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Abstract 

Introduction Proteomic analysis of human plasma by LC–ESI–MS/MS has discovered a limited number of new cel‑
lular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID‑19 plasma 
has indicated the re‑purposing of known biomarkers that might be used as prognostic markers of COVID‑19 infection. 
However, multiple molecular approaches have previously indicated that the SARS‑COV2 infection cycle is linked to 
the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative 
enzymes.

Methods Human plasma from COVID‑19 and ICU‑ARDS was analyzed by classical analytical biochemistry techniques 
and classical frequency‑based statistical approaches to look for prognostic markers of severe COVID‑19 lung damage. 
Plasma proteins from COVID‑19 and ICU‑ARDS were identified and enumerated versus the controls of normal human 
plasma (NHP) by LC–ESI–MS/MS. The observation frequency of proteins detected in COVID‑19 and ICU‑ARDS patients 
were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square 
(χ2) distribution.

Results PCR showed the presence of MT‑ND1 DNA in the plasma of COVID‑19, ICU‑ARDS, as well as normal human 
plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in 
COVID‑19 and ICU‑ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by 
dot blotting on PVDF against a purified cytochrome c standard preparation for  H2O2 dependent reaction with luminol 
as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID‑19 and ICU‑ARDS 
patients.

Discussion The results from PCR, LC–ESI–MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that 
mitochondrial components were present in the plasma, in agreement with the established central role of the mito‑
chondria in SARS‑COV‑2 biology. The cytochrome activity assay showed that there was the equivalent of at least 
nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC–ESI–MS/MS. The 
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release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity 
of cell damage and lung injury in COVID‑19 infection and ICU‑ARDS.

Graphical Abstract

Introduction
Proteomic analysis of COVID-19 patient plasma has 
previously indicated that AZGP1, B2M, CRP, HP, HPR, 
ORM, RBP4, and some SAA may be repurposed as bio-
markers of COVID-19 [1–11]. Infection with SARS-
CoV-2 resulting in COVID-19 may have some symptoms 
similar to patients experiencing Acute Respiratory Dis-
tress Syndrome (ARDS) [12]. The SARS-CoV-2 spike 
protein may be cleaved by a protease presumed to be 
TMPRSS2 to gain entry to the cell through the ACE2 
receptors [13]. Subsequently, the spike protein may act as 
a trigger of apoptosis via a mitochondrial pathway [14]. 
The release of mitochondrial cytochrome is known to 
trigger apoptosis of cells [15]. Viral infection resulted in 
major re-arrangements of cellular compartments includ-
ing mitochondrial perinuclear clustering, association 
with the ER and Golgi apparatus, and the fission of mito-
chondria with the release of reactive oxygen species [16]. 
The mitochondria may play a central role in the physi-
cal interactions of SARS-CoV-2 during the viral replica-
tion cycle [17]. Expression of mitochondrial porin forms 
a channel for the release of macromolecules from the 
mitochondria organelle into the cytoplasm of COVID-
19 patients and thereby acts as a cell death regulator [18]. 
Viral infection may permit the escape of large molecules 
like mitochondrial DNA and proteins into the cytosol 

[8, 19–21]. The mitochondrial NADH dehydrogenase 
complex (MT-ND) is the main source of reactive oxygen 
species like  H2O2 in the cell [22]. The release of reac-
tive oxygen species from the mitochondria apparently 
impacts the capacity for viral replication and may help 
regulate a pathway towards apoptosis in response to viral 
infection [23]. Genetic knockout, overexpression and 
radical scavengers indicate that the MT-ND complex and 
the production of reactive oxygen species in the mito-
chondria play a role in governing viral replication [16, 
18, 24, 25]. The Tumor Necrosis Factor (TNF) response 
to viral infection triggers the mitochondrial activity that 
oxidizes luminol in the presence of reactive oxygen spe-
cies [26, 27]. Infection by SARS-CoV-2 may lead to the 
loss of mitochondrial components into the extracellular 
space [28]. The cytochrome complex members including 
cytochromes like CYB, CYC, CYTB, cytochrome oxidase 
(MT-COX) and MT-ND from the mitochondria may play 
a role in  H2O2 dependent luminol oxidase activity in vivo 
or in vitro [27, 29–32].

Plasma from COVID-19 patients was compared to ICU 
patients in Acute Respiratory Distress (ICU-ARDS) and 
Normal Human plasma EDTA using manual biophysi-
cal and biochemical sample preparation. The detection 
of human plasma proteins by precipitation, preparative 
quaternary amine chromatography, tryptic digestion and 
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collection by micro C18 disposable resin (ZipTip) for 
immediate acid dilution and manual injection for nano 
spray liquid chromatography and tandem mass spec-
trometry of peptides (LC–ESI–MS/MS) is a laborious 
but effective means to attain sensitivity in blood plasma 
analysis [33, 34]. Here, the analysis of protein obser-
vation frequency of tryptic peptides by tandem mass 
spectrometry [35] alongside random and noise MS/MS 
spectra led to the discovery of new prognostic molecules 
specific to severe lung damage from COVID-19 infec-
tion and ICU-ARDS, such as mitochondrial cytochrome 
components. The experiments discovered components 
of the cytochrome electron transport system including 
CYCB, CYTB, CYC, CYP, MT-ND5 and MT-COX that 
were increased in the plasma of COVID-19 patients com-
pared to normal controls. PCR analysis of mitochondrial 

MT-ND1 DNA, LC–ESI–MS/MS of plasma proteins 
and luminol oxidase assays were consistent to indicate 
the presence of macromolecule components associated 
with the cytochrome system in the plasma of COVID-19 
patients.

Materials and methods
Materials
The Dionex UltiMate 3000 series UHPLC, C18 Acclaim 
PepMap NanoLC column (75 μm ID, 25 cm length C18), 
Fusion Lumos Q-Orbitrap-LTQ Tribrid MS (OIT) tan-
dem mass spectrometer [36], LTQ XL linear ion trap 
(LIT) mass spectrometer [37] and Trizol reagent was from 
Thermo Fisher Scientific (Waltham, MA, USA). The 1100 
HPLC was from Agilent (Santa Clara, CA, USA). Trypsin, 
salts, buffers, and luminol,  H2O2, 4-iodophenylboronic 
acid (4IPBA) were obtained from Sigma Aldrich (St. 

Fig. 1 Agarose gel electrophoresis and GelRed Staining of PCR products from mitochondrial DNA in human plasma with mitochondrial MT‑ND1 
specific primers. A PCR analysis of representative COVID‑19, ICU‑ARDS and NHP plasma samples; B the variation in COVID‑19 and ICU‑ARDS PCR 
amplification. The PCR conditions were 40 cycles, lid temp 105 °C, 25 µL reaction volume, 94 °C melting (30 s), 58 °C annealing (1 min), 72 °C 
extension (1 min). Template DNA was extracted from plasma with Trizol. Serum from the Luxembourg cohort was used as Normal Human Plasma 
(NHP) healthy controls
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Louis, MO, USA). The quaternary amine (QA) resin on a 
ceramic support was from BIORAD (Hercules, CA, USA). 
The HPLC grade water, ethanol, acetone and acetonitrile 
were obtained from Caledon Laboratories (Georgetown, 
Ontario, Canada). The 0.45 micron PVDF was from Mil-
lipore (Burlington, MA, USA). The imaging workstation 
was from BIORAD (Hercules, CA, USA).

Plasma sample collection
The presence of SARS-CoV-2 infection was confirmed by 
nasal PCR and serology assays at St. Michael’s Hospital, 
Toronto. EDTA plasma tubes were rapidly inverted 5 times 
before packing in ice [38]. The ice-cold plasma was then 
separated from blood cells at ≤ 3,000 RCF for 15  min at 
4 °C prior to aliquoting to ≥ 1 ml prior to freezing at − 80 
°C prior to analysis. Plasma from COVID-19 patients was 
compared to acute respiratory distress (ARDS) patients 
in the ICU and normal healthy volunteers under eth-
ics protocol REB# 20-078. There were 16 COVID positive 
patients by nasal PCR and serology that were sampled three 
times, 2 individuals sampled twice and 1 individual sam-
pled once, for a total of 19 individuals. A total of 16 ICU 
patients in acute respiratory distress were each sampled 
three times. Normal human plasma (NHP) contained 31 
samples including 15 healthy normal volunteers from St. 
Michael’s hospital and a reference set of 16 normal human 
plasma from the International Biobank of Luxembourg of 
the Luxembourg Institute of Health (LIH) collected under a 
Comité National d’Ethique de Recherche (CNER) Protocol 
201107/02 “Biospecimen Research” at the Centre Hospital-
ier de Luxembourg [39]. Five individuals with COVID and 
4 normal plasma were analyzed by high-resolution OIT as 
an analytical reference. Subsequently, aliquots were thawed 
on ice, centrifuged at 12,000 RCF for 5 min at 4 °C to sepa-
rate any cellular debris, and aliquoted to 25 µl samples on 
ice and refrozen for following analysis. Plasma samples of 
25 μl were stored on ice and used for protein analysis.

Mitochondrial PCR
The MT DNA was extracted from human plasma using the 
phenol/guanidine isothiocyanate method with the com-
mercial product Trizol. The ND1 forward primer was ND1F 
5′-ACT ACA ACC CTT CGC TGA CG-3′ and the reverse 
primer ND1R was 5′-GAA GAA TAG GGC GAA GGG GC-3′ 
that together yield an expected product of 538 bp [19]. The 
PCR [40] conditions were: 40 cycles, lid temp 105  °C, 25 
µL reaction volume, 94  °C melting (30  s), 58  °C annealing 
(1  min), 72  °C extension (1  min). The PCR products were 
separated by a 1.5% Agarose gel run at 100  V for 2  h and 
stained with GelRed by a minor modification of the method 
of Huang et al. [41].

Plasma precipitation
Plasma samples (25 µL) were precipitated with 9 volumes 
of acetonitrile 90% final (v/v) and centrifuged at 12,000 
RCF for 15  min at room temperature. The acetonitrile 
was removed with a pipette and pelleted material dried 
under vacuum overnight. The proteins were then resus-
pended in 250 µL of 20  mM Tris pH 8.85 on ice with 
occasional vortex, brief centrifugation at 14,000 RCF, 
and the dissolved proteins were collected from insoluble 
components with a pipette. The resuspended proteins 
were assayed for protein content using the Dumbroff 
assays against BSA standards [42].

Quaternary amine (ammonium) chromatography
The precipitated, dried and re-dissolved plasma proteins 
were diluted in 250 µL of 20 mM Tris pH 8.85 and loaded 
on quaternary amine resin, washed with 5 column vol-
umes of loading buffer and eluted in 200 µL of 300 mM 
NaCl with 20 mM Tris pH 8.85 [43].

Tryptic digestion
Tryptic digestion was performed in 600 mM urea and 5% 
ACN at 1/100 trypsin to protein overnight in 20 mM Tris 
pH 8.5. The samples were then reduced in 2 mM DTT for 
20 min at 50 °C. The samples were digested again at 1/100 
trypsin to protein for 2  h and quenched with 5% acetic 
acid.

LC–ESI–MS/MS
The plasma from COVID-19, ICU patients and the nor-
mal samples were analyzed in technical triplicate. Pro-
teins from human blood fluid that were precipitated in 
acetonitrile (ACN) [44], re-dissolved 20 mM tris pH 8.85 
and collected over preparative quaternary amine ion 
exchange resin [43] and digested to fully tryptic peptides, 
collected over preparative C18 ZipTip resin in 5% formic 
acid and were diluted in 18 µL of 5% formic acid imme-
diately prior to injection via a 20 µL loop [45]. A total 
of ~ 5 µg of extracted and purified peptides was injected 
for each analytical HPLC separation over a 150 micron 
ID column (15  cm) with inline filter frits. The peptides 
were ionized by nano spray of the solvent gradient gen-
erated at 2 µL per minute split to a flow of ~ 200 nL per 
minute with a transfer capillary temperature of ≤ 250 °C 
into a Thermo Electron Corporation LTQ XL linear 
ion trap (LIT) mass spectrometer [37]. The peptides 
were randomly and independently sampled from 150 to 
2000 m/z as the peptides eluted from the HPLC column 
into the nano electrospray source. A reference database 
was created using high-resolution trihybrid mass spec-
trometry where identical COVID-19 and NHP samples 
were analyzed by UPLC using Dionex UlitMate 3000 
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series over an Acclaim PepMap 100 C18 HPLC column 
(Thermo) C18, 2uM, ID: 0.075  mm × 250  mm for the 
orbital ion trap (OIT) [36, 46].

Peptide MS/MS spectra correlation analysis
The LC–ESI–MS/MS spectra and the results of the cor-
relation algorithms were parsed into an SQL Server Data-
base for analysis with the R system [33]. A physical filter of 
at least one thousand (E3) intensity counts for peptide par-
ent ions was used to limit noise MS/MS spectra. The MS/
MS spectra were fit to the peptides of the non-redundant 
human UNIPARC human proteins. The MS/MS spectra 
were fit by fully tryptic enzyme specification with a charge 
state of  2+or  3+ with up to three missed cleavages by 
SEQUEST [47], and X!TANDEM [48] using the default ion 
trap setting of fragments within 0.5 Da and within ± 3 m/z 
for the calculated peptide [M +  H]+ [33, 34, 49–52]. The 
MS/MS spectra were fit to fully tryptic or phosphotryptic 
peptides by SEQUEST and to optional phospho/tryptic 
peptides by X!TANDEM. All the Gene Symbols presented 
showed p-values and FDR corrected q-values of < 0.01 
from the Chi Square comparison of authentic observation 
frequency to that of the Monte Carlo simulation with com-
puter generated random MS/MS spectra and random MS/
MS from blank injection noise [34, 39, 50–54].

Computational analysis in SQL and statistical analysis 
with R
The LC–ESI–MS/MS results from samples and blank 
controls together with the results of the X!TANDEM and 
SEQUEST algorithms were collected and redundancy 
filtered out in SQL Server followed by statistical analy-
sis performed with the R statistical system and biologi-
cal connections represented using STRING algorithm 
[55]. The total number of MS/MS spectra from precur-
sors greater than E3 intensity was used to normalize the 
observation frequency from the SEQUEST algorithm 
between the COVID-19, ICU-ARDS and NHP treat-
ments for summation and Chi Square χ2 comparisons. 
The number of manually prepared samples and manual 
injection LC–ESI–MS/MS runs for each treatment were: 
Covid positive patients (COVID-19), 165 LC–ESI–MS/
MS runs with a sum of 3,116,582 MS/MS spectra ≥ E3 
intensity; Normal human plasma (NHP), 93 LC–ESI–
MS/MS runs with a sum of 1,846,168 MS/MS spec-
tra ≥ E3 intensity; and ICU acute respiratory distress 
syndrome (ARDS) control, 144 LC–ESI–MS/MS runs 
with a sum of 2,746,085 MS/MS spectra ≥ E3 intensity. 
The observation frequency for the ICU-ARDS and NHP 
treatments from the random and independent sampling 
of all plasma in triplicate by the LIT was corrected by the 
equations:

Luminol oxidase activity
Cytochrome such as CYB, CYC, CYTB, CYP and the 
electron transport components such as the MT-COX 
and MT-ND proteins observed in the plasma have been 
previously shown to play a role in the reaction of luminol 
in the presence of  H2O2 to yield a chemiluminescent sig-
nal [27, 29–32]. One µL sample of the plasma proteins, 
alongside known amounts of Cytochrome C preparation 
in the same buffer, was spotted directly onto PVDF using 
a pipette [56]. The total luminol oxidase enzyme activ-
ity was measured using ECL solution containing 4-iodo-
phenylboronic acid (4IPBA) (100 mM Tris/HCl pH 8.85, 
2.5 mM luminol, 0.4 mM 4IPBA, 2.6 mM Hydrogen per-
oxide) that generated strong specific signals and low back-
ground [57] on a BIORAD image analysis workstation.

Results
Mitochondrial PCR
The polymerase chain reaction (PCR) [40] showed 
mitochondrial DNA encoding the cytochrome elec-
tron transport complex component NADH dehydroge-
nase 1 (MT-ND1) was detectable in the plasma of most 
COVID-19 as well as ICU-ARDS patients. The presence 
of MT-ND1 DNA in the plasma was also detected in 
some normal human plasma (Fig.  1A). MT-ND1 DNA 
showed variation across individual COVID-19 and ICU-
ARDS patients after PCR amplification, agarose electro-
phoresis and fluorescent staining (Fig. 1B) in agreement 
with previous results [19]. Thus macromolecule compo-
nents from the mitochondria were clearly observed in the 
plasma of COVID-19 and ICU-ARDS patients as well as 
NHP controls.

Comparison of COVID‑19 vs NHP and ICU‑ARDS
The observation frequency of proteins from COVID-
19 plasma was compared to those of ICU-ARDS and/or 
Normal Human Plasma (NHP) by One Way ANOVA, 
and the Chi Square test χ2, which revealed some proteins 
showed significant variation in the plasma across the dis-
ease and control treatments. All proteins reported herein 
were shown to have a low rate of type I false positive 
identification of p ≤ 0.01 versus the Monte Carlo simula-
tion of random MS/MS from computer random numbers 
or random physical noise with FDR values q ≤ 0.01 [50, 
52–54]. Analysis of COVID and normal samples by nano 

(1)

ICU Observation frequency

= ICU Count ∗ (�COVID MS/MS/�ICU MS/MS)

(2)

NHP Observation frequency

= NHP count ∗ (�COVID MS/MS / �NHPMS/MS)
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electrospray with a tri-hybrid orbital trap, a highly resolv-
ing mass spectrometer, showed good agreement on many 
of the proteins identified with the linear ion trap (LIT).

Plasma proteins
The majority of human protein gene symbols from serum 
proteins showed nearly identical observation frequency 
between COVID-19 versus normal controls (NHP) or 
severe respiratory distress ICU-ARDS. Plasma proteins 
including AAT, ABO, APP, FGA, HPX, ITIH4, PON and 
others showed similar or higher observation frequency in 
NHP compared to COVID-19 (Table 1).

Acute phase plasma proteins
A small minority of proteins that included acute phase 
markers increased in COVID-19 versus the controls 
based on counts of tryptic (TRYP) or phospho/tryptic 
(STYP) peptides with Chi-Square score of greater than 
800 (χ2 ≥ 9, p ≤ 0.01) (Table 1). The observation frequency 
of the acute response serum proteins such as AZGP1, 
B2M, CRP, HP, HPR, ORM, RBP4, and some SAA was 
dramatically increased in COVID-19 compared to NHP 
plasma and showed agreement with previous studies 
[1–11]. In contrast AAT and transferrin (TF) showed a 
sharp decline in COVID-19. However, the observation 
frequency of CRP, AAT, FGA, S100, SAA1 and others 
was often greater in ICU-ARDs or COVID-19 compared 
to normals, therefore these proteins were not specific 
markers of COVID-19 infection but rather reflected lung 
damage (Table 1).

Apolipoproteins
Many apolipoproteins were dramatically reduced in 
COVID-19 compared to NHP or ICU-ARDS plasma. The 
apolipoproteins APOA1, APOA2 and APOA4 showed 
a 30% to 90% decline in COVID-19 and/or ICU-ARDS 
observation frequency compared to Normals (NHP). The 
deficiency in apolipoproteins levels in COVID-19 com-
pared to normal human plasma (NHP) and ICU-ARDS 
patients was most pronounced for APOA1, APOA2, 
APOA4, APOC3 and APOE (Table  2). In contrast, 
APOBR was apparently increased in ICU-ARDS. Some 
proteins such as APOA1BP binding protein were con-
stant over all treatments.

Mitochondrial and cytochrome proteins
Mitochondrial and cytochrome proteins were observed 
to be elevated in the plasma of COVID-19 patients ver-
sus the ICU-ARDS and NHP controls. The observa-
tion frequency of ICU-ARDS and NHP treatments was 
computed after correcting for the number of MS/MS 
spectra in each treatment with precursor intensity ≥ E3 
detector counts to ensure a balanced comparison [58]. 

Mitochondrial proteins such as ATP5A1, CYB561D1, 
several CYP accessions, L2HGDH, two MRP, MRPL37, 
NDUFS1 and others showed increased observation fre-
quency across COVID-19 and ICU-ARDS versus NHP 
individually by the Chi Square test (χ2 ≥ 10, p ≤ 0.01) 
and as a group by one way ANOVA (p ≤ 0.003) (Table 3). 
Chi Square analysis of corrected observation frequency 
indicated that cytochrome complex members including 
CYB, CYTB, CYP, CYBR, MT-COX, NDUF, MT-ND5 
and other structurally or functionally related proteins 
were significantly elevated (χ2 ≥ 21, DF = 1, p ≤ 0.0001) in 
COVID-19 plasma (Table 4). The observation frequency 
of mitochondrial or cytochrome proteins from BFPS pep-
tides typically showed a two fold to three fold increase 
that was significant by the Chi Square test (p ≤ 0.01). 
For example, MRPL37 showed an increased observation 
frequency from 216 tryptic peptides from SEQUEST in 
the NHP samples to 760 observations in COVID-19 that 
is an increase of more than threefold with a χ2 value of 
χ2 = 1364 where χ2 = 9 is the cut off for significance. The 
cytochrome CYP3A43 was observed in NHP 75 times 
from BFPS tryptic peptides by the SEQUEST algorithm 
but was observed 192 times in COVID-19 plasma that 
is a greater than two-fold increase with a highly sig-
nificant Chi Square value (χ2 = 180) where a χ2 of ≥ 9 is 
significant.

Mitochondrial protein interactions
The mitochondria may contain more than 1100 proteins 
[59]. However only a small subset of 131 mitochondrial 
proteins was observed to be sharply increased in the 
plasma of COVID-19 patients. STRING analysis indi-
cated that there were many known functional or struc-
tural interactions between the mitochondrial molecules 
observed (Fig. 2). There were 652 previously established 
interactions between these 131 mitochondrial proteins 
indicating that these mitochondrial proteins may form 
structural or functional protein complexes [60].

Venn diagram of Chi Square analysis
A comparison of the proteins in COVID versus ICU-
ARDS and normal controls from tryptic or optional 
phospho/tryptic peptides showed that CYTB, ND5, 
MRPL37 and ALDH2 were the most specifically elevated 
mitochondrial proteins in COVID-19 plasma. Organ-
izing the results from the plasma discovery and Chi 
Square analysis into a Venn Diagram showed that some 
mitochondrial components specific to viral infection 
were up-regulated in COVID-19 versus both ICU-ARDS 
and/or NHP samples (Fig.  3). Central members of the 
cytochrome system including CYTB and ND5 as well as 
mitochondrial ribosome components (MRPL) and cen-
tral metabolic enzymes such as Aldehyde dehydrogenase 
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(ALDH2) and L-2-Hydroxyglutarate dehydrogenase 
(L2HGDH) were increased in COVID-19 compared to 
normal human plasma and/or ICU-ARDS patients.

Luminol oxidase activity
Proteins of the cytochrome electron transport chain of 
the mitochondria including MT-ND, NDUF, complex 
IV (COX), CYBR, CYC, CYB and CYTB, but also CYP, 

Fig. 2 The mitochondrial and cytochrome proteins specific to COVID‑19 with a Chi Square value greater than 21 compared to ICU Acute 
Respiratory Distress Syndrome (ARDS) and/or Normal Human Plasma. The results reported in Table 4 with COVID‑19 versus NHP and/or ICU‑ARDS of 
χ2 ≥ 21 (p ≤ 0.001) were automatically analyzed by the STRING algorithm. Network Statistics: number of nodes, 131; number of edges, 652; average 
node degree, 9.95; avg. local clustering coefficient, 0.51; expected number of edges, 86; PPI enrichment p‑value, < 1.0e‑16
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have all been previously observed to participate or con-
tribute to luminol or lucigenin oxidation in  vivo and/or 
in vitro [15, 22, 27, 29–32, 61, 62]. Similarly other heme 
containing oxidases or peroxidases have also been impli-
cated in the response to infection [63]. Cytochrome 
and cytochrome oxidase enzymes have been previously 
shown to react with luminol or lucigenin in the presence 
of  H2O2 to yield chemiluminescence in vitro [27, 29–32]. 
No signal was observed in the absence of  H2O2 from the 
luminol test solution. Testing plasma for  H2O2 (Hydro-
gen peroxide) dependent cytochrome-like activity using 
luminol (Fig.  4A) showed a significant increase in the 
ECL signal intensity in COVID-19 and ICU compared to 
Normal plasma (Fig. 4B). There was apparently the equiv-
alent of ng/µL (µg/mL) levels of cytochrome c-like activ-
ity in COVID-19 and ICU-ARDS plasma while NHP was 
near the lowest detection levels.

Discussion
The aim of this study was to orchestrate standard bio-
chemistry techniques followed by LC-ESI-MS/MS with 
classical computation and statistical methods for pri-
mary discovery of plasma proteins from COVID-19 and 
ICU-ARDS versus normal controls. Traditional protein 

precipitation and standard partition chromatography 
were followed by tryptic digestion and LC–ESI–MS/MS. 
The resulting peptide identifications were analyzed by the 
classical statistical practice of random and independent 
sampling for Chi Square comparison of corrected peptide 
observation frequency. The type I error rate of protein 
identification with respect to random expectation was 
estimated using the Monte Carlo controls of computer 
random and noise random MS/MS spectra. Herein, the 
orchestration of well-established laboratory approaches 
and classical statistical methods has revealed the mito-
chondrial components and heme-containing oxidases 
such as cytochromes released from the cells of severe 
COVID-19 or ICU-ARDS patients that can be directly 
measured by a rapid and simple enzyme assay.

Mitochondrial DNA PCR assay
The PCR amplification of mitochondrial ND1 was a sen-
sitive method to detect mitochondrial components in 
COVID-19 or ICU-ARDS plasma and demonstrated that 
macromolecules from the mitochondria may be released 
from cells in agreement with previous results [19]. How-
ever, the PCR assay was so sensitive it detected mito-
chondrial DNA in many of the NHP control samples and 
so apparently did not show much discrimination in the 
detection of MT DNA.

Analysis of human COVID‑19 plasma proteins
The COVID-19 plasma proteome was recorded using 
manual plasma precipitation, isolation of proteins by dis-
posable chromatography for tryptic digestion, manual 
collection and injection of peptides for random sam-
pling by tandem mass spectrometry alongside random 
MS/MS spectra controls. The laborious manual proce-
dure enabled the detection and quantification of cellular 
proteins that were released into the plasma in COVID 
patients. The significant difference between authentic 
sample observation frequency versus computer random 
and noise MS/MS spectra, and the significant differ-
ence between treatments by ANOVA and Chi Square, 
were consistent with an apparently low type I error 
rate of protein discovery from the fit of MS/MS spec-
tra. The results of this study showed good agreement 
with previously reported analysis of COVID-19 plasma 

Fig. 3 The Venn diagram of the top Chi‑Square (χ2 > 21, p ≤ 0.0001) 
results from COVID‑19 versus ICU‑ARDS and COVID‑19 versus NHP at 
the level of full tryptic or optionally phospho/tryptic peptides shown 
in Table 4

(See figure on next page.)
Fig. 4 The presence of a luminol‑oxidase activity in the plasma of COVID‑19 and ICU Acute Respiratory Distress Syndrome patients (ICU‑ARDS) 
compared to Normal Human Plasma (NHP). A One microlitre (1 µL) of a representative set of COVID‑19 plasma was spotted onto PVDF alongside 
a specifically selected set of ICU‑ARDS plasma (positive control) and two sets of representative NHP plasma (negative control) ECL dot blots. 
Cytochrome c from 0 to 100 ng/µL served as a detection standard. Arrows show the sample lanes; B Quantile boxplot of the intensity of luminol 
oxidase activity from the complete set of COVID‑19, ICU‑ARDS and NHP plasma samples in the study. The results from the two independent batches 
of normal that showed similar results were combined for graphic and statistical analysis. Significant difference by the Tukey Kramer Honestly 
Significant Difference (HSD) test at the p ≤ 0.05 level are shown by lower case letters
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Fig. 4 (See legend on previous page.)
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regarding common acute phase markers such as AZGP1 
ORM, CRP, SAA1, HP, ORM, HPR and B2M that were 
increased in COVID-19 patients [1–11], that confirmed 
the sampling scheme, instrumental analysis and compu-
tations were successful. The reduction in apolipoproteins 
in COVID-19 was consistent with ELISA assays [64]. The 
sensitivity to the spectrum of acute phase markers and 
apolipoproteins is a clear demonstration of the efficacy of 
random and independent sampling by LC–ESI–MS/MS 
with frequency-based analysis using classical statistical 
methods in R alongside the Monte Carlo statistical con-
trols of computer random and noise MS/MS spectra.

Mitochondrial proteins in plasma
There were 652 previously established structural or func-
tional interactions between the small subset of mitochon-
drial proteins observed in COVID-19 plasma that may 
indicate the mitochondrial proteins take the form of protein 
complexes in circulation [60]. The results of LC–ESI–MS/
MS showed excellent agreement with the recent literature 
on the mitochondrial apoptosis pathway that is activated 
in response to viral infection [8, 14–18, 20, 21]. An increas-
ing repertoire of cytochrome p450s (CYP) is now known 
to be targeted to the mitochondria, especially CYPs associ-
ated with sterol and steroid synthesis [65, 66]. The release 
of mitochondrial protein enzymes such as oxidase compo-
nents MT-CO2 and CYB, CYTB or CYP into circulation 
were consistent with cellular damage from viral infection 

that might be quantified by enzyme activity to serve as a 
prognostic marker for the severity of COVID-19 infection 
[67]. Cytochrome enzymes such as MT-COX, CYB, CYTB, 
or CYP are known to react with luminol to provide an ECL 
signal in  vitro [29–31, 62]. The increased presence of the 
cytochrome oxidase MT-COX2, cytochromes such as CYB, 
CYTB, or CYP or associated factors in the plasma of ARDS 
and COVID-19 patients as discovered by plasma proteom-
ics was consistent with the measurements of increased 
cytochrome-like activity in the plasma of patients with res-
piratory distress [29–32].

Biology of SARS‑CoV‑2
Infection by the SARS-CoV-2 virus is known to result in 
the clustering of the mitochondria and the endoplasmic 
reticulum (ER) with the loss of normal compartments 
and integrity of the cells [8, 14–21, 68]. The SARS-CoV-2 
spike protein may be cleaved by the protease TMPRSS2 
to gain entry to the cell through the ACE2 receptors [13] 
(Fig. 5). Once inside the cell, the SARS-CoV-2 spike pro-
tein may act as a trigger of apoptosis via a mitochondrial 
pathway [14]. The increased expression of porins in the 
mitochondrial outer membrane in response to SARS-
CoV-2 infection [8] provides a clear and established 
mechanism for the release of mitochondrial proteins 
from the organelle into the cytoplasm of cells infected 
with SARS-CoV-2 [18]. The porin VDAC may permit 
the loss of cytochrome enzymes from the mitochondria 

Fig. 5 A cartoon summary of the mitochondrial proteins and enzyme activities discovered by LC–ESI–MS/MS from COVID‑19 versus ICU and 
NHP sample populations. The SARS‑CoV‑2 spike protein is apparently cleaved by extracellular TMPRSS5 to gain entry via ACE2 and is unpacked in 
the cytosol releasing the spike and triggering expression of VDAC that releases the contents of the mitochondria including cytochrome, electron 
transport complex, ribosomal and others components such as MRPL, MT‑ND, MT‑COX, NDUF, CYB5RL and CYTB (see Table 4). Created with 
BioRender.com
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to the cytosol with eventual loss from the compromised 
cells [27, 29, 32, 61]. The release of cytochrome is a cru-
cial part of the process that triggers cell death and apop-
tosis [15]. SARS-CoV-2 infection may lead to the fission 
of membrane-bound organelles and cellular lysis consist-
ent with the escape of large molecules like mitochondrial 
components [8, 16, 20, 21, 28] including cytochromes 
and MT-COX proteins that might be detectable by lumi-
nol oxidase assays [29–32]. All of the data presented 
herein supports a mitochondrial pathway of apoptosis 
in SARS-CoV-2 infected cells that resulted in the release 
of mitochondrial proteins and DNA into the plasma that 
was similar to that observed in ICU-ARDS patients.

Conclusion
The SARS-CoV-2 virus shows clear structural and func-
tional associations with the mitochondria during viral 
infection and replication [17]. Four independent lines of 
evidence including the PCR against the oxidase compo-
nent ND1, the increased observation frequency of mito-
chondrial proteins in plasma by LC–ESI–MS/MS, the 
previously established structural and functional interac-
tions between the increased proteins and the presence 
of a cytochrome-like ECL activity in COVID-19 plasma 
were all consistent with the loss of mitochondria and 
cytochrome components from cells in severe SARS-
CoV-2 infection. Here it was demonstrated for the first 
time that the plasma from clinical populations may be 
analyzed in the protein discovery laboratory by LC–ESI–
MS/MS to reveal new cellular proteins and the results 
translated into a rapid and simple biochemical test for an 
enzyme activity in COVID-19 and ICU-ARDS patients.
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