, are lacking.

In this study, we performed targeted proteomics with 
proximity extension assays (PEA) as previously described 
[18, 19]. The PEA approach relies on antibodies conju-
gated to complimentary oligonucleotides, which upon 
binding to a target protein are in close proximity for 
hybridization and deoxyribonucleic acid (DNA) poly-
merase-based extension. The complex can then be ampli-
fied using microfluidic quantitative polymerase chain 
reaction (qPCR). PEA offers unparalleled sensitivity and 
specificity, with measurement of 1161 distinct human 
plasma proteins in this study.

Our specific study objectives were to: [1] measure 
plasma protein expression between critically ill sepsis 
patients and age-/sex-matched healthy control subjects; 
[2] determine the leading proteins with greatest classifi-
cation accuracies between cohorts; [3] investigate how 
these protein expression levels vary temporally in criti-
cally ill sepsis patients; and [4] determine correlations 
between these protein expression levels and relevant clin-
ical/laboratory variables.

Methods
This study was reviewed and approved by the Western 
University, Human Research Ethics Board (HREB #6970, 
“Repository of biological specimens from patients with 
critical illness and/or traumatic conditions”, March 17, 
2021; #17908E, “Analysis of inflammatory markers in 
blood samples from patients with serious illness”, March 
19, 2021). A total 15 patients with sepsis based on Sep-
sis-3 criteria [2] were enrolled. Patient characteristics 

included age, sex, comorbidities, medications, hemato-
logic labs, creatinine,  PaO2/FiO2 (P/F) ratios (arterial to 
inspired oxygen), chest x-ray findings, Multiple Organ 
Dysfunction Scores (MODS), Sequential Organ Failure 
Assessment scores (SOFA), use of antibiotics, anti-virals, 
corticosteroids, vasopressors, thromboembolism prophy-
laxis, anti-coagulation status, renal replacement therapy, 
invasive and non-invasive ventilation, intubation dura-
tion and ICU duration. Survival until Day-3 was not an 
inclusion criterion. For comparison with sepsis patients, 
15 healthy control subjects without disease or acute ill-
ness were identified from the Translational Research 
Centre, London, Ontario (HREB #6963, “Repository of 
control biological specimens from healthy volunteers”, 
March 22, 2021; Directed by Dr. D.D Fraser; https:// trans 
latio nalre searc hcent re. com/) [20, 21]. This study was per-
formed in accordance with the ethical standards of the 
responsible committee on human experimentation and 
with the Helsinki Declaration of 1975.

Blood draws
Standard phlebotomy procedures were used to collect 
blood. Samples were obtained from critically ill ICU 
patients via indwelling venous catheters and immediately 
placed on ice. Maximum volumes were not exceeded 
per standard phlebotomy protocols. Following collec-
tion, samples were transferred to a negative pressure 
hood; after centrifugation, isolated plasma was aliquoted 
in 250 µL increments and frozen at − 80 °C. All samples 
remained frozen until use to avoid repeated freeze–thaw 
cycles.

Proximity extension assay
Plasma was thawed for PEA testing (Olink Proteomics, 
Sweden) as previously described [18, 19]. Specifically, we 
measured a total of 1161 plasma proteins in the plasma of 
critically ill sepsis patients and age-/sex-matched healthy 
controls. Each protein was targeted with two antibod-
ies, labelled with one oligonucleotide each, and having a 
region complementary to each other. The PEA was per-
formed in three steps: [1] antibody pairs, labelled with 
unique DNA oligonucleotides, were attached to their 
target antigen in plasma; [2] oligonucleotides that were 
brought into proximity hybridized and were extended 
by a DNA polymerase; and [3] the newly formed DNA 
barcode was amplified using qPCR. Individual samples 
were screened based on quality controls for immunoas-
say and detection, as well as degree of hemolysis. Intra-
assay variability was minimized via robotic pipetting for 
volume accuracy, and through normalization using three 
specifically engineered internal controls that were added 
to each sample, including one control for the incuba-
tion, one for the extension and one for the amplification. 

https://translationalresearchcentre.com/
https://translationalresearchcentre.com/


Page 3 of 15Van Nynatten et al. Clinical Proteomics           (2022) 19:50  

External negative control and plate control samples were 
included in each sample plate in triplicate to improve 
inter-assay precision. Following proteomic quality con-
trol, all 30 (15 healthy control subjects and 15 critically 
ill sepsis) participants were deemed suitable for analysis. 
The data generated were expressed as relative quantifica-
tion on the log2 scale of normalized protein expression 
(NPX) values. NPX values were rank‐based normal trans-
formed for further analyses.

Population statistics
Medians (interquartile ranges [IQRs]) and frequency (%) 
were used to report ICU patient baseline characteristics 
for continuous and categorical variables, respectively. 
Group differences in baseline characteristics between 
sepsis patients on Day-1 and Day-3 were examined with 
Wilcoxon signed-rank tests given the dependency of the 
data (GraphPad Prism Version 8.4.0; San Diego, Califor-
nia USA). Statistical differences in protein expression 
between healthy controls and sepsis patients on either 
Day-1 or Day-3 were examined with Mann–Whitney U 
tests. Temporal differences in protein expression amongst 
sepsis patients were analyzed using Wilcoxon signed-
rank tests. Statistical significance for protein expression 
between critically ill sepsis patients and healthy control 
subjects was adjusted for multiple comparisons using the 
Bonferroni correction (P < 0.05 post correction). As fewer 
proteins were analyzed for temporal differences between 
ICU Day-1 and Day-3, a P < 0.01 was considered statisti-
cally significant. Heat maps depicting Pearson correla-
tion values between proteins and clinical or biochemical 
parameters were created in R (http:// www.r- proje ct. org) 
using the ggplot2 version 3.3.3 package. Significant cor-
relations had a Pearson R-value of either 0.5 to 1.0 or -0.5 
to -1.0 and a P < 0.05. Pearson correlation values assess-
ing dynamic change (ICU Day-3 values minus ICU Day-1 
values) between proteins and clinical or biochemical 
parameters were examined using SPSS v.28 (IBM Corp., 
Armonk, NY, USA). There were no missing data for any 
clinical outcomes.

Machine learning
Machine learning was implemented to identify protein 
variation underlying differences in the proteomes of ICU 
Day-1 and Day-3 sepsis patients, versus healthy controls. 
Analyte data were visualized with a nonlinear dimen-
sionality reduction on the full matrix using the t-distrib-
uted stochastic nearest neighbour embedding (t-SNE) 
algorithm we have previously characterized [22]. t-SNE 
assumes that the ‘optimal’ representation of the data lies 
on a manifold with complex geometry, but low dimen-
sion, embedded in the full dimensional space of the raw 
data [23]. For feature selection, the raw data for each 

subject were ingested across subjects. A random for-
est classifier was trained on the variables to predict sep-
sis status. A random forest is a set of decision trees and, 
consequently, we were able to interrogate this collection 
of trees to identify the features that had the highest pre-
dictive value, or those features that frequently appeared 
near the top of the decision tree, for determining sepsis 
patients versus healthy controls. The feature matrices for 
ICU Day-1 and Day-3 critically ill sepsis patients were 
classified for patient outcome using a three-fold cross 
validation with a random forest of one hundred trees 
and max depth of six trees to reduce overfitting [24]. A 
Boruta feature selection method, based on random for-
est classifiers, was used to develop a reduced model using 
a training set (70%) and verified with a testing set (30%). 
The hyperparameter for the Boruta algorithm “percen-
tile” was set to 90. All machine learning analysis was 
done using Python 3.9, Scikit-Learn (v. 24.0) and Boruta 
Py (v. 0.3) [25, 26].

Results
Demographic, clinical and laboratory parameters for 
the 15 critically ill sepsis patients, as defined by Sep-
sis-3 criteria [2], are presented in Table  1. A pathogen 
was identified in one third of patients and consisted of 
Methicillin-Resistant Staphylococcus aureus (sputum), 
Methicillin-Susceptible Staphylococcus aureus (blood), 
Streptococcus pneumoniae (sputum), Metapneumovirus 
(sputum) or Micrococcus species (blood). All patients 
were intubated and mechanically ventilated at some 
point throughout their ICU admission (median 4  days; 
IQR 3–4), and three quarters required vasoactive medi-
cations. The median ICU stay was 5 days (IQR 4–6). Only 
1 of the 15 sepsis patients died, occurring in the ICU on 
Day-3 after blood work was drawn and clinical variables 
collected.

When comparing ICU patient clinical data on Day-1 
versus Day-3, statistically significant decreases in white 
blood cell count, neutrophils, lactate and the use of vaso-
active medications were observed (P < 0.05), suggesting 
overall patient improvement. Sepsis patients were intu-
bated for a median of 4 days (IQR 3–4), and the median 
length of hospital admission was 12 days (IQR 7–16).

Of the 1161 plasma proteins measured using PEA, 
feature selection identified those with a 90% or greater 
classification accuracy for identifying a critically ill sep-
sis patient when compared to healthy control subjects. 
Using the 90% classification model, 25 leading proteins 
were identified on ICU Day-1 (Table  2) and 26 leading 
proteins on ICU Day-3 (Table 3). Respective t-SNE plots 
of the leading classifying proteins illustrate that the pro-
teome of critically ill sepsis patients was distinct, recog-
nizable and easily separated from age- and sex-matched 
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Table 1 Demographic and clinical data

* P < 0.005

Variables Healthy control 
subjects

Critically ill sepsis patients 
ICU day-1

Critically ill sepsis patients 
ICU day-3

P-value

n 15 15 15 1.000

Age in years, median (IQR) 55 (51–61) 56 (51–61) 56 (51–61) 0.448

Sex, female: male 9:6 9:6 9:6 1.000

MODS, median (IQR) – 7 (5.0–8.0) 4 (3.5–7.0) 0.055

SOFA, median (IQR) – 7 (5.0–9.0) 6 (3.5–7.0) 0.012*
Laboratory, median (IQR)

 Hemoglobin (g/L) – 128.0 (109.0–147.0) 110.0 (87.0–120.0)  < 0.001*
 White Blood Cell  (109/L) – 15.9 (11.5–22.7) 12.2 (7.3–14.3) 0.002*
 Neutrophils  (109/L) – 12.9 (8.6–15.7) 9.8 (5.4–11.9) 0.006*
 Lymphocytes  (109/L) – 1.2 (0.7–1.7) 1.2 (0.7–1.6) 0.528

 Platelets  (109/L) – 182.0 (107.0–259.0) 116.5 (79.0–189.0)  < 0.001*
 Partial thromboplastin time (sec) – 23.0 (21.0–29.0) 24.0 (22.0–27.0) 0.805

 International normalized ratio ([PTt/PTn]
ISI)

– 1.0 (1.1–1.2) 1.0 (1.0–1.2) 0.313

 Creatinine (mmol/L) – 79.0 (56.0–106.0) 54.5 (47.0–70.0) 0.065

 Lactate (mmol/L) – 1.7 (0.9–3.2) 1.0 (0.9–1.2) 0.021*
Chest radiograph, n (%)

 Bilateral pneumonia – 3 (20.0) 3 (20.0) 1.000

 Unilateral pneumonia – 7 (46.7) 7 (46.7) 1.000

 Interstitial infiltrates – 1 (6.7) 1 (6.7) 1.000

 Normal – 4 (26.7) 4 (26.7) 1.000

 P/F Ratio, median (IQR) – 164.0 (130.0–273.0) 188.0 (151.5–282.0) 0.321

Interventions, n (%)

 Antibiotics – 15 (100.0) 15 (100.0) 1.000

 Antivirals – 1 (6.7) 0 (0) 0.309

 Steroids – 4 (26.7) 3 (20.0) 0.667

 Vasoactive medications – 11 (73.3) 5 (33.3) 0.028*
 High Flow Nasal Cannula – 0 (0) 1 (6.7) 0.309

 Noninvasive MV – 2 (13.3) 0 (0) 0.143

 Invasive MV – 15 (100.0) 12 (80.0) 0.068

Sepsis diagnosis, n (%)

 Suspected – 10 (66.7) – –

 Confirmed – 5 (33.3) – –

Comorbidities, n (%)

 Hypertension – 9 (60.0) – –

 Diabetes – 5 (33.3) – –

 Chronic Kidney Disease – 1 (6.7) – –

 Coronary Artery Disease – 0 (0) – –

 Chronic Heart Failure – 1 (6.7) – –

 Cancer – 1 (6.7) – –

 COPD – 3 (20.0) – –

Baseline medications, n (%)

 Antiplatelet – 6 (40.0) – –

 Anticoagulants – 3 (20.0) – –
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healthy control subjects (Fig. 1A, B). A total of 6 leading 
proteins overlapped on ICU Day-1 and Day-3 (PRTN3, 
UPAR, GDF8, CXCL13, NTRK3 and WFDC2; Fig. 1C).

The median plasma protein expression of the clas-
sifying proteins in both healthy control subjects and 
critically ill sepsis patients are shown for ICU Day-1 
(Table 2) and Day-3 (Table 3), with their respective Bon-
ferroni corrections. An alphabetized list of these pro-
teins with brief descriptions are provided in Additional 
file 1: Table S1. While the majority of normalized plasma 
protein expression were increased in critically ill sepsis 
patients compared to healthy control subjects, a small 
number were decreased. For the latter, CPA2, GDF8, 
NTRK3 and DSG4 all had lower median plasma expres-
sion on ICU Day-1 when compared to healthy control 
subjects (Table  2). Similarly, on ICU Day-3, CNTN5, 
GDF8, GCP5, NTRK3, ITGAV, GALNT7 and PLXDC1 
had lower median plasma expression as compared to 
healthy controls (Table 3).

Only a small number of plasma proteins significantly 
changed in critically ill sepsis patients from ICU Day-1 
to Day-3. Among the ICU Day-1 classifying proteins 
IL-10, CCL23, and TGFα1, significantly decreased in 

sepsis patient plasma by Day-3 (Fig. 2; Additional file 1: 
Table  S2). Of the ICU Day-3 classifying proteins, ST2, 
CNTN5, and ITGAV decreased significantly in median 
level from ICU Day-1 to Day-3 and VSIG4 increased sig-
nificantly in sepsis patient plasma between Day-1 and 
Day-3 (Fig. 2B).

We then investigated whether the normalized pro-
tein expression in critically ill sepsis patients were 
correlated with their clinical, hematologic and bio-
chemical parameters. On ICU Day-1 (Fig.  3A), OPG 
positively correlated with increasing MODS. TPP1 
and CCL20 positively correlated with the use of vaso-
pressors. In terms of hematologic parameters, PRTN3, 
CCL23, S100A11, CXCL13, ELOA, and FGR all posi-
tively correlated with increased white blood cell and 
neutrophil counts. OPG and SRP14 also positively cor-
related with neutrophilia. CPA2 positively correlated 
with lymphocyte count, and OPG negatively corre-
lated with lymphocyte count. In terms of biochemical 
parameters, OPG, UPAR, TGFα1 and WFDC2 posi-
tively correlated with increasing international nor-
malized ratio (INR). UPAR positively correlated with 
creatinine. Correlations of dynamic change (Day 3 

Table 2 Median plasma expression of the top 25 classifying proteins, ICU Day-1

Protein Healthy controls Sepsis day-1 Change P-value Corrected P-value

IL1RA 15.38 (13.22–19.66) 109.61 (83.37–142.19) ↑  < 0.0001 0.0015

IL6 4.16 (3.33–4.66) 169.24 (103.69–249.87) ↑  < 0.0001 0.0015

FGF21 58.31 (30.80–71.63) 498.68 (196.18–1735.47) ↑  < 0.0001 0.0015

OPG 2.95 (2.51–3.27) 7.47 (5.29–10.82) ↑  < 0.0001 0.0015

GDF15 3.90 (3.35–4.51) 15.80 (12.49–30.66) ↑  < 0.0001 0.0015

PRTN3 6.04 (4.79–7.27) 22.72 (17.19–29.89) ↑  < 0.0001 0.0015

UPAR 6.56 (5.83–7.88) 15.45 (11.52–30.35) ↑  < 0.0001 0.0015

CTSD 3.17 (2.67–3.42) 6.75 (4.54–8.26) ↑  < 0.0001 0.0015

DAG1 0.94 (0.88–1.01) 1.34 (1.25–1.51) ↑  < 0.0001 0.0015

TPP1 19.20 (17.12–20.23) 32.29 (29.31–50.82) ↑  < 0.0001 0.0015

IL10 8.31 (7.20–10.21) 55.64 (32.67–98.75) ↑  < 0.0001 0.0015

CCL23 628.15 (434.83–729.69) 2299.48 (1512.89–3088.85) ↑  < 0.0001 0.0015

CCL20 83.66 (62.37–101.75) 570.22 (401.45–819.50) ↑  < 0.0001 0.0015

CPA2 830.36 (591.96–906.17) 162.32 (79.99–329.63) ↓  < 0.0001 0.0015

GDF8 11.32 (9.56–16.78) 2.84 (2.54–3.48) ↓  < 0.0001 0.0015

NTRK3 107.56 (103.68–118.03) 67.96 (54.14–79.73) ↓  < 0.0001 0.0015

TGFα1 4.21 (4.04–5.21) 9.86 (7.20–16.83) ↑  < 0.0001 0.0015

WFDC2 374.19 (323.03–402.35) 851.42 (706.71–1441.42) ↑  < 0.0001 0.0015

CXCL13 134.98 (116.85–164.03) 408.14 (300.90–493.60) ↑  < 0.0001 0.0015

FGR 2.85 (2.20–3.29) 10.66 (8.25–15.97) ↑  < 0.0001 0.0031

S100A11 10.24 (9.33–11.50) 20.31 (16.91–22.85) ↑  < 0.0001 0.0031

DSG4 5.77 (5.55–8.46) 2.80 (2.04–3.83) ↓  < 0.0001 0.0046

ELOA 0.47 (0.46–0.57) 1.02 (0.86–1.44) ↑  < 0.0001 0.2090

NBN 1.82 (1.59–2.56) 4.89 (4.04–6.99) ↑  < 0.0001 0.2090

SRP14 2.87 (2.43–3.63) 9.93 (7.00–19.83) ↑  < 0.0001 0.2090
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minus Day 1) between normalized plasma protein 
expression and sepsis patient parameters are provided 
in Additional file  1: Table  S3. In this latter analyses, 
positive correlations reflect movement of both clini-
cal parameter and protein in the same direction, either 
increased or decreased, whereas negative correlations 
indicate divergence of the clinical parameter and pro-
tein in opposite directions.

Significant correlations between classifying pro-
teins and patient variables on ICU Day-3 are shown 
in Fig.  3B. NTproBNP positively correlated with 
MODS. CHI3L1 positively correlated, while ITGAV 
and PLXDC1 negatively correlated, with SOFA 
score. GCP5 negatively correlated with P/F ratio, and 
PLXDC1 negatively correlated with mechanical ven-
tilation. ST2 positively correlated with stress-ster-
oid administration. ANGPT2 negatively correlated, 
and ITGAV positively correlated, with hemoglobin. 
ANGPT2 also positively correlated with lympho-
cyte count. PLXDC1 positively correlated with plate-
lets. OPN and ASGR1 positively correlated with INR. 
UPAR, TNFR1, TNFRSF10A and WFDC2 positively 

correlated, while KIM1 negatively correlated, with cre-
atinine. ST2 negatively correlated with partial throm-
boplastin time, while positively correlated with lactate.

Discussion
In this study, we performed targeted, high-throughput 
plasma proteomic profiling of critically ill sepsis patients 
on ICU Day-1 and Day-3. We used PEA [18, 19] to meas-
ure 1161 plasma proteins, and confirmed distinct pro-
teomes in sepsis patients. Feature selection identified 
proteins that differentiate between critically ill sepsis 
patients and healthy control subjects with greater than 
90% accuracy, and provided a rank order of importance 
based on their ability to differentiate cohorts. Moreover, 
we identified correlations between normalized protein 
expression and clinical, hematological and biochemi-
cal parameters. These data will be valuable for future 
hypothesis-driven studies [22], particularly those inves-
tigating disease surveillance, organ dysfunction and out-
come prediction. In addition, the proteins identified here 
can be further evaluated with bioinformatics to aid our 

Table 3 Median plasma concentration of the top 26 classifying proteins, ICU Day-3

Protein Healthy Controls Sepsis Day-3 Change P-Value Corrected P-Value

TIMP1 17.58 (16.19–17.89) 40.17 (27.01–54.83) ↑  < 0.0001 0.0016

IL4RA 2.08 (1.90–2.22) 6.56 (3.63–8.15) ↑  < 0.0001 0.0016

PRTN3 6.04 (4.79–7.27) 21.62 (15.90–27.30) ↑  < 0.0001 0.0016

UPAR 6.56 (5.83–7.88) 13.75 (11.00–27.40) ↑  < 0.0001 0.0016

OPN 11.85 (9.44–15.29) 70.09 (43.82–78.26) ↑  < 0.0001 0.0016

CHI3L1 6.60 (5.82–8.32) 51.95 (27.92–68.54) ↑  < 0.0001 0.0016

ST2 5.00 (4.48–5.47) 44.50 (16.73–72.03) ↑  < 0.0001 0.0016

TNFRSF10A 5.33 (4.82–5.92) 10.20 (8.48–14.02) ↑  < 0.0001 0.0016

VSIG4 17.45 (14.62–19.43) 94.61 (47.58–203.81) ↑  < 0.0001 0.0016

ANGPT2 3.94 (3.37–4.07) 9.90 (7.78–16.06) ↑  < 0.0001 0.0016

NTproBNP 7.94 (5.64–12.64) 204.13 (66.21–817.22) ↑  < 0.0001 0.0016

GDF8 11.32 (9.56–16.78) 2.11 (1.61–2.88) ↓  < 0.0001 0.0016

PVR 218.29 (199.04–243.63) 309.93 (285.85–389.24) ↑  < 0.0001 0.0016

GCP5 14.86 (12.61–16.55) 6.36 (4.92–8.15) ↓  < 0.0001 0.0016

NTRK3 107.56 (103.68–118.03) 62.54 (49.32–70.67) ↓  < 0.0001 0.0016

ITGAV 26.03 (24.62–28.56) 15.99 (11.29–17.31) ↓  < 0.0001 0.0016

WFDC2 374.19 (323.03–402.35) 985.66 (767.97–1208.01) ↑  < 0.0001 0.0016

CXCL13 134.98 (116.85–164.03) 446.75 (279.79–716.64) ↑  < 0.0001 0.0016

GALNT7 16.62 (14.71–18.76) 9.52 (7.20–10.56) ↓  < 0.0001 0.0016

KIM1 110.58 (93.33–161.57) 590.88 (461.90–854.33) ↑  < 0.0001 0.0032

TNFR1 19.92 (17.61–23.92) 49.37 (33.71–86.61) ↑  < 0.0001 0.0032

SPINK1 7.53 (6.75–9.08) 75.56 (22.32–239.37) ↑  < 0.0001 0.0032

ASGR1 10.53 (9.60–11.96) 32.71 (20.44–42.41) ↑  < 0.0001 0.0032

CNTN5 24.25 (21.81–25.63) 8.72 (6.28–10.84) ↓  < 0.0001 0.0032

PLXDC1 7.34 (6.79–8.14) 4.71 (3.93–5.21) ↓  < 0.0001 0.2174

NPM1 11.89 (8.82–13.24) 30.37 (22.76–38.50) ↑  < 0.0001 0.7839



Page 7 of 15Van Nynatten et al. Clinical Proteomics           (2022) 19:50  

understanding of signalling pathways and potential ther-
apeutics targets.

The baseline characteristics and comorbidities 
recorded in our critically ill sepsis patients were similar 

to other studies that profiled plasma proteomes using a 
variety of immunoassay methods [10, 22]. Pathogens 
were identified in 33% of patients (4 bacteria and 1 viral). 
All sepsis patients required mechanical ventilation, with 

Fig. 1 Targeted proteomics accurately differentiates critically ill sepsis patients from healthy controls. In the upper section, t-SNE plots depict the 
separation between sepsis patients and healthy controls. Age- and sex-matched subjects plotted in 2D following dimensionality reduction of 
their respective proteomes by t-distributed stochastic neighbour embedding. Axes are dimensionless. The dimensionality reduction shows that 
based on plasma proteome, the two cohorts are distinct and easily separable. A Black dots represent ICU Day-1 patients and green dots represent 
healthy controls. B Orange dots represent ICU Day-3 patients and green dots represent healthy controls. C Proteins that feature selection identified 
as classifying proteins on both ICU Day-1 and Day-3 are shown in the Venn-diagram with overlap. Proteins in Red text were upregulated when 
compared to healthy controls, whereas proteins in Blue text were downregulated when compared to healthy controls

(See figure on next page.)
Fig. 2 Significant temporal differences in plasma protein expression from sepsis patients. Box plots illustrating statistically significant differences 
between sepsis patients on ICU Day-1 versus ICU Day-3. The green shading illustrates healthy control protein expression (5–95% percentiles). Three 
ICU Day-1 classifying proteins significantly decreased in concentration by Day-3 (IL-10, CCL23, and TGFα1), and three ICU Day-3 classifying proteins 
significantly decreased in concentration by Day-3 (ST2, CNTN5, and ITGAV). Only one ICU Day-3 classifying protein was upregulated by ICU Day-3 
(VSIG4). Median differences in protein concentrations were analyzed using Wilcoxon signed-rank tests, with P < 0.01 deemed statistically significant
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Fig. 2 (See legend on previous page.)
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most patients showing acute lung injury. Vasoactive med-
ications were required in 73% of sepsis patients. Despite 
relatively high MODS and SOFA scores, our sepsis 
cohort had a higher survival rate (14 out of 15 patients) 
than expected based on previous literature [27].

We identified novel sepsis protein biomarkers using 
PEA and feature selection. A threshold of 90% classifica-
tion accuracy was used to narrow the number of clinically 
relevant proteins for correlation studies: 25 proteins on 
ICU Day-1 and 26 proteins on ICU Day-3. The following 

Fig. 3 Correlations between normalized plasma protein expression and sepsis patient parameters on ICU Day-1 and Day-3. Heat maps of 
rank-based classifying proteins reported in Fig. 1 on ICU Day-1 (A) and ICU Day-3 (B) are illustrated (y -axis) along with patient parameters 
(x-axis). Only proteins that showed a significant correlation (P < 0.05) with at least one biochemical or clinical parameter are illustrated. Significant 
correlations had a Pearson R-value of ≥ 0.5 or ≤ -0.5 and P < 0.05, denoted by *. Positive correlations are depicted in red and negative correlations 
in blue. MODS Multiple Organ Dysfunction Score, SOFA Sequential Organ Failure Assessment, P/F arterial partial pressure of oxygen divided by the 
fraction of inspired oxygen concentration, MV mechanical ventilation, Vaso vasopressors, HgB hemoglobin concentration, WBC white blood cell 
count, PMN neutrophil count; Lymph lymphocyte count, PLT platelet count, PTT partial thromboplastin time, INR international normalized ratio, Creat 
creatinine concentration
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6 proteins overlapped on ICU Day-1 and Day-3: PRTN3, 
UPAR, GDF8, NTRK3, WFDC2 and CXCL13.

Only a small number of plasma proteins changed sig-
nificantly between ICU Day-1 and Day-3 in critically 
ill sepsis patients, with decreased expression in IL10, 
CCL23, TGFα1, ST2, CNTN5, and ITGAV, and increased 
expression of VSIG4. CCL23 is a chemokine that is highly 
chemotactic for T-cells and monocytes, and has reported 
age-related differences in sepsis [28]. IL10 is an anti-
inflammatory cytokine previously reported to be upregu-
lated in septic shock, whose impact on clinical outcome 
is still unclear [29, 30]. TGFα1 is a mitogenic peptide 
(signalling through epidermal growth factor receptors 
triggering a kinase cascade) that has been found in bron-
choalveolar lavage samples in ARDS correlating with 
lung injury and mortality [31]. ST2 is a member of the 
IL1R family that has roles in cardiac disease and cardio 
protection, and serves prognostic value after myocardial 
infarction. CNTN5, a member of the immunoglobulin 
superfamily, is a glycosylphosphatidylinositol-anchored 
membrane protein known to mediate nervous system 
development, which is relatively unexplored in sepsis [32, 
33]. ITGAV is an integrin mediating cell adhesion (dis-
cussed below). VSIG4 encodes immunoglobulin domains 
that are structurally similar to the B7 family proteins, act-
ing as a negative regulator of T-cell responses [34]. Taken 
together, each of the above proteins help to coordinate 
inflammatory responses. Both IL10 and TGF family pro-
teins have been previously investigated as therapeutic tar-
gets in interventional trials, largely due to their measured 
serum changes in sepsis patients [35]. Polymorphisms in 
IL10 genes have also been associated with altered sepsis 
mortality and risk of ICU admission, highlighting IL10 
as a potential therapeutic target [36]. Given that little 
is known about temporal protein expression in sepsis 
patients receiving ICU therapies [37, 38], these identified 
proteins may represent a targeted pool that hold specific 
value to understanding the host responses. Temporal 
proteomic analysis may also identify specific proteins 
with unique roles in disease pathophysiology beyond the 
acute illness phase, and provide prognostic information 
for those patients who have longer ICU admissions [39].

Significant correlations occurred between several 
proteins and parameters of disease severity, ventila-
tion, and need for vasoactive agents. On ICU Day-1, 
OPG uniquely correlated with MODS, consistent with 
previous studies showing OPG as a biomarker of dis-
ease severity and mortality in sepsis [40]. OPG was first 
implicated in osteoclast regulation, yet recent evidence 
suggests emerging roles in vascular and immune biology 
[41]. Recently, OPG levels in sepsis were shown to cor-
relate with markers of endothelial dysfunction, raising 
the possibility that endothelial dysfunction is mediated 

by OPG and resulting in end-organ dysfunction [42]. By 
ICU Day-3, only NTproBNP positively correlated with 
MODS. NTproBNP is secreted by the cardiac ventri-
cles in response to ventricular expansion and pressure 
overload to promote natriuresis [43, 44]. With sepsis, 
NTproBNP expression may be influenced by fluid resus-
citation and volume overload, resulting in increased 
myocardial stretch. Indeed, NTproBNP levels are used 
clinically for cardiac and perioperative risk stratification 
[45], suggesting it may provide similar risk stratification 
in sepsis patients.

Only CHI3L1 positively correlated with SOFA score. 
CHI3L1 is known to regulate tissue injury, repair 
and  inflammation with strong associations in asthma, 
cancer, diabetes, cirrhosis, and coronary artery disease 
[46]. Moreover, previous cohort studies have documented 
the ability of CHI3L1 to predict outcome in infectious 
and inflammatory diseases [47, 48], highlighting this pro-
tein as an inadequately studied modulator of sepsis [47]. 
In contrast, ITGAV and PLXDC1 negatively correlated 
with SOFA score on ICU Day-3. ITGAV is an integral 
membrane protein, which regulates signal transduction, 
gene expression, proliferation, apoptosis, angiogenesis, 
invasion and metastasis [49]. ITGAV is also thought to 
preserve hematopoietic stem cells in the bone marrow 
[50], and regulate adipocyte proliferation and differentia-
tion [51]. PLXDC1 is expressed on vascular endothelium, 
serving as a receptor for PEDF, with involvement in cap-
illary morphogenesis [52, 53]. Collectively, proteins that 
correlate with MODS and SOFA scores may complement 
these clinically validated prognostication scores to pro-
vide more accurate diagnostic certainty [54].

Correlations were not significant for acute lung injury, 
including both P/F ratio and rates of mechanical venti-
lation, on ICU Day-1; however, these correlations were 
significant by Day-3. GCP5 negatively correlated with 
P/F ratio. GCP5 is a component of the gamma tubulin 
complex facilitating microtubule nucleation and centro-
some assembly [55], suggesting a role in cell division and 
migration. The exact clinical significance of GCP5 in lung 
injury remains unknown. PLXDC1 negatively correlated 
with mechanical ventilation, as well as SOFA (reported 
above). As a receptor for PEDF, PLXDC1 may play a pro-
tective role in the pulmonary system. For example, PEDF 
is associated with a variety of pulmonary diseases such 
as idiopathic pulmonary fibrosis, lung cancer and COPD 
[56–59]. PEDF also has been associated with capillary 
permeability and septic shock [60, 61]. Given the role of 
PLXDC1 endothelial regulation, further investigation in 
sepsis is warranted with particular focus on alveolar-cap-
illary unit.

Vasoactive agents are often necessary to maintain ade-
quate end-organ perfusion. TPP1 and CCL20 positively 
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correlated with the need for vasopressors on ICU Day-
1. The serine protease TPP1 regulates lysosomal proteins 
[62], as well as mitochondrial trafficking and cellular 
metabolism [63], suggesting a role in cellular metabolism 
[64].The chemokine CCL20 regulates innate immunity 
and inflammation in skin and mucosa [65], is upregulated 
by LDL in smooth muscle of vascular structures, and is a 
reported biomarker for aortic aneurysms [66, 67].

Multiple proteins expressed by immune cells positively 
correlated with either total white blood cell count or neu-
trophil count on ICU Day-1, including OPG, PRTN3, 
CCL23, SRP14, S100A11, CXCL13, ELOA, and FGR. 
Uniquely, OPG (described above), positively correlated 
with neutrophilia and negatively correlated with lym-
phocytosis. The serine protease PRTN3 is produced and 
secreted by granulocytes, and is implicated in endothelial 
dysfunction during sepsis [68], while also having roles in 
organizing immune responses and autoimmune disease 
[69–71]. The chemokines CCL23 and CXCL13 attract 
immune cells [72], with CXCL13 affecting lymph node 
organization, B-cell migration, and chronic inflammatory 
diseases [73, 74]. SRP14, which traffics secretory pro-
teins through the endoplasmic reticulum, and ELOA, a 
subunit of the transcription factor B (SIII) complex, may 
aid protein synthesis by immune cells during sepsis [75, 
76]. S100A11 and FGR both regulate cellular migration 
and motility [77–79]. Their positive correlations with 
leukocyte and neutrophil counts may reflect leukocytes 
extravasating into tissues during sepsis. CPA2, a car-
boxypeptidase expressed by pancreatic tissue [80], was 
positively correlated on ICU Day-1 with lymphocytosis. 
As there are few published studies on CPA2 and immune 
regulation, further investigations are warranted. Interest-
ingly, OPG and CPA2, emerge as potential key early reg-
ulators of either a neutrophilic or lymphocytic immune 
response in sepsis. Collectively, the identified correla-
tions highlight the complexity of host response in sepsis, 
and suggest that these proteins could play central roles in 
cellular activation and migration.

By ICU Day-3, there were far fewer significant hema-
tologic correlations compared to ICU Day-1. ITGAV 
(described above) positively correlated with hemoglobin 
titre. ANGPT2 negatively correlated with hemoglobin 
titre, but positively correlated with lymphocytosis. 
ANGPT2 prognosticates shock and death in critically ill 
patients [81], and is expressed by the vascular endothe-
lium where it interacts with Tie and VEGF proteins to 
regulate angiogenesis, while demonstrating both pro- and 
anti-inflammatory properties [82]. PLXDC1 (described 
above) correlated with platelets on ICU Day-3.

There were significant correlations with INR. On ICU 
Day-1, OPG, TGFα1, WFDC2 and UPAR positively cor-
related with INR. OPG (discussed above) has emerging 

roles in vascular and immunobiology [41]. TGFα1 regu-
lates cell proliferation, differentiation and development 
through binding epidermal growth factor receptors, with 
a specific role in tissue regeneration [83, 84]. WFDC2, 
also known as HE4, is an anti-protease that promotes 
angiogenesis [85–87] and is associated with kidney [88, 
89] and lung [90] fibrosis. Elevated UPAR has been asso-
ciated with lupus, cardiovascular disease, pancreatitis, 
cirrhosis and COVID-19 pathogenesis [91]. On ICU 
Day-3, OPN and ASGR1 positively correlated with INR. 
OPN is a matricellular protein that interacts with integ-
rins to mediate cell motility, and promotes cell-mediated 
immune responses; it is involved in atherosclerosis, glo-
merulonephritis, cancer, and chronic inflammation, 
while also serving in biomineralization and inhibit-
ing vascular calcification [92]. OPN was reported to be 
elevated in sepsis patients previously [93]. ASGR1 is a 
transmembrane protein that mediates endocytosis and 
lysosomal degradation of glycoproteins [94]. INR corre-
lations suggest that these proteins may contribute to the 
consumptive coagulopathies and hepatic injury that often 
occur in sepsis, which greatly impact mortality and mor-
bidity [95, 96].

KIM1, TNFR1, TNFRSF10A, UPAR (described above) 
and WFDC2 (described above) were correlated with 
creatinine, suggesting an association of these proteins 
with renal injury. KIM1, a type-I cell surface glycopro-
tein, negatively correlated with creatinine. As an acute 
marker of early acute kidney injury, KIM1 is predic-
tive of long-term renal outcome [97] and is reported to 
have protective functions in renal ischemia–reperfusion 
injury, promote renal graft recovery, have a role in renal 
cancer pathophysiology and serve as a biomarker for 
sepsis-induced acute kidney injury [98–102]. The tumor 
necrosis and transforming growth factor protein fami-
lies have well-known roles in cellular migration, growth, 
differentiation, and tissue repair [103], as well as critical 
roles in mediating the cytokine storm in sepsis [104]. As 
renal failure is an independent risk factor for morality in 
sepsis, the identification of protein markers associated 
with renal dysfunction may provide important prognos-
tic information [105, 106].

Lactate is a critical marker of end-organ perfusion in 
sepsis. ST2 positively correlated with lactate on ICU 
Day-3. ST2, has been best characterized in cardiac dis-
ease, whereby myocardial stretch or myocyte injury 
results in ST2 upregulation and secretion of soluble 
ST2 that binds with IL33 to regulate cardiac response 
to injury [107]. ST2 also has elucidated roles in T-cell 
regulation, through interplay with IL33 and down-
stream transcriptional effects [108]. Relevant to sepsis, 
ST2 correlates with mortality and facilitates endothe-
lial permeability [109, 110]. Moreover, ST2 negatively 
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correlated with PTT and positively correlated with 
steroid therapy in our study. The latter correlation 
between ST2 and steroid dosing may relate to hydro-
cortisone-induced shock reversal [111], and subsequent 
improvements in lactate. New biomarkers of end-organ 
perfusion could impact management decisions in sep-
sis, as lactate can be unreliable in certain circumstances 
such as administration of vasoactive agents or con-
founding causes of Type B and D lactic acidosis [112, 
113].

Correlations of dynamic change from ICU Day-1 
to Day-3 between normalized plasma protein expres-
sion and sepsis patient parameters revealed interesting 
temporal findings, particularly for plasma chemokines. 
For example, a temporal decrease in CCL23 correlated 
with increased P/F ratio and decreased lactate, sug-
gesting improved lung function and oxygen delivery. A 
decrease in CCL20 expression with time also correlated 
with decreased lactate. In contrast, a temporal increase 
in CXCL13 expression correlated with increased MODS 
and both decreased P/F ratio and worsening coagulopa-
thy (increased INR and PTT).

Our study has several limitations. First, due to the cost 
of proteomics, we studied a relatively small sample size; 
however, our sample size is on par with a subset of other 
published exploratory studies investigating proteomic 
variation in sepsis [114]. Second, the limited dataset 
could also result in the random forest model overfitting; 
however, our use of conservative parameters would help 
mitigate this potential risk (three-fold cross-validation, 
number of trees was limited to 100 and the maximum 
depth of the trees was limited to 6). Third, given our 
incomplete knowledge of sepsis, and the proteins identi-
fied here within, we cannot propose direct links or mech-
anisms. Nonetheless, our exploratory study provides 
excellent background for hypothesis-generation. Fourth, 
given the improved SOFA scores, lactates and vasopres-
sor requirements, the majority of our sepsis patients 
clinically improved from ICU Day-1 to Day-3, raising the 
possibility that our data might not have adequately cap-
tured proteome changes in sepsis patients who clinically 
deteriorate, and highlights the need for future studies 
with subgroup analysis. Finally, we identified pathogens 
(culture positive sepsis) in only 33% of all sepsis patients; 
however, identification of pathogens by culture ranges 
from 28 to 89% of patients [115, 116].

Conclusions
In conclusion, we present an exploratory study of high-
throughput, targeted plasma proteomics from critically 
ill sepsis patients. Utilizing both machine learning and 
conventional statistics, we narrowed protein number 

for correlative investigations with clinical and labora-
tory parameters. Our exploratory data identified pro-
teins that may serve as the targets for future hypothesis 
generating studies, including those investigating dis-
ease surveillance, organ dysfunction and outcome pre-
diction. Furthermore, these data may be used to better 
understand the host response to both infection and 
interventions, including future studies investigating 
cellular and organ deconvolution, signalling pathways 
and drug repurposing.
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