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Clinical Proteomics

Proteome analysis of CD5-positive diffuse 
large B cell lymphoma FFPE tissue reveals 
downregulation of DDX3X, DNAJB1, and B 
cell receptor signaling pathway proteins 
including BTK and Immunoglobulins
Takuya Hiratsuka1*, Shinji Ito2, Rika Sakai3, Tomoyuki Yokose4, Tatsuya Endo5, Yataro Daigo6,7, Yohei Miyagi8 and 
Tatsuaki Tsuruyama1,5,9* 

Abstract 

Background The molecular pathology of diffuse large B cell lymphoma (DLBCL) has been extensively studied. 
Among DLBCL subtypes, the prognosis of CD5-positive DLBCL is worse than that of CD5-negative DLBCL, consider-
ing the central nervous system relapse and poor response to R-CHOP therapy. However, the molecular mechanisms 
underlying the tumorigenesis and progression of CD5-positive DLBCL remain unknown.

Methods To identify molecular markers that can be targeted for treating DLBCL, a proteomic study was performed 
using liquid chromatography-mass spectrometry with chemically pretreated formalin-fixed paraffin-embedded speci-
mens from CD5-positive (n = 5) and CD5-negative DLBCL patients (n = 6).

Results Twenty-one proteins showed significant downregulation in CD5-positive DLBCL compared to CD5-nega-
tive DLBCL. Principal component analysis of protein expression profiling in CD5-positive and CD5-negative DLBCL 
revealed that DNAJB1, DDX3X, and BTK, which is one of the B cell phenotypic proteins, were the most significantly 
downregulated proteins and served as biomarkers that distinguished both groups. Additionally, a set of immunoglob-
ulins, including IgG4, exhibited significant downregulation. Immunohistochemistry analysis for BTK demonstrated 
reduced staining in CD5-positive DLBCL compared to CD5-negative DLBCL.

Conclusions In conclusion, DNAJB1 and DDX3X, BTK, and a set of immunoglobulins are promising biomarkers. Prob-
ably, the suppression of BCR signaling is the unique phenotype of CD5-positive DLBCL. This formalin-fixed paraffin-
embedded (FFPE)-based profiling may help to develop novel therapeutic molecularly targeted drugs for treating 
DLBCL.
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Background
Diffuse large B cell lymphoma (DLBCL) is a heterogene-
ous group of non-Hodgkin lymphomas exhibiting a wide 
variety of pathologies morphologically defined by charac-
teristic diffuse proliferation in large B cell-derived tumor 
cells [1–3]. According to the 2016 World Health Organi-
zation classification [4], there are several variants or sub-
groups of DLBCL, with 5–10% of these are being positive 
for CD5, a pan-T cell marker [5]. The CD5-positive sub-
type is an activated B cell type of DLBCL (ABC-DLBCL), 
consistent with previous data from immunohistochemi-
cal arrays and comparative genomic hybridization analy-
ses undertaken to examine gene expression profiles [6]. 
The CD5 antigen is a glycoprotein that modulates NF-κB 
signaling during development and peripheral activation 
[7, 8]. Additionally, CD5-positive B cells (B-1a cells) dif-
fer from other normal B cells and are derived ectopically 
(bone marrow independent) from organs, such as the 
spleen and fetal liver [9]. This B-1a subset has the poten-
tial to secrete natural antibodies, including low-affinity-
binding autoantibodies, which may be related to systemic 
lupus erythematosus [10]. However, the specific signaling 
pathways associated with the poor prognosis and tumor 
microenvironment of CD5-positive DLBCL remain 
widely unclear. According to a previous genetic study, 
19q13 aberration predicted a poor prognosis in non-ger-
minal center-type CD5-positive DLBCL [11].

The use of rituximab for treating CD5-negative 
DLBCL has led to an improved prognosis. However, 
the 5-year survival rate of patients with CD5-positive 
DLBCL remains low [5]. Furthermore, the central nerv-
ous system recurrence rate for CD5-positive DLBCL is 
higher than that of CD5-negative DLBCL (CD5-posi-
tive: 12.7%, CD5-negative: 5%) [12–14]. To develop an 

effective first-line treatment for CD5-positive DLBCL, 
several studies have examined treatments that com-
bine dose-adjusted EPOCH-R, an improvement over 
conventional R-CHOP, with high-dose methotrexate 
therapy preventing central nervous system invasion; 
this research includes an ongoing institutional study 
(PEARL) in Japan [15].

To diagnose and subclassify CD5-positive DLBCL 
cases, archived formalin-fixed paraffin-embedded 
(FFPE) specimens were used to examine the expression 
of known proteins using immunostaining. However, this 
method is limited to the identification of novel biomark-
ers. Recently, mass spectrometry (MS) has been applied 
for the analyzing FFPE samples, and a platform for MS 
has been established [16–21]. The present study used the 
FFPE-MS approach to identify upregulation or downreg-
ulation of proteins in CD5-positive DLBCL. Understand-
ing the expression of specific proteins in CD5-positive 
DLBCL may help to clarify its pathology and pave the 
way for developing novel molecular targeted therapies.

Methods
Patients
Of the patients who participated in the cohort study 
(Grant-in-Aid for Scientific Research on Innovative 
Areas—Platforms for Advanced Technologies and 
Research Resources (16H06277)), five were selected as 
CD5-positive ABC-DLBCL, and six were CD5-nega-
tive ABC-DLBCL cases based on the results of immu-
nostaining for CD10, BCL6, and MUM1 (multiple 
myeloma oncogene 1)/IRF4 (interferon regulatory fac-
tor 4). All samples were biopsied for diagnosis, with the 
patient profiles listed in Table 1.

Table 1 Profiles of patients with DLBCL

ABC activated B cell type
a DLBCL with Philadelphia chromosome-positive acute lymphocytic leukemia

Patient ID Sex Age CD5 CD10 Bcl6 MUM1 Bcl2 Biopsy/Operation Organ Phenotype 
of DLBCL

Stage

CD5-0 F 80 s − −  +  + − Biopsy Neck ABC IA

CD5-1 M 70 s − −  +  + − Biopsy Connective tissue ABC IIA

CD5-2 M 50 s − −  +  + Weakly positive Biopsy Testis, left ABC IIB

CD5-3 F 50 s − −  +  + − Biopsy Uterus ABC IVA

CD5-4 M 80 s − −  +  + Weakly positive Biopsy/operation Tonsil ABC IIAa

CD5-5 M 60 s − −  +  + Weakly positive Biopsy Pleura ABC IIIA

CD5-6 M 70 s  + −  +  +  + Biopsy Connective tissue ABC IIIB

CD5-7 M 50 s  + −  +  +  + Biopsy Connective tissue ABC IIIB

CD5-8 M 50 s  + −  +  +  + Biopsy Connective tissue ABC IVB

CD5-9 F 60 s  + −  +  +  + Biopsy Oral cavity/ pharynx ABC IIA

CD5-10 F 50 s  + −  +  +  + Biopsy Connective tissue ABC IVA
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Tissue preparation
After fixation using 10% neutral-buffered 4% (v/v) for-
maldehyde solution, the tissues were embedded in par-
affin. The paraffin-embedded blocks were then sliced 
into 4 μm sections on glass slides for subsequent micro-
scopic observation using an Olympus BX43 microscope 
after hematoxylin and eosin staining. After observation, 
additional 10-μm sections were prepared on glass slides 
for proteomic analysis collected in a 2-mm tube. FFPE 
blocks were prepared using Tissue-Tek® VIP® 6 (Sakura 
Finetech Japan, Tokyo, Japan).

Protein extraction
Proteins were extracted using a previously described 
method, with some modifications [16, 22]. The tissue on 
the glass slides was deparaffinized before being scraped 
into a 2-mL tube. Each sample was suspended in 20 µL 
of 0.1  mol/L  NH4HCO3 (Nacalai Tesque, Kyoto, Japan) 
containing 30% (v/v)  CH3CN (FUJIFILM Wako Pure 
Chemical Corporation, Osaka, Japan), and homogenized 
thrice using a lysis and homogenization system (Pre-
cellys Evolution, Bertin Technologies SAS, Montigny-le-
Bretonneux France) at 7,800 rpm for 1 min (three times), 
and centrifuged at 10,000 ×g for 1 min. Next, the super-
natants were heated at 95 °C for 90 min in a water bath. 
The supernatants were vortexed and centrifuged using a 
mini centrifuge (Nippon Genetics, Tokyo) every 30 min. 
They were centrifuged again at 10,000 × g for 1 min and 
chilled on ice, followed by the addition of 1 µg of trypsin 
(Promega, Madison, WI) and 2 µg of lysyl endopeptidase, 
MS Grade (FUJIFILM Wako Pure Chemical Corpora-
tion, Osaka, Japan). Samples were incubated at 37 °C for 
16  h. The proteins were purified and concentrated for 
MS using Pierce™ C18 Spin Columns (Thermo Scientific, 
Cramlington, UK). The protein concentration was esti-
mated using the bicinchoninic acid method (BCA Assay; 
Thermo Scientific, Cramlington, UK); the proteins were 
then separated by sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis and stained with Coomassie 
Brilliant Blue.

LC/MS
Protein samples were separated using Nano-LC Ultra 
2D-plus equipped with cHiPLC Nanoflex (Eksigent, 
Dublin, CA) in the trap-and-elute mode, using a trap col-
umn (200  μm × 0.5  mm ChromXP C18-CL 3  μm 120  Å 
(Eksigent)) and an analytical column (75  μm × 15  cm 
ChromXP C18-CL 3  μm 120  Å (Eksigent)). The sepa-
ration was carried out using a binary gradient in which 
0.1% formic acid/water and 0.1% formic acid/acetonitrile 
were used as solvents A and B, respectively. The gradient 
program was as follows: 2 to 33.2% B for 125 min, 33.2 to 

98% B in 2 min, 98% B for 5 min, 98 to 2% B in 0.1 min, 
and 2% B for 17.9 min. The flow rate was 300 nL/min. The 
analytical column temperature was set to 40 °C. The elu-
ates were infused on-line to the mass spectrometer, Tri-
pleTOF 5600 + System with NanoSpray III source, and 
a heated interface (SCIEX, Framingham, MA) and then 
ionized using an electrospray ionization-positive mode. 
Data acquisition was carried out with an information-
dependent acquisition method. The acquired datasets 
were analyzed using the ProteinPilot software version 
5.0.1 (SCIEX, Framingham, MA, USA) with the Uni-
ProtKB/Swiss-Prot database for humans (May 2018) 
appended with known common contaminant database 
(SCIEX). Paragon algorithm (SCIEX) was used for the 
protein identification including false discovery rate anal-
ysis with the detection threshold set to ProtScore &gt; 
0.05 (Confidence &gt; 10%). No user modifications were 
made on the XML files stored in the ProteinPilot work-
flow directory. We also provided raw data generated by 
ProteinPilot and Progenesis QI for Proteomics software 
(Additional file 1). The relative abundances of the identi-
fied proteins were estimated on the platform, Progenesis 
QI platform of Proteomics software version 4.1 (Nonlin-
ear Dynamics, Newcastle upon Tyne, UK). All raw data 
files were imported to generate an aggregate file, and the 
peptide identification results obtained by the ProteinPilot 
software, with confidence levels of at least 95%, were 
used for assignment. Label-free quantification of proteins 
was performed by relative quantitation using the Hi-N(3) 
method (Nonlinear Dynamics, Newcastle upon Tyne, 
UK).

Immunohistochemistry (IHC)
FFPE sections of DLBCL were immunostained and 
subsequently visualized using 3,3′-diaminobenzidine. 
Counterstaining was performed with Mayer’s hematoxy-
lin. DLBCL tissues were obtained as a tissue microarray 
[(core size, 1.0 mm), LY1001d, LY2085, US Biomax, Inc., 
Rockville, MD]. The antibodies used are listed in Addi-
tional file 3: Table S1.

Gene ontology and functional enrichment
For the pre-processing of proteins for Gene Ontology, 
each Protein ID was converted to its generic gene name 
using UniProt. Gene Ontology and functional enrich-
ment were performed using DAVID v6.8 (https:// david. 
ncifc rf. gov/). The DAVID Gene system was built by com-
bining the NCBI Entrez Gene database with Uniprot. The 
Knowledgebase includes data from PubChem, DrugBank, 
the Human Protein Atlas, DisGeNET, WikiPathways, and 
PathBank. Uniprot annotation included eight subgroups 
with the original “"Functional”" category and Disease, 
Protein interactions, and Tissue Expression. The results 

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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of the Gene Ontology analysis were categorized into 
Biological Process (BP), Molecular Functions (MF), and 
Cellular Component (CC). The enriched pathways were 
then subjected to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Reactome analyses. Results with 
p-values ≤ 0.01 were considered statistically significant.

Protein–protein interaction (PPI) network reconstruction
The Search Tool for the Retrieval of Interacting Genes 
(STRING) (https:// string- db. org/) was used to construct 
the PPI network. The interrelationship of identified pro-
teins in regulating the cellular pathways was constructed 
using NetworkAnalyst. Experimentally validated interac-
tions with high confidence values (0.9) were significant in 
this analysis.

Statistical analysis
The statistical significance level here was set at 0.05. 
Meanwhile, in MS screening, p < 0.025 (0.05/2) was con-
sidered significant after Bonferroni’’s correction. Briefly, 
fold-change values > 1.5 and p values < 0.025 were con-
sidered significant for lymphoma tissue screening. Fur-
thermore, results with p values < 0.05 were considered 
statistically significant when comparing the abundance of 
each protein in CD5-positive and CD5-negative DLBCL. 
The possibility of the expression level of each subset of 
immunoglobulins being higher or lower in CD5-positive 
or CD5-negative DLBCL was subjected to a test using a 
bimodal distribution (rejection area p = 0.05). Statisti-
cal calculations were performed using the SPSS software 
(IBM, Armonk, NY). Additionally, Pearson’s correlation 
analysis and principal component analysis (PCA) were 
conducted using Python 3.0 on Jupyter Notebook (6.3.0), 
an interactive computing notebook environment.

Results
Histopathology of DLBCL samples
LC/MS of lymphoma tissue was performed using FFPE 
samples from six patients with CD5-negative DLBCL 
and five patients with CD5-positive DLBCL (Table  1). 
The histological images and data for each immu-
nostained sample are shown in Fig.  1. All CD5-positive 
DLBCL samples were positive for CD5, BCL6, BCL2, 
and MUM-1 and negative for CD10. In contrast, CD5-
negative DLBCL samples were positive for BCL6 and 
MUM-1, but not for CD10. Based on these immunostain-
ing results, both CD5-positive and CD5-negative DLBCL 
samples were diagnosed as belonging to the ABC-DLBCL 
type (Table 1) [23].

Protein identification and quantification
LC–MS was performed on selected tissue samples from 
the patients. Overall, 1,059 proteins were identified from 
the obtained spectra, with a false discovery rate of < 1% 
(Additional file  1: Data S1). The distribution of all pro-
tein normalized abundance was illustrated using a vol-
cano plot (Fig. 2), and each the normalized abundance of 
each ionized peptides in both DLBCLs was statistically 
compared.

The expression of 114 proteins was significantly 
higher in CD5-positive than CD5-negative DLBCL, 
while the expression of 21 proteins was significantly 
lower in CD5-positive than CD5-negative DLBCL. 
The possible functional roles of the 114 upregulated 
proteins in CD5-positive DLBCL were analyzed using 
DAVID v6.8. As a result of Gene Ontology analysis, 
upregulated proteins were found to be associated with 
translational initiation, cell–cell adhesion, and rRNA 
processing in BP (Additional file  2: Fig. S1a); RNA 
metabolism-related proteins in Molecular Function 

HE

CD5+ 

CD10 BCL6CD5 MUM-1 

CD5- 

BCL2

Fig. 1 Histological examination of formalin-fixed paraffin-embedded (FFPE) specimens. Representative immunohistochemistry (IHC) images 
of CD5-positive (CD5-6) and CD5-negative DLBCL (CD5-3) specimens stained with hematoxylin and eosin (HE), or immunostained with antibodies 
against CD5, CD10, BCL6, MUM-1, and BCL2. In this case, the IHC of CD5-positive (CD5+) shows CD5 +, CD10 −, BCL6 +, MUM-1 +, and BCL2 +. 
CD5-negative (CD5-) DLBCL shows CD5 −, CD10 −, BCL6 +, MUM-1 +, and BCL2 −. Non-tumor cells were excluded from the positive cells. Scale bar, 
50 µm in CD5, CD10, BCL6, and MUM-1 and 200 µm in BCL2

https://string-db.org/
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analysis (MF) (Additional file  2: Fig. S1b); and extra-
cellular exosome in CC (Additional file  2: Fig. S1c). 
Moreover, interactome analysis using the STRING plat-
form revealed constructing the protein–protein inter-
action network for the identification of hub proteins in 

upregulated proteins of CD5-positeve DLBCL (Addi-
tional file 2: Fig. S2a, b).

21 downregulated proteins were analyzed using DAVID 
v6.8. BP analysis subsequently revealed significant 
enrichment in cell–cell adhesion (Table  2, Additional 
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Fig. 2 Comparison of overall protein expression in CD5-positive and CD5-negative DLBCLs. Volcano plots show the protein expression 
between CD5-positive (CD5+) and CD5-negative (CD5-) DLBCLs. Each point represents an individual protein. The x-axis shows the log2 value 
of the  fold change of normalized abundance (peptide amount) for two lymphomas. Positive values indicate that the proteins are larger, 
and negative values indicate that proteins are smaller in CD5 + DLBCL. The y-axis shows the negative common logarithm of the ANOVA p-value. 
The vertical dotted line represents a 1.5-fold change, and horizontal dotted lines denote p = 0.05 (Mann–Whitney U test). The selected proteins are 
labeled using their UniProt entry names (See Table 2)

Table 2 Biomarker candidates

Accession Protein name Description

P25685|DNJB1_HUMAN DNAJB1 DnaJ homolog subfamily B member 1, a molecular chaper-
one that prevents misfolded protein aggregation

O00571|DDX3X_HUMAN DDX3X DEAD box helicase 3, X-linked, ATP-dependent RNA helicase

sp|Q06187|BTK_HUMAN BTK Bruton Tyrosine Kinase

Immunoglobulins

 sp|P01861|IGHG4 Heavy constant gamma 4

 sp|A0A0A0MRZ8|KVD11;sp|P04433|KV311 Kappa variable 3D-11

 sp|P01619|KV320 Kappa variable 3–20

 sp|P0DOY2|IGLC2;sp|P0DOY3|IGLC3 Lambda constant 2

 sp|P01876|IGHA1 Heavy constant alpha 1

 sp|P01591|IGJ J chain

 sp|P01834|IGKC Kappa constant

 sp|P01859|IGHG2 Heavy constant gamma 2

 sp|A0A0C4DH55|KVD07;sp|P01624|KV315 Kappa variable 3D−7

 sp|P0DOX5|IGG1_ Gamma-1 heavy chain

 sp|A0A075B6P5|KV228;sp|A0A087WW87|KV240;sp
|P01614|KVD40;sp|P01615|KVD2

Kappa variable 2–28
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file  2: Fig. S3a). Meanwhile, MF indicated that the 
downregulated proteins were associated with cadherin-
mediated cell–cell adhesion, extracellular matrix (ECM) 
structural constituent, and identical protein binding 
(Additional file 2: Fig. S3b). CC indicated proteinaceous 
ECM (Additional file 2: Fig. S3c). Pearson’s sample–sam-
ple correlation analysis clearly showed a clear correla-
tion (R2 > 0.90) between CD5-positive DLBCL cases; this 
group was found to be a much more uniform disease 
population than CD5-positive DLBCL (Additional file 2: 
Fig. S4, Additional file 3: Table S2).

Principal component analysis (PCA)
Only three proteins, DNAJB1, DDX3X, and Bruton 
tyrosine kinase (BTK), were found to be decreased in all 
CD5-positive DLBCL cases compared to CD5-negative 
DLBCL cases. In particular, BTK is considered one of 
the key proteins determining the phenotype of DLBCL, 
a mature B-cell tumor. Furthermore, a Principal Compo-
nent Analysis (PCA) was performed on all proteins that 
exhibited significant differences in normalized abun-
dance between CD5-positive DLBCL and CD5-nega-
tive DLBCL (Fig.  3a; Additional file  3: Table  S3). As a 
result, DNAJB1 (0.07-fold downregulated; p < 4.0 ×  10–5), 
DDX3X (0.3-fold downregulated, p = 0.01), and  BTK1 
(0.33-fold downregulated; p = 0.002) (Fig.  3b, Additional 
file 2: Fig. S5a, b). In addition, DNAJB1 and DDX3X form 

a PPT network as hub proteins. The most significantly 
enriched pathways included cellular responses to stimuli 
and heat shock (Additional file 2: Fig. S6a, b). The essen-
tial functions of DNAJB1, DDX3X, and BTK are summa-
rized in Table 2.

BTK and a set of immunoglobulins
The identified BTK is a critical molecule in the signaling 
pathway of the immunoglobulin-forming B cell receptor 
(BCR). The BCR signal pathway is responsible for trans-
mitting B cell-specific developmental signals. The BCR 
consists of an immunoglobulin and CD79a/b adapter 
protein that recruits protein kinases, such as spleen 
tyrosine kinase (SYK) and BTK [24, 25]. Although no sig-
nificant difference was observed in the normalized abun-
dance of individual immunoglobulin segments between 
CD5-positive and CD5-negative DLBCL samples, the 
mean abundance values for the 11 detected segments 
were lower in the former than the latter, including IgG4, 
except for Ig κ variable 3–20. This indicated a decreas-
ing trend in immunoglobulin expression in the former 
through a binomial test (p < 0.05) (Fig.  4a, b). As afore-
mentioned, the level of BTK was significantly reduced in 
CD5-positive tumors (Fig. 3a). PCA analysis also showed 
that the IgG4 and BTK abundance data contributed to 
distinguishing between CD5-negative and CD5-positive 
DLBCLs (Fig. 3b, Additional file 2: Fig. S5a).
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Fig. 3 Principal component analysis. a Normalized abundance of DNAJB1, DDX3X, and BTK. The asterisk (*) indicates p < 0.05 for CD5 + vs. 
CD5- DLBCL using Student’s t-test. The vertical axis represents the normalized abundance of proteins. Error bars represent the standard deviation 
of normalized abundance. b Principal component analysis. The heat gradient represents the normalized abundance of DNAJB1, DDX3X, and BTK 
in CD5-negative DLBCL (patients 0–5) and CD5-positive DLBCL (patients 6–10)
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IHC for BTK
To confirm that normalized BTK abundance was lower 
in CD5-positive tissues in LC/MS analysis, DLBCL tissue 
arrays were immunostained using anti-BTK (Fig.  5a–e; 
Additional file  3: Table  S4). The array contained 134 
DLBCL cases. Nine DLBCL cases positive for CD5 were 
selected using immunostaining and then subjected to 
IHC for BTK. Among the CD5-negative tissues (n = 125), 
64% showed intensely diffuse positivity in the cyto-
plasm (High), 36% showed diffuse and medium positiv-
ity (Medium), and the remaining 9.6% showed weak and 
diffuse positivity for BTK (Low). In contrast, none of the 
nine cases of CD5-positive DLBCL showed high expres-
sion of BTK, 67% showed medium expression, and 33% 
showed low expression. Based on these results, the fre-
quencies of high (*, CD5 − vs. CD5+, p < 0.01) and low 
positivity (**, CD5- vs. CD5+, p < 0.01) were signifi-
cantly different between CD5-negative and CD5-positive 
DLBCL (Fig.  5f ). In conclusion, the expression of BTK 
was substantially lower in CD5-positive DLBCL.

Discussion
This study aimed to identify molecular markers for the 
pathological diagnosis of CD5-positive DLBCL using 
proteomic analysis of FFPE specimens.

The current proteomic analysis was also effective in 
identifying the downregulated markers. Considering 
that downregulated proteins are associated with ECM 
production and cell–cell adhesion, their decrease may 
be responsible for the aggressiveness and metastasis 

of CD5-positive DLBCL. DNAJB1 downregulation 
has not been addressed in lymphomagenesis, whereas 
DNAJB1 has been reported as one of the target genes in 
multiple myeloma [26]. DNAJB1 has the highest node 
degree distribution among the proteins detected, form-
ing a network with a set of heat shock proteins, such as 
HSP90AB1, HSPH1, HSPA1B, HSPA1L, and HSPA6 
(Additional file  2: Fig. S6a, b). A decrease in DNAJB1 
may lead to less protein structure stabilization by chap-
erone proteins in interactions with HSP90AB1, HSPH1, 
HSPA1B, HSPA1L, and HSPA6. This profiling is opposed 
to that reported in multiple myeloma in which these are 
increased [26], indicating that CD5-positive DLBCL has 
an immature B cell-lineage phenotype. 

Furthermore, DDX3X loss indicates a poor progno-
sis for DLBCL related to the increase in STAT3/p42/
p44 phosphorylation [27]. DDX3X is an ATP-dependent 
RNA helicase involved in various biological processes 
such as transcriptional regulation, cell adhesion, signal 
transduction, and stem cell formation. Mutations or loss 
of DDX3X are known in DLBCL, Burkitt’s lymphoma, 
cutaneous T-cell lymphoma, and NK/T-cell lymphoma 
[27–30]. Mutation or loss of DDX3X leads to increased 
expression of cyclin D1 and activation of ERK and JAK-
STAT systems, increased cell proliferation and mobility, 
poor prognosis, and drug resistance [2, 4–7, 27, 30–33]. 
It is known that the Ki-67 positivity rate increases and 
the stage of disease progression. Abnormalities in p53 
can further worsen the prognosis [30, 34]. These markers 
indicate a worse prognosis than CD5-negative DLBCL 
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due to CD5-positive DLBCL and may be involved in early 
systemic metastasis and progression of the disease stage 
to refractory status [12–15].

BTK and ten immunoglobulins were found to be 
decreased in CD5-positive DLBCL (Figs.  2, 3a, 4a, b, 
5f ). Considering that BTK and immunoglobulin form 
BCR signaling, this comprehensive decrease suggests a 
downregulation of BCR signaling, which may be respon-
sible for the immune phenotype of CD5-positive DLBCL. 
BTK is known to enhance cyclin D2 expression that pro-
motes the growth of lymphoma cells [35]. While BTK 
inhibitors are emerging drugs that promote apoptosis in 
DLBCL [36], the BCR signal suppression in CD5-positive 
DLBCL may make these cells resistant to BTK inhibitors. 
If the BCR signal pathway is not the dominant driving the 
growth of CD5-positive DLBCL, it is plausible that an 
alternative signaling cascade may be contributing to their 
proliferation and survival. Further research is needed to 
elucidate the specific signaling pathways that govern the 
biology of CD5-positive DLBCL, which could pave the 
way for the development of targeted therapies tailored 
to this distinct subgroup of patients. Another distinc-
tive feature was the significant decrease in IgG4. This 
immunoglobulin subtype is prominent in IgG4-related 

diseases. It has been suggested that IgG4 does not lead 
to the release of chemical mediators, but rather may sup-
press the release of mediators by competing with IgE for 
antigens [37]. There are not many reports of an associa-
tion between IgG4-RD and DLBCL [38]. The reduction 
of this subtype in CD5-positive DLBCL may lead to the 
induction of inflammation. However, it remains uncer-
tain whether this phenomenon is directly related to 
patient prognosis. Combined with the overall decline in 
immunoglobulin recombination, it may also be linked to 
immaturity preceding lymphomagenesis due to a general 
decline in the B cell signaling pathway.

Finally, the role of CD5 remains controversial in this 
study. CD5 can recruit small adaptor molecules such as 
a heterodimer partner (SHP). Further, Lck is involved in 
phosphatidylinositol 3-kinase, AKT, and other intracel-
lular signaling pathways [38–41]. In future studies, it is 
necessary to clarify the relationship between the down-
regulation of BCR signal cascade and CD5.

Conclusions
Overall, this study demonstrated that proteomics analy-
sis using FFPE specimens can comprehensively reveal 
essential pathways involved in CD5-positive DLBCL 
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proliferation and suggest therapeutic strategies for its 
treatment. In particular, our data demonstrated the sup-
pression of B cell signals, which may help to develop 
novel therapeutic molecularly targeted drugs for treating 
DLBCL. Furthermore, analysis of archival samples using 
the approach applied in this study may facilitate the iden-
tification of target molecules in rare diseases.
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