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Abstract 

Glioblastoma is one of the most malignant primary brain cancer. Despite surgical resection with modern technol‑
ogy followed by chemo‑radiation therapy with temozolomide, resistance to the treatment and recurrence is com‑
mon due to its aggressive and infiltrating nature of the tumor with high proliferation index. The median survival time 
of the patients with glioblastomas is less than 15 months. Till now there has been no report of molecular target spe‑
cific for glioblastomas. Early diagnosis and development of molecular target specific for glioblastomas are essential 
for longer survival of the patients with glioblastomas. Development of biomarkers specific for glioblastomas is most 
important for early diagnosis, estimation of the prognosis, and molecular target therapy of glioblastomas. To that end, 
in this study, we have conducted a comprehensive proteome study using primary cells and tissues from patients 
with glioblastoma. In the discovery stage, we have identified 7429 glioblastoma‑specific proteins, where 476 proteins 
were quantitated using Tandem Mass Tag (TMT) method; 228 and 248 proteins showed up and down‑regulated 
pattern, respectively. In the validation stage (20 selected target proteins), we developed quantitative targeted 
method (MRM: Multiple reaction monitoring) using stable isotope standards (SIS) peptide. In this study, five proteins 
(CCT3, PCMT1, TKT, TOMM34, UBA1) showed the significantly different protein levels (t‑test: p value ≤ 0.05, AUC ≥ 0.7) 
between control and cancer groups and the result of multiplex assay using logistic regression showed the 5‑marker 
panel showed better sensitivity (0.80 and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 
and 0.98) than the best single marker (TOMM34) in primary cells and tissues, respectively. Although we acknowledge 
that the model requires further validation in a large sample size, the 5 protein marker panel can be used as baseline 
data for the discovery of novel biomarkers of the glioblastoma.
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Statement of significance 

For the discovery of multi‑diagnostic biomarker, we have conducted a comprehensive proteome study using primary 
cells from patients with glioblastoma. In this study, 7429 glioblastoma‑specific proteins were identified and then 20 
selected target proteins were verified using MRM method. Finally, five proteins (CCT3, PCMT1, TKT, TOMM34, UBA1) 
showed the significantly different protein levels (t‑test: p value ≤ 0.05, AUC ≥ 0.7) between control and cancer groups 
and the result of multiplex assay using logistic regression showed the 5‑marker panel showed better sensitivity (0.80 
and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 and 0.98) than the best single marker 
(TOMM34) in primary cells and tissues, respectively.

Keywords MRM, Glioblastoma, Primary cell, Biomarker, Quantitative proteomics

Introduction
Glioma is the most common primary cancer of the cen-
tral nervous system, which is developed from glial cells 
and is generally classified into three subtypes such as 
Astrocytomas, Ependymomas, Oligodendrogliomas 
based on the type of glial cell involved in the tumor, as 
well as the tumor’s genetic features [1, 2]. According to 
WHO guidelines (WHO 2016), glioma is classified into 
four grades (I-IV) and the most lethal grade is grade IV, 
glioblastoma multiforme (GBM) [2]; The incidence rate 
in the United States is 3.20 per 100,000 population [3], 
and GBM accounts for 60–70% of malignant gliomas [4]. 
GBM has only few patients reaching long- term survivor 
status and the median survival is 14.6  month and only 
2.2% of patients are estimated to survive 3 years or more 
[5, 6].

The standard of care for GBM patients is surgical resec-
tion followed by adjuvant radiation therapy and chemo-
therapy with the temozolomide [5, 7]. Surgery provides 
ability to reduce the amount of solid tumor tissue within 
the brain and remove cells in the center of the tumor 
that may be resistant to radiation or chemotherapy. 
But Conventional therapies, have not resulted in major 
improvements in the survival outcomes of patients with 
glioblastoma [8–11].

The current diagnosis of the glioma is performed using 
the imaging techniques such as MRI [8, 9] or CT [10] 
and tissue biopsies [11]. These have some of limitations 
including the lack of accuracy of tumor position on brain 
and the difficulty of acquiring biopsies [12, 13]. For these 
reasons, glioma is harder to be diagnosed on early stage 
[14, 15]. The most of glioma patients have had a surgery 
followed by radiation therapy and chemotherapy, but it 
has not always shown excellent therapeutic effect. There-
fore, discovering of early diagnosis and prognosis mark-
ers is very important for determination of appropriate 
treatment [16–19].

There have been many studies about analysis of correla-
tion between GBM characteristics and specific molecular 
abnormalities for the past years [20]. Some cases showed 
the advancement in the pathogenic characterization of 

this disease [21–25]. So we need to better understand of 
which molecules are involved in disease manifestation 
and progression. In the past decade, differential prot-
eomic profiling techniques have utilized tissue [22, 23], 
cerebrospinal fluid [23], and plasma [23–25] from glioma 
patients to identify the diagnostic, prognostic, predictive, 
and therapeutic response marker candidates, highlight-
ing the potential for glioma biomarker discovery. The 
number of markers identified, however, have been lim-
ited, their reproducibility between studies is unclear, and 
none have been validated for clinical use [12].

Primary cell lines have been the historical standard 
both for the exploring the biology of human tumors in 
the preclinical models and for screening potential multi 
biomarker [26]. Primary cell lines reflect the tissue 
microenvironment, and it has no contamination unlike 
tissue [27]. Therefore, study of primary cell is that more 
can be effective approach to discovery of diagnostic and 
prognostic marker in the glioma than tissue.

In this study, we have performed comprehensive pro-
teome analysis using the tandem mass tag (TMT) and 
targeted MS technique in the glioma patient-derived 
cell, glioma primary cell. We first applied integrated pro-
teomic strategies to increase the depth of the primary 
cell proteome. Next, to validate the proteome expres-
sion using the MRM-MS method in primary cell with 
individual patients. Finally, to develop a multiplex assay, 
a multimarker panel was established, based on candidate 
variables in individual primary cells.

Materials and methods
Human surgical tissue samples and cell line
All fresh surgically resected tissue was diagnosed with 
glioblastoma according to WHO classification. Pri-
mary cells of human glioblastoma and astrocytes were 
obtained from brain tissue of the Brain Bank of Seoul 
National University Hospital. The mean age of con-
trols and patients was 47.7 (31 ~ 68) and 56.28 (40 ~ 72), 
respectively (Additional file  1: Table  S1). This study 
was approved by the Institutional Review Board (IRB) 
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of Seoul National University Hospital (IRB approval 
H-0507-509-153).

Cell culture and culture maintenance
Two cell lines were enzymatically dissociated to single 
cell from mechanically dissected glioblastoma and tem-
poral lobe tissues. The cells were cultured in DMEM 
media (Welgene, Korea) supplemented with 10% fetal 
bovine serum (FBS; Gibco Invitrogen, USA), 100  U/mL 
of penicillin, and 100 mg/mL of streptomycin (Gibco Inv-
itrogen) at 37 °C in an atmosphere of 5%  CO2 in air. The 
cells were prepared from early passage less than 20 times 
and stocked (within 2 months) Additional file 2: Fig. S1).

Protein digestion and TMT labeling
The cell pellets were prepared from control (5 samples) 
and cancer (5 samples) primary cells. They were collected 
in 15  mL falcon tubes, stored at −  80  °C until cell lysis 
was performed. Pellets were resuspended in lysis buffer; 
8  M Urea, 10 × Protease inhibitor (cOmplete Protease 
Inhibitor Cocktail, Roche, Basel, Switzerland), 10 × Phos-
phatase inhibitor (phosSTOP, Roche, Basel, Switzerland) 
homogenized with a probe-type sonication (Marshall Sci-
entific, Hampton, United States, 2 s 2 cycles 15% power) 
at 4  °C. The supernatants were move to new tube and 
measured protein concentration with BCA Protein assay 
(Pierce, Rockford, IL). Each 40  µg of proteins sample 
was reduced with 10 mM dithiothreitol (Sigma-Aldrich, 
St. Louis, Missouri, USA) and incubated for 30  min at 
56 °C, followed by alkylation with 20 mM iodoacetamide 
(Sigma-Aldrich) and incubated for 30 min at dark room 
temperature. Trypsin-LysC (Promega, Madison, Wis-
consin, United States) was added at a protein-to-enzyme 
ratio of 50:1 and samples were incubated overnight at 
37  °C. For desalting, the enzymatic samples were clean-
up using HLB oasis cartridge (Waters, Milford, Messa-
chusetts, United States). The digests of the five cell lysates 
resuspended in 0.1  M TEAB (TEAB, sigma Aldrich, St. 
Louis, Missouri, United States) were labeled with five 
different Tandem Mass Tag (TMT, Thermo Scientific, 
Waltham, mesachusetts, United States) in anhydrous 
ACN according to manufacturer’s instructions. TMT 
labeled the five samples were collected in one tube and 
dried in vacuum.

Mid pH reversed phase fractionation
TMT labeled peptides were subjected to mid-pH frac-
tionation. Dried sample was reconstituted in 10  mM 
TEAB and loaded onto Agilent 1260 HPLC System (Agi-
lent, Palo Alto, CA) equipped with fraction collector 
(set at 4 °C for all samples) coupled with a 4.6 × 250 mm 
XBridge C18 column (5 µm, 4.6 × 250 mm; Waters) with 
a flow rate of 0.4 mL/min. 10 mM TEAB pH 7.5 (Sol A) 

and 10 mM TEAB pH 7.5 in 90% ACN (Sol B) were used. 
Peptides were eluted with a gradient Sol B and collected 
into 96 well plate during 100 min. The separated samples 
were combined to 12 fractions and subsequently dried in 
speed vac. Peptides were recontituted in 0.1% formic acid 
water to analyze by LC–MS/MS.

Protein identification by Q‑Exactive analysis
For both identification and relative quantitation of GBM 
proteome, we were used Q-Exactive mass spectrom-
etry coupled with an Easy-nLC 1000 (Thermo Fisher 
Scientific, San Jose, CA, USA). The extracted peptides 
were reconstituted in 0.1% formic acid and separated 
on EASY-Spray column (C18, 2 µm particle size, 75 µm 
X 500 mm). Samples were eluted from analytical column 
with a linear gradient of solvent B (100% ACN, 0.1% for-
mic acid); 5–40% over 110 min, 40–80% over 7 min at a 
flow rate of 300 nL/min. The separated ions were moved 
into the mass spectrometer at an electrospray voltage 
of 2.1  kV. All MS/MS spectra were obtained in a data-
dependent mode for fragmentation of the twenty most 
abundant peaks from the full MS scan with 32% normal-
ized collision energy. The dynamic exclusion time was set 
at 30 s and the isolation window was 1.2 m/z. MS spectra 
were acquired with a mass range of 350–2000  m/z and 
70,000 resolution at m/z 200. MS/MS resolution was 
acquired at a resolution of 17,500.

Database searches and TMT labeled quantitation
Database searches (SEQUEST and X! Tandem) were 
performed using Proteome Discoverer (Thermo Fis-
cher Scientific, ver 2.2.0.388) and Scaffold (version Scaf-
fold_4.10.0, Proteome Software Inc., Portland, OR). 
Sequest and X! Tandem was set up to search a protein 
database, the uniprot-proteome_HomoSapiens_73099_
FASTA. It was set by a fragment ion mass tolerance of 
0.02 Da and a parent ion tolerance of 10.0 PPM. Carba-
midomethyl of cysteine and TMT6 plex of lysine were 
specified in Sequest and X! Tandem as fixed modifica-
tions. Glu− > pyro-Glu of the n-terminus, ammonia-loss 
of the n-terminus, gln− > pyro-Glu of the n-terminus, 
oxidation of methionine and acetyl of the n-terminus 
were specified in X! Tandem as variable modifications. 
Oxidation of methionine and acetyl of the n-terminus 
were specified in Sequest as variable modifications. The 
Scaffold software (version 4.10.0, Proteome Software 
Inc., Portland, OR, USA) was used to validate MS/MS 
based peptide and protein identifications. Peptide iden-
tifications were accepted if they could be established at 
greater than 99.0% probability by the Scaffold Local FDR 
algorithm. Protein identifications were accepted if they 
could be established at greater than 5.0% probability to 
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achieve an FDR less than 5.0% and contained at least 1 
identified peptide.

Scaffold Q + (version 4.10.0) was used to quantitate 
Label Based Quantitation (TMT) peptide and protein 
identifications. Peptide identifications were accepted 
if they could be established at greater than 95.0% prob-
ability by the Scaffold Local FDR algorithm. Protein iden-
tifications were accepted if they could be established at 
greater than 5.0% probability to achieve an FDR less than 
5.0% and contained at least 2 identified peptides. Pro-
tein probabilities were assigned by the Protein Prophet 
algorithm [28]. Proteins that contained similar peptides 
and could not be differentiated based on MS/MS analy-
sis alone were grouped to satisfy the principles of par-
simony. Proteins sharing significant peptide evidence 
were grouped into clusters. Of 395,679 spectra in the 
experiment at the given thresholds, 227,281 (57%) were 
included in quantitation. The normalized TMT signals 
were further analyzed by Perseus for statistical analysis. 
For each TMT experiment, the protein intensities were 
log2 transformed and subject to a median normalization. 
Significantly different protein levels between control and 
cancer groups for the three TMT experiments were cal-
culated using a two-sided Student’s t-test using a permu-
tation-based FDR cutoff (250 randomizations, FDR 0.01, 
S0 1). Proteins were considered as differentially regulated 
if their adjusted p-value corresponded to an FDR lower 
or equal to 0.01 and their fold change (expressed as log2 
ratio) was < −2 or >  + 2.

Gene ontology (GO) and functional analysis
The GO terms in the protein datasets were analyzed 
using the Scaffold bioinformatics resource (version 
4.10.0), which performs functional classification and ID 
conversion of the proteins that we identified. The ‘bio-
logical process’, ‘molecular function’ and ‘cellular com-
ponent’ classifications were analyzed using Uniprot 
accession numbers.

Ingenuity pathway analysis
In order to further understand the biological significance 
of differentially expressed proteins, Ingenuity Pathway 
Analysis (IPA; Ingenuity® Systems, www. Ingen uity. com/) 
was used to analyze canonical pathways and biomarker 
filter. The proteomic data set included fold changes of 
protein was submitted into Ingenuity Pathway Analysis 
for core analysis, protein interactions regulated pathway 
analysis.

The core analysis was carried out with the settings of 
indirect and direct relationships between molecules 
which is come from our experimental data and data 
sources of the Ingenuity Knowledge Base. The prob-
ability that show the relationship of biological functions 

and diseases in the protein dataset is represented by the 
Right-tailed Fisher’s exact test.

Synthetic peptides
For the MRM analysis, we first synthesized crude SIS 
(stable isotope-labeled standard) peptides for target pep-
tides. Synthetic peptides were obtained from JPT Peptide 
(JPT Technologies, Berlin, Germany). Peptide sequences 
were synthesized as unmodified peptides with free N- 
and C-terminal amino acids. If there was carbamoyl-
methylation on a cysteine, the peptide was synthesized 
as the “carbamoylmethylation” form. For stable isotope-
labeled peptides (heavy peptide), the C-terminal arginine 
or lysine contained 13C- and 15N-labeled atoms.

Multiple reaction monitoring using triple quadrupole mass 
spectrometry
For the MRM (multiple reaction monitoring) analysis, 
digested peptides were analyzed by online nanoflow LC–
MS/MS on a NanoAcquity UPLC system (Waters) that 
was connected to a 6500 QTRAP (AB Sciex, Framing-
ham, MA) through a nanoelectrospray ion source. Briefly, 
digested peptides were loaded at a flow rate of 300nL/
min by an autosampler onto a precolumn (2  cm long; 
ID, 180 μm; particle size, 5 μm) and an analytical column 
(10  cm long; ID, 150  μm; particle size, 1.7  μm), which 
were both packed with reversed-phase C18 material. The 
peptides were separated on a linear ACN gradient from 
5 to 35% for 70 min and from 35 to 70% for 20 min, and 
peptides were eluted between 3 and 70 min. The optimal 
parameters for the triple quadrupole mass spectrometer 
that was interfaced with a nanospray source were as fol-
lows: ion spray (IS), 2300 V; source temperature, 160 °C; 
high collision gas, approximately 4 ~ 3 ×  10–5  torr; and 
curtain gas, 20. MS parameters for declustering potential 
(DP) and collision energy (CE) were determined using 
the Skyline program. In the MRM run, the scan time for 
each transition were set to 20 ms respectively.

The MRM assay was optimized with Skyline v20.2 
(MacCoss Lab). Transitions which have high peak inten-
sity—all possible b- and y-ion series—were chosen for 
each peptide at a 2/3 + charge state. The best 1 transition 
was selected for further analysis, and CEs were optimized 
for each transition. The energy was ramped around the 
predicted value per the default formula (CE = 0.057x–
4.262) in 5 steps on both sides with 2-V increments, and 
the best CE energy was selected, based on the optimal 
signal intensity, as manually assessed.

http://www.Ingenuity.com/
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Statistical analysis
To develop a reliable classifier from differentially 
expressed proteins, we used SPSS (Armonk, NY: IBM 
Corp., version 26) to perform t-test and chi-square tests 
and generate receiver operating characteristic (ROC) 
curves. Medicalc (MedCalc Software, Mariakerke, Bel-
gium) was also used for construction and evaluation of 
multi-marker panel and survival analysis was also per-
formed using Kaplan–Meier method.

Results
Study layout for developing biomarker candidates 
from primary cell to diagnose the Glioma
The first step in biomarker development is to identify 
candidates. To this end, we performed a comprehensive 
proteomics study of glial cells, which pooled glial pri-
mary cells (Control: 5 and Grade 4: 5) were used. Next 
step is to validate the glial marker candidates in primary 
glial cells and tissues (Control: 10 and 10, Grade 2: 10 and 
10, Grade 3: 12 and 10, and Grade 4: 15 and 10) (Fig. 1 
and Additional file 1: Table S1). Briefly, in the first stage, 
we profiled the human glial proteome to obtain a pool of 
biomarker candidates, in which TMT-labeled quantita-
tion method was performed to compare the abundance 
of proteins between control and cancer. Then, we strati-
fied biomarker candidates by small scale MRM analysis, 
which was used as the initial selection tool in our system-
atic proteomic pipeline. In the second stage, a large-scale 
MRM analysis of targeted peptides was performed in 
individual glial cells and tissues using the corresponding 
heavy peptide mixtures as an internal standard. Finally, to 
develop a multiplex assay, a multimarker panel was estab-
lished, based on candidate variables in individual primary 
cells.

Identification of protein in glial primary cell
To obtain an in-depth proteome in glial primary cell, we 
implemented the TMT labeling method combined with 
LC-based mid pH peptide fractionation. Our proteome 
analysis was performed based on the high-resolution 
mass spectrometry and a multiple-database search strat-
egy including SEQUEST and X! Tandem. In this study, a 
total of 7,429 protein groups were identified at a mini-
mum confidence level > 95%, more than 2 unique pep-
tides, and FDR < 5% (Additional file 1: Table S2).

To determine the functions of the proteins in our glial 
proteome, we used Gene Ontology (GO) to classify them 
by biological process (BP), molecular function (MF), and 
cellular component (CC).

Our glial proteome was significantly enriched in pro-
teins that participate in ‘cellular process (38.6%), ‘bio-
logical regulation’ (29.4%), and ‘metabolic process’ 
(25.8%). Regarding molecular function, the proteome was 

significantly enriched in proteins that mediate ‘binding’ 
(34.4%), ‘catalytic activity’ (17.7%), and ‘enzyme regula-
tor activity’ (3.3%). GO analysis of cellular components 
was significantly enriched in proteins associated with 
‘intracellular organelle’ (37.2%), ‘cytoplasm’ (35.7%), and 
‘membrane’ (21.8%) (Additional file 2: Fig. S2).

Differential expression of proteins in control and glioma 
cell
For the differential proteome in control and cancer 
cells, three technical replicates were performed, and the 
labeled TMT quantitation method was used to compare 
protein expression under different conditions.

To identify reliable key proteins that are systemically 
able to show the differentially expressed pattern, we 
first narrowed down the proteins based on the cutoff 
range rule (t-test, p value ≤ 0.05, minimum confidence 
level > 95%, more than 2 unique peptides, and FDR < 1%), 
and selected 3,311 proteins. We then determined the 
fold-change thresholds (expressed as log2 ratio) of > 2 
or < -2 to identify true differences in the expression of 
proteins. Finally, to select a more reliable list of dif-
ferentially expressed proteins, we assessed the techni-
cal variability based on the coefficient of variation (CV) 
in all experiments (CV < 20%). Four hundred and sev-
enty-six proteins were finally quantifiable based on the 
above quantitative criteria (Fig.  2 and Additional file  1: 
Table  S3), and these differentially expressed proteins 
were represented by volcano plots and heat maps (Fig. 2). 
Notably, three replicate experiments in control and gli-
oma samples were used to show experimental accuracy 
and reproducibility.

Analysis of canonical pathway and protein networks
To investigate the signaling pathway and protein–pro-
tein interactions related to the upregulated and down-
regulated proteins in our glial proteome, we performed 
canonical pathway and protein network analyses based 
on the differentially expressed proteins using IPA. Com-
pared with control samples, there were 476 differentially 
expressed proteins in grade 4 glioma, of which 228 pro-
teins increased, whereas 248 proteins decreased in abun-
dance. In the canonical pathway, 476 regulated proteins 
were enriched in 470 pathways, where 21 representative 
signaling pathways related the carcinogenesis and neu-
rogenesis are as followed; Protein Ubiquitination, Pro-
tein Kinase A Signaling, Sertoli Cell-Sertoli Cell Junction 
Signaling, PI3K/AKT Signaling, Leukocyte Extravasa-
tion Signaling, Systemic Lupus Erythematosus Signaling, 
IGF-1 Signaling, 14–3-3-mediated Signaling, HIPPO 
signaling, ERK5 Signaling, Inhibition of ARE-Mediated 
mRNA Degradation, Necroptosis Signaling, Calcium 
Signaling, FAT10 Signaling, Mitochondrial Dysfunction, 
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Cell Cycle, Pentose Phosphate, DNA Methylation and 
Transcriptional Repression Signaling, Apelin Adipocyte 
Signaling, Neuroprotective Role of THOP1, and TCA 
Cycle II pathway (Table 1).

Validation of biomarker candidates in the MRM analysis
To select biomarker candidates, we first excluded pro-
teins that have common gene and protein names. For 

the selection of reliable MRM transition, we constructed 
a glial-specific MS/MS spectral library and compared 
its MS/MS spectra with experimental spectra from our 
MRM analysis. In this study, 321 proteins showing the 
same fragmentation spectral pattern were selected. We 
then examined the detectability of marker candidates in 
the MRM platform, and confirmed low, middle, and high 
endogenous concentrations of the marker candidates, 

Fig. 1 Schematic describing the Glioma primary cell biomarker Study workflow. Sample preparation A: surgically‑removed tissue samples were 
enzymatically dissociated to single cells and cultured. Control pooled primary cells and grade 4 glioma pooled primary cells were lysed, digested, 
and labeled with TMT reagent 126 and 130, respectively. TMT‑labeled control and grade 4 glioma peptides were mixed and subjected to HPLC 
fractionation. Candidate screening B: Fractionations obtained (n = 12) were subjected to LC–MS/MS, and the acquired data were analyzed 
via Proteome Discoverer to obtain differentially expressed proteins in glioma primary cells. Ingenuity pathway analysis (IPA) were performed 
to further understand the biological significance of the differentially expressed proteins. Validation C: MRM assays for the differentially expressed 
proteins were developed using synthetic peptides for each protein
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wherein the ranges of low, middle, and high concentra-
tions were defined by comparing endogenous peptides 
with heavy peptide concentrations. For the MRM vali-
dation analysis, we excluded proteins with no detected 
range of concentration. To narrow down the number of 
marker candidates, we performed a small-scale MRM 
analysis, wherein we verified whether candidates showed 
the same expression pattern between the MRM and 
TMT-labeled dataset. From the small-scale MRM, 90 
proteins were selected. Finally, bioinformatics analysis 
of the differentially expressed proteins revealed several 
putative enriched functional and disease networks, and 
upstream regulators, such as cancer, cell death and sur-
vival, organismal injury, and abnormalities related net-
works, which were used to select biomarker candidates. 
Consequently, 20 proteins, viz., ATP2B4, ATP5ME, 
CCT3, DNMT1, FKBP2, GLRX5, IDH3A, JAM2, LDHA, 
PCMT1, PLEKHG3, PRDX6, SLC44A2, TACC3, TIN-
AGL, TKT, TOMM34, UACA, UBA1, and YWHAE were 
selected (Table 2).

Individual sample analysis by MRM
Using the heavy peptide mixture (20 fmol/μL) of each tar-
get peptide for MRM as an internal standard, we analyzed 

individual human primary cells by MRM. We first con-
firmed the differential concentration of target proteins 
between control (N: 10) and cancer (grade 2: 10, grade 
3: 12, grade 4: 15). All 20 proteins were detected in glial 
cells, and 5 proteins had disparate expression patterns in 
the control and cancer groups (Fig. 3 and Table 2). Stu-
dent’s t-test and ROC curve was performed to compare 
the control and cancer groups; 5 (CCT3, PCMT1, TKT, 
TOMM34, UBA1) and 2 proteins (CCT3 and TOMM34) 
were satisfied with the significant differences rule (Stu-
dent’s t-test: p ≤ 0.05, AUC: AUC value ≥ 0.7) in control 
versus cancer (grade 4) and control versus cancer (grade 
3and 4), respectively.

Construction of a multi‑marker panel based on the MRM 
results
To improve the classification discriminating power 
between the control and cancer groups, we constructed a 
multi-marker panel using Logistic regression analysis and 
used it to statistical evaluation.

We first selected a multi-marker panel that showed the 
best discriminatory power between the control and can-
cer group (grade 4). We then applied this multi-marker 

Fig. 2 Differentially expressed proteins. The cutoff range of protein identification is as follows: protein confidence interval > 95.0%, peptide 
N ≥ at least two peptides, 1% < decoy FDR. Through t‑test, p ≤ 0.05, and cv < 20%, total 476 proteins were finally listed as differentially expressed 
proteins. Volcano plot (A): For the analysis of differentially expressed proteins and statistical analysis, Perseus (version 1.5.8.2) and R were used, 
where the cutoff range for significant fold change (FC) and T‑test p‑values were set as ± 2.0 and 0.05, respectively. Heat map (B): 2D–hierarchical 
clustering analysis exploring the difference in protein expression between Red and Green Pashmina fiber. Each row in the map represents 
a differentially expressed proteins, and each column represents the condition used.  Log2 (DEP) value was used for constructing the heat‑map
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Table 1 Analysis of canonical pathway and protein networks

N Ingenuity 
Canonical 
Pathways

‑log 
(p‑value)

Ratio z‑score Down 
regulated %

No change 
%

Up 
regulated

No overlap 
with dataset 
%

Gene name

1 Protein 
ubiquitination 
pathway

5.82 0.0784 – 4/268 (1) 0/268 (0) 17/268 (6) 247/268 (92) DNAJB1,DNAJC2,HSPB6,HSPB8,H
SPD1,HSPE1,HSPH1,PSMC1,PSM
C2,PSMC4,PSMD1,PSMD11,PSM
D12,PSMD3,PSME1,SUGT1,THOP
1,UBA1,UBE2O,USP24,USP8

2 Protein kinase 
A signaling

2.71 0.0494 0.243 14/385 (4) 0/385 (0) 5/385 (1) 366/385 (95) ADD3,CALM1,FLNA,GNG12,GNG
2,GYS1,H10,ITPR3,MAP2K1,PLCB3
,PPP1R10,PPP1R12A,PPP1R14A,P
PP1R3D,PTPN12,PTPRJ,ROCK2,TG
FB2,YWHAE

3 Sertoli 
cell‑sertoli 
cell junction 
signaling

5.23 0.0884 – 14/181 (8) 0/181 (0) 2/181 (1) 165/181 (91) ACTB,ACTN1,AKT1,AKT3,ILK,ITGB
1,JAM2,JAM3,KRAS,MAP2K1,MAP
2K3,MPP6,RALA,RRAS,TJP1,VCL

4 PI3K/AKT 
signaling

4.23 0.0809 − 1.387 10/173 (6) 0/173 (0) 4/173 (2) 159/173 (92) AKT1,AKT3,GRB2,GYS1,ILK,INPP5
K,ITGB1,KRAS,LIMS1,MAP2K1,RAL
A,RRAS,SYNJ2,YWHAE

5 Leukocyte 
extravasation 
signaling

2.69 0.0622 0 9/193 (5) 0/193 (0) 3/193 (2) 181/193 (94) ACTB,ACTN1,ARHGAP35,CD44,C
D99,ITGB1,JAM2,JAM3,ROCK2,TH
Y1,VCL,WASL

6 Systemic 
lupus erythe‑
matosus In T 
cell signaling 
pathway

2.3 0.0556 0 8/216 (4) 0/216 (0) 4/216 (2) 204/216 (94) AKT1,AKT3,CD44,DNMT1,GRB2,K
RAS,MAP2K1,MAP2K3,RALA,RND
3,ROCK2,RRAS

7 IGF‑1 signal‑
ing

4.49 0.106 − 0.707 7/104 (7) 0/104 (0) 4/104 (4) 93/104 (89) AKT1,AKT3,CCN1,CCN2,GRB10,
GRB2,KRAS,MAP2K1,RALA,RRAS
,YWHAE

8 14–3‑3‑medi‑
ated signaling

2.54 0.0714 − 1 6/126 (5) 0/126 (0) 3/126 (2) 117/126 (93) AKT1,AKT3,GRB2,KRAS,MAP2K1,P
LCB3,RALA,RRAS,YWHAE

9 HIPPO signal‑
ing

2.45 0.0833 – 4/84 (5) 0/84 (0) 3/84 (4) 77/84 (92) CD44,PPP1R10,PPP1R12A,PPP1R
14A,PPP1R3D,TP53BP2,YWHAE

10 ERK5 Signal‑
ing

2.17 0.0833 0 3/72 (4) 0/72 (0) 3/72 (4) 66/72 (92) AKT1,KRAS,RALA,RPS6KA3,RRA
S,YWHAE

11 Inhibition 
of ARE‑medi‑
ated mRNA 
degradation 
pathway

0.801 0.041 − 1.342 3/122 (2) 0/122 (0) 2/122 (2) 117/122 (96) AKT1,AKT3,DDX6,PSME1,YWHAE

12 Necroptosis 
signaling 
pathway

0.541 0.0327 1.342 1/153 (1) 0/153 (0) 4/153 (3) 148/153 (97) PLA2G4A,STAT1,TIMM13,TIMM8
A,TOMM34

13 Calcium 
signaling

0.305 0.0253 − 1 3/198 (2) 0/198 (0) 2/198 (1) 193/198 (97) ATP2B4,CACNA2D1,CALM1 
(includes others),ITPR3,MYH14

14 FAT10 signal‑
ing pathway

3.16 0.222 – 1/18 (6) 0/18 (0) 3/18 (17) 14/18 (78) PSME1,SQSTM1,UBA1,UBA6

15 mitochondrial 
dysfunction

0.267 0.0242 – 2/165 (1) 0/165 (0) 2/165 (1) 161/165 (98) ATP5ME,CPT1A,GSR,NDUFAB1

16 pentose 
phosphate 
pathway

1.66 0.2 – 1/10 (10) 0/10 (0) 1/10 (10) 8/10 (80) PGD,TKT

17 DNA methyla‑
tion and tran‑
scriptional 
repression 
signaling

0.724 0.0588 – 1/34 (3) 0/34 (0) 1/34 (3) 32/34 (94) DNMT1,H4‑16
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panel to evaluate its discriminatory power in control 
group versus cancer group (grade 3 and 4).

In a comparison of the control with cancer group 
(grade 4), the 5-marker panel (CCT3, PCMT1, TKT, 
TOMM34, UBA1) showed better sensitivity (0.90 and 
0.90), specificity (0.93 and 1.00), error rate (8 and 4%), 
and AUC value (0.94 and 0.96) than the best single 
marker (TOMM34). Indeed, the single best candidate 
model showed lower sensitivity (0.70 and 0.80), speci-
ficity (0.80 and 0.50), AUC value (0.88 and 0.72), and a 
higher error rate (24 and 11%) (Figs. 4, 5 and Additional 
file  2: Fig. S3). Moreover, for the control versus cancer 
group (grade 3 and 4) comparison, the 5-marker panel 
(sensitivity, 0.80 and 0.90; specificity, 0.92 and 1.00; error 
rate, 10 and 2%; and AUC, 0.93 and 0.98) also showed 
better performance than the best single marker (sensitiv-
ity, 0.50 and 0.40; specificity, 0.88 and 0.85; error rate, 26 
and 7%; and AUC, 0.82 and 0.82) (Figs. 4, 5).

Discussion
To improve the classification discriminating power 
between the control and cancer groups, we constructed 
a multi-marker panel and subjected it to statistical evalu-
ation. A similar approach has been conducted to iden-
tify a novel biomarker that can distinguish disease status 
between affected and healthy groups; a multi-marker 
panel that included more than 1 protein showed bet-
ter performance than a single marker [29]. Before we 
selected marker candidates for the multi-marker panel, 
we first considered which combination of control and 
cancer groups (grade 2, grade 3, and grade 4) would show 
the best discriminating power. Grade 2 cancer is an early 
stage of glioma and it was not easy to observe differences 

in the control versus cancer group. However, grade 4 can-
cer is a more advanced stage of disease and may be more 
representative of a glioma diagnosis than early stage of 
one. Thus, the detection of grade 4 might be more suit-
able for glioma screening. Therefore, we first selected a 
multi-marker panel that showed the best discriminatory 
power between the control and cancer group (grade 4). 
We then applied this multi-marker panel to evaluate its 
discriminatory power in control versus cancer (grade 3 
and 4). As shown the result section, the 5-marker panel 
(sensitivity, 0.80 and 0.90; specificity, 0.92 and 1.00; error 
rate, 10 and 2%; and AUC, 0.93 and 0.98) also showed 
better performance than the best single marker (sensi-
tivity, 0.50 and 0.40; specificity, 0.88 and 0.85; error rate, 
26 and 7%; and AUC, 0.82 and 0.82) (Figs. 4, 5 and Addi-
tional file 2: Fig. S3). These data demonstrate that the dis-
criminatory power of the 5-marker panel was higher than 
the best single marker model in both of primary cells and 
tissue (Figs. 4, 5 and Additional file 2: Figure S3).

Furthermore, in this study, we first wanted to know 
that the discovered single and multi-marker are able to 
show the classification discriminating power between 
the control and cancer groups (grade 2) and if so, these 
markers are also able to show whether or not multi-
marker panel represent the better performance than sin-
gle marker in the control and cancer groups (grade 2). In 
a comparison of the control with cancer group (grade 2), 
single best candidate model showed the effective clas-
sification discriminating power and the 5-marker panel 
also showed better sensitivity (0.70 and 0.90), specificity 
(0.80 and 0.90), error rate (25 and 3%), and AUC value 
(0.87 and 0.97) than the best single marker (TOMM34) 
(Fig. 5). Indeed, the single best candidate model showed 

Table 1 (continued)

N Ingenuity 
Canonical 
Pathways

‑log 
(p‑value)

Ratio z‑score Down 
regulated %

No change 
%

Up 
regulated

No overlap 
with dataset 
%

Gene name

18 Apelin adipo‑
cyte signaling 
pathway

0.256 0.0253 – 1/79 (1) 0/79 (0) 1/79 (1) 77/79 (97) GNA11,PRDX6

19 Neuropro‑
tective role 
of THOP1 
in Alzheimer’s 
disease

0 0.0183 – 0/109 (0) 0/109 (0) 2/109 (2) 107/109 (98) THOP1,YWHAE

20 TCA Cycle II 
(Eukaryotic)

0.363 0.0417 – 0/24 (0) 0/24 (0) 1/24 (4) 23/24 (96) IDH3A

21 Cell Cycle: 
G2/M DNA 
damage 
checkpoint 
regulation

0.971 0.0612 – 0/49 (0) 0/49 (0) 3/49 (6) 46/49 (94) TGFB2
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Fig. 3 Validation of biomarker candidates in control group and cancer group. The 20 selected proteins from TMT labeled quantitation were verified 
by MRM in control (N = 10) and cancer (grade 3& grade 4) (N = 27) primary cell samples
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Fig. 4 Comparison of discriminatory power of the 5‑marker panel versus the best single marker in primary glial cells. Five proteins were selected 
from t‑test and ROC curve and used to construct the 5‑marker panel, and its performance was evaluated. Logistic regression algorithms were used, 
in which enter method was used to evaluate the discriminatory power between control and grade 2, 4, 3 and 4 groups (Control: 10, Grade 2: 10, 
Grade 3: 12, and Grade 4: 15). The results of the evaluation between the best single marker A and C and 5‑marker panel B and C are presented 
as confusion matrices with sensitivity, specificity, and error rate, and ROC curves D, E, and F are also represented by AUC values
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Fig. 5 Comparison of discriminatory power of the 5‑marker panel versus the best single marker in glial tissues. The performance of 5‑marker panel 
was also evaluated in glial tissue samples. Logistic regression algorithms were used, in which enter method was used to evaluate the discriminatory 
power between control and grade 2, 4, 3 and 4 groups (Control: 10, Grade 2: 10, Grade 3: 10, and Grade 4: 10). The results of the evaluation 
between the best single marker A and C and 5‑marker panel B and C are presented as confusion matrices with sensitivity, specificity, and error rate, 
and ROC curves D, E, and F are also represented by AUC values
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lower sensitivity (0.70 and 0.80), specificity (0.70 and 
0.60), AUC value (0.84 and 0.97), and a higher error rate 
(30 and 70%) in both of primary cells and tissue (Figs. 4, 
5). Consequently, discovered 5 multi-marker showed the 
classification discriminating power between the control 
and cancer groups (grade 2).

For the discovery of prognostic markers, we used the 
individual patient’s clinical information, and analyzed the 

statistical significance between the survival dataset and 
expression of selected 20 proteins. To this end, Kaplan–
Meier survival curves were generated and compared 
the protein expression and survival rate. We divided the 
MRM data into two groups, i.e., high and low expres-
sions. In the result of the Kaplan–Meier survival plot, 
four proteins (DNMT1, IDH3A, TACC3, and TKT) 
showed significant differences between the high and low 

Fig. 6 The result of Kaplan–Meier Survival Analysis for DNMT1, IDH3A, TACC3, and TKT For the discovery of prognostic markers, Kaplan–Meier 
survival curves were generated and compared the protein expression and survival rate. Four proteins (A DNMT1, B IDH3A, C TACC3, and D TKT) 
showed significant differences between the high and low expressions, where p‑values of analysis are 0.0226, 0.0033, 0.0130, and 0.0092, respectively
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expressions, although they did not differ significantly in 
the t-test. As shown by the Kaplan–Meier plot analysis 
of the MRM data, we showed that higher expression of 
these proteins was correlated with poorer prognosis of 
glioma patients (Fig. 6). This demonstrated that DNMT1, 
IDH3A, TACC3, and TKT could be incorporated as 
prognostic markers for glioma. However, 4 prognostic 
marker candidates seem to be required further validation 
in a large sample size.

Conclusion
In this study, 7429 and 476 proteins were identified and 
quantitated in the control and cancer samples, respec-
tively. Among them, 20 proteins were selected and vali-
dated using the quantitative MRM-MS assay, whereas 
we verified the reproducibility of the overall process for 
the MRM-MS assay. From the results of the quantita-
tive assay, we discovered five potential diagnostic and 
four prognostic biomarkers for glioma. The results of this 
study indicate that our MRM-MS assay has the advan-
tages of being highly validated, transferable, and able 
to quantify high- to low-abundance proteins, and has 
the potential for use as a preclinical validation method. 
Although we acknowledge that the model requires fur-
ther validation in a large sample size, the five diagnostic 
and four prognostic biomarkers can be used as baseline 
data for the development of new therapeutic strategies 
for glioma.
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