
Huang et al. Clinical Proteomics           (2023) 20:43  
https://doi.org/10.1186/s12014-023-09434-9

RESEARCH

Proteomic analyses reveal cystatin c 
is a promising biomarker for evaluation 
of systemic lupus erythematosus
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Abstract 

Background Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement, espe-
cially the kidneys. However, the underlying mechanism remains unclear, and accurate biomarkers are still lacking. This 
study aimed to identify biomarkers to assess organ damage and disease activity in patients with SLE using quantita-
tive proteomics.

Methods Proteomic analysis was performed using mass spectrometry in 15 patients with SLE and 15 age-matched 
healthy controls. Proteomic profiles were compared in four main subtypes: SLE with proteinuria (SLE-PN), SLE with-
out proteinuria (SLE-non-PN), SLE with anti-dsDNA positivity (SLE-DP), and SLE with anti-dsDNA negativity (SLE-non-
DP). Gene ontology biological process analysis revealed differentially expressed protein networks. Cystatin C (CysC) 
levels were measured in 200 patients with SLE using an immunoturbidimetric assay. Clinical and laboratory data were 
collected to assess their correlation with serum CysC levels.

Results Proteomic analysis showed that upregulated proteins in both the SLE-PN and SLE-DP groups were mainly 
mapped to neutrophil activation networks. Moreover, CysC from neutrophil activation networks was upregulated 
in both the SLE-PN and SLE-DP groups. The associations of serum CysC level with proteinuria, anti-dsDNA positivity, 
lower complement C3 levels, and SLE disease activity index score in patients with SLE were further validated in a large 
independent cohort.

Conclusions Neutrophil activation is more prominent in SLE with proteinuria and anti-dsDNA positivity, and CysC 
is a promising marker for monitoring organ damage and disease activity in SLE.
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Introduction
Systemic lupus erythematosus (SLE) is mediated by auto-
reactive autoantibodies that damage multiple tissues and 
organs [1]. At least 50% of patients with SLE develop 
lupus nephritis (LN), which is a serious manifestation 
of SLE [2]. However, the pathogenesis of SLE remains 
unclear.

Proteinuria, creatinine ratio, creatinine clearance, 
and anti-dsDNA antibodies are common markers 
for the detection and assessment of LN [3]. Autoan-
tibodies, including antinuclear antibodies (ANAs), 
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anti-dsDNA antibodies, anti-histone antibodies, anti-
SSA/Ro and anti-SSB/La antibodies, and anti-phospho-
lipid antibodies, are involved in multiple organ damage, 
especially the kidneys [1]. Moreover, anti-DNA anti-
body levels in the serum of patients with SLE fluctuate 
with disease activity [4]. Anti-dsDNA antibody is the 
most widely used index in laboratory tests and is part 
of the classification criteria for SLE. They are present 
in nearly 80% of patients with LN and can cross-react 
with glomerular antigens [5]. A study showed that anti-
dsDNA levels were correlated with disease severity in 
40 patients with untreated LN [6]. In murine models of 
SLE, organ damage can be prevented or even reversed 
by blocking the production of pathogenic anti-dsDNA 
antibodies [4]. Anti-dsDNA antibodies were explored 
as potential therapeutic targets for SLE [7–9]. Proteinu-
ria is one of the most common manifestations of kidney 
involvement in SLE. Currently, it is recommended that 
patients with overt proteinuria (e.g., urine protein: cre-
atinine ratio > 500  mg/g) undergo kidney biopsy  [10]. 
Proteomics-based studies have been applied in SLE 
to discover differentially regulated proteins [11, 12]. 
In some reports, C4d, serum HMGB1, and several 
cytokines proposed as potential biomarkers for screen-
ing SLE [13–15]. Although these potential biomarkers 
were mainly expressed in SLE, it is important to iden-
tify sensitive and specific biomarkers of renal disease 
activity.

In the present study, whole proteomics of patients 
with SLE and healthy controls was performed using 
mass spectrometry to identify and establish biomarkers 
to achieve a more accurate and reliable evaluation of 
renal damage and disease activity in patients with SLE.

Materials and methods
Sample collection and preparation
This study was approved by the scientific ethics com-
mittee of The First Affiliated Hospital of Anhui Medi-
cal University. Written informed consent was obtained 
from all participants prior to the study. Among these, 
15 patients with SLE and 15 age- and sex-matched 
healthy controls (HCs) were used for proteomics; 
another 200 patients in the SLE cohort were used for 
serum biomarker assessment. Clinical information was 
abstracted from the medical records. Disease activ-
ity was recorded using the SLE disease activity index 
(SLEDAI) score. Patients with SLE were classified into 
two comparison groups: SLE patients with proteinu-
ria (SLE-PN) versus SLE patients without proteinuria 
(SLE-non-PN) and SLE patients with anti-dsDNA posi-
tivity (SLE-DP) versus SLE patients with anti-dsDNA 
negativity (SLE-non-DP).

Preparation of peripheral blood mononuclear cells 
(PBMCs) and protein extraction
Blood was collected into 10-mL ethylenediaminetet-
raacetic acid evacuated tubes (BD, USA) for PBMC 
isolation. PBMCs were isolated with density-gradient 
centrifugation in Ficoll Paque Premium (GE Health-
care, USA) and washed twice in phosphate buffered 
saline. The PBMC samples were stored at − 80°C prior 
to use. Protein was extracted from isolated PBMCs on 
ice using a high-intensity ultrasonic processor (Scientz) 
in lysis buffer (8 M urea, 1% protease inhibitor cocktail). 
The remaining debris was removed by centrifugation at 
12,000×g and 4  °C for 10  min. Finally, the supernatant 
was collected, and the protein concentration was deter-
mined using a BCA kit according to the manufacturer’s 
instructions.

Measurement of cystatin C (CysC) in serum samples
We collected 5  mL of peripheral blood from each indi-
vidual for serum biomarker assessment. Serum was sep-
arated by centrifugation at 3000  rpm for 15  min within 
2 h after sample collection. To detect serum CysC levels, 
enzyme-linked immunosorbent assay was performed by 
Jiuqiang Biotechnology (Beijing, China) in accordance 
with the manufacturer’s instructions.

Mass spectrometry and data analyses
In brief, the peptide was dissolved by liquid chromatog-
raphy with mobile phase A and superheated by Nano 
Elute High performance liquid phase system for separa-
tion. Mobile phase A is an aqueous solution containing 
0.1% formic acid and 2% acetonitrile. mobile phase B is a 
solution containing 0.1% formic acid and 100% acetoni-
trile. liquid phase gradient setting: 0–70 min, 4%–22%B; 
70–84 min, 22% to 30%B; 84–87 min, 30%–80%B; 87–90 
min, 80%B, flow rate maintained at 450.00  nL/min. The 
peptides are separated by an ultra-high performance 
liquid phase system and injected into the Capillary ion 
source for ionization and then analyzed by TIMES TOF 
Pro mass spectrometry. The ion source voltage was set to 
2.0 kV, and the parent ion of the peptide segment and its 
secondary fragments were detected and analyzed using 
high-resolution TOF. The secondary mass spectrometry 
scan range is set to 100–1700. The data acquisition mode 
uses parallel cumulative serial fragmentation (PASEF) 
mode. A secondary spectrum with charge number of 
parent ions in the range of 0–5 was collected by PASEF 
mode for 10 times after primary mass spectrometry 
collection. The dynamic exclusion time of series mass 
spectrometry scanning was set to 30  s seconds to avoid 
repeated scanning of parent ions. Detailed analyses were 
described as previously [16]. For quality control of the 



Page 3 of 9Huang et al. Clinical Proteomics           (2023) 20:43  

expression data, we filtered low-abundance proteins (< 1 
in > 80% of samples) and converted the expression data 
into a logarithmic form, which met the normal distribu-
tion. The Limma package (v.3.50.1) [17] was applied to 
define differentially expressed proteins (DEPs) between 
the two groups with a 1.5-fold change and P-value < 0.05. 
Cluster Profiler is an R package used to compare biologi-
cal themes among gene clusters [18].

Statistical analyses
All statistical analyses were performed using SPSS 22.0 
(IBM, Armonk, NY, USA). Continuous variables are pre-
sented as mean ± standard deviation if normally distrib-
uted (according to the Shapiro–Wilk test) and analyzed 
using the independent t-test; otherwise, they were pre-
sented as median (range) and analyzed using the Mann–
Whitney U-test. Categorical variables are presented as n 
(%) and were analyzed using the chi-square test or Fish-
er’s exact test. Two-sided P-values < 0.05 were considered 
statistically significant. Student’s t-tests were used for 
comparisons between two groups, and one-way analysis 
of variance was used for multi-group comparisons using 
R (v.3.6.1).

Results
Patient characteristics
Patients with SLE and age- and sex-matched HCs were 
used for proteomics, and clinical information, including 
sex, age, autoantibodies, and proteinuria, was collected 
(Table  1). To assess the correlation between CysC and 
clinical and laboratory data, another cohort including 
200 patients with SLE was included (Table 2). The aver-
age CysC level was 1.55 mg/L, and the average SLEDAI 
score was 12.55 points.

Neutrophil activation network associated with organ 
damage and disease activity in SLE
Using mass spectrometry, we identified a total of 4830 
proteins in the 15 HCs and 15 patients with SLE. To iden-
tify protein markers associated with disease subtypes, 
we performed differential protein analysis across two 
comparison groups: SLE-PN versus SLE-non-PN and 
SLE-DP versus SLE-non-DP. Indeed, 80 proteins were 
more abundant and 74 were less abundant at the prot-
eomic level in the SLE-PN group than in the SLE-non-PN 
group, whereas 87 proteins were more abundant and 216 
were less abundant in the SLE-DP group than in the SLE-
non-DP group (fold change > 1.5 or < 0.67; P < 0.05; Fig. 1, 
Additional file  1: Data S1). Furthermore, we performed 
gene ontology biological process analysis of DEPs from 
the SLE-PN and SLE-DP groups and found that upregu-
lated proteins in both comparison groups were mainly 
mapped to neutrophil activation networks (Fig.  2), 

Table 1 Characteristics of patients with SLE for proteomics

Characteristic HC SLE

n 15 15

Age, year (mean ± SD) 33.53 ± 6.47 34.53 ± 8.15

Age onset, year (mean ± SD) – 29.73 ± 7.79

SLEDAI (mean ± SD) – 6.4 ± 4.52

Proteinuria (> 0.5 g/24 h), n, % – 6, 67%

Malar erythema, n, % – 8, 53.33%

Phontaesthesia, n, % – 4, 26.67%

Mucosal ulcers, n, % – 1, 6.67%

Arthritis, n, % – 2, 13.33%

Pleurisy, n, % – 0, 0%

Psychosis, n, % – 2, 4.44%

Fever, n, % – 0, 0%

Lupus encephalopathy, n, % – 4, 26.67%

Alopecia – 2, 13.33%

ANA, n, % – 15, 100%

Anti-JO-1 antibody, n, % – 1, 6.67%%

Anti-SM antibody, n, % – 5, 27.78%

Anti-SSA antibody, n, % – 10, 55.56%

Anti-SSB antibody, n, % – 3, 16.67%

Low C3, n, % – 12, 80%

Anti-dsDNA antibody, n, % – 6, 40%

Table 2 Characteristics of patients with SLE for serum biomarker 
assessment

Characteristic SLE

N 200

Female, n, % 182, 91%

Age, year (mean ± SD) 38.06 ± 12.78

SLEDAI (mean ± SD) 12.55 ± 6.97

CysC (mean ± SD) 1.55 ± 0.94

Proteinuria (> 0.5 g/24 h), n, % 63, 31.5%

Hematuria, n, % 76, 38%

Cylindruria, n, % 11, 5.5%

Malar erythema, n, % 5, 66.67%

Phontaesthesia, n, % 2, 28.57%

Mucosal ulcers, n, % 15, 7.5%

Lupus headache, n, % 6, 3%

Arthritis, n, % 94, 47%

Rash, n, % 55, 27.5%

Pleurisy, n, % 1, 0.5%

Pyuria, n, % 69, 34.5%

Psychosis, n, % 5, 2.5%

Fever, n, % 72, 36%

Lupus encephalopathy, n, % 1, 0.5%

Alopecia, n, % 21, 10.5%

Low C3, n, % 144, 72%

Anti-dsDNA antibody, n, % 115, 57.5%
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including CysC, FGL2, and CD93 (Fig. 3). Previous stud-
ies reported that CysC serves as a biomarker of kidney 
function [19]. Here, our proteomic analysis showed that 
CysC was upregulated in the SLE-PN and SLE-DP groups 
(Fig.  4), suggesting that CysC is a biomarker of organ 
damage and disease activity in SLE.   

CysC promote kidney damage and disease activity in SLE
To further understand the role of CysC in SLE, CysC 
levels were measured in 200 patients with SLE. We 
then evaluated the association between CysC and clini-
cal and laboratory data of patients with SLE. Disease 

activity in patients with SLE was assessed using SLE-
DAI; a SLEDAI score of 0–9 indicated mild severity, and 
a SLEDAI score of > 9 indicated moderate-to-severe 
SLE. Logistic regression analysis was used to examine 
whether CysC was associated with proteinuria, hema-
turia, anemia, neutropenia, lower lymphopenia, com-
plement 3 (C3) levels, anti-dsDNA, and SLEDAI scores, 
which revealed significant associations between CysC 
levels and proteinuria, anti-dsDNA, lower C3 levels, 
and SLEDAI scores in patients with SLE (Fig.  5A–D). 
We also performed a receiver operating characteristic 
(ROC) curves analysis to assess the CysC expression 
is a biomarker for SLEDAI and kidney involvement in 

Fig. 1 Protein Expression Heterogeneity in Different Subgroups of Systemic Lupus Erythematosus (SLE). Volcano plot showing differential 
expression proteins (DEPs) in A SLE with proteinuria (SLE-PN) versus SLE without proteinuria (SLE-non-PN) and B SLE with anti-dsDNA positivity 
(SLE-DP) versus SLE without anti-dsDNA positivity (SLE-non-DP) groups. DEPs were defined as fold change > 1.5 and p < 0.05, red dots represent 
up-regulated proteins and  blue dots represents down-regulated proteins

Fig. 2 Results of GO enrichment analysis of DEPs in neutrophil activation networks in A SLE-PN versus SLE-non-PN and B SLE-DP versus SLE-non-DP 
groups
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SLE, with the areas under the ROC curves of 0.672 and 
0.729, respectively (Additional file 2: Figure S1).

Discussion
The identification of new clinical and laboratory bio-
markers is crucial for early detection and supervision of 
disease activity and renal damage in patients with SLE. 
Mass spectrometry proteomics can help gain insight 
into protein abundance from large-scale studies of bio-
logical systems [20]. In this study, we performed whole 
proteomics analysis of patients with SLE and HCs using 

bioinformatics and biomarker validation, and CysC was 
evaluated as a biomarker for renal impairment and dis-
ease activity in Chinese patients with SLE.

Anti-dsDNA antibody levels have been associated 
with disease activity and LN [21]. Periodic measure-
ment of anti-dsDNA antibody titers is considered 
essential once SLE is diagnosed to monitor disease pro-
gression [22, 23]. Additionally, accurate evaluation of 
proteinuria is critical to the clinical management of LN 
because it is currently the most important biomarker of 
disease activity and renal prognosis available [24, 25]. 
Based on these evidence, we classified patients into 

Fig. 3 Heatmap showing the expression of core proteins that contribute to neutrophil activation pathway enrichment (red, high abundance; 
blue, low abundance; protein names are represented by their encoding genes). A SLE-PN versus SLE-non-PN groups and HCs and B SLE-DP 
versus SLE-non-DP groups and healthy controls (HCs)

Fig. 4 Boxplot showing Cystatin C (CysC) levels in A HCs, SLE-non-PN and SLE-PN groups and B HCs, SLE-non-DP and SLE-DP groups
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four subgroups: SLE-PN, SLE-non-PN, SLE-DP, SLE-
non-DP and compare their proteomic difference.

There is a higher prevalence of neutrophils in patients 
with SLE, which are specialist cells of the innate immune 
system [26]. Neutrophils include normal density neu-
trophils (NDNs) and low-density granulocytes (LDGs). 
LDGs induce increased endothelial damage and vas-
cular dysfunction in  vitro, through their enhanced abil-
ity to synthesize and extrude neutrophil extracellular 
traps (NETs) [27]. Neutrophil transcripts were enriched 
in patients with active renal disease [28]. Neutrophil 
degranulation and activation were upregulated in active 
renal involvement patients with SLE [29]. In SLE, NETs 
stimulate the production of proinflammatory cytokines 
and type I interferons (IFNs), promote immune cell mat-
uration, and contribute to tissue damage [30]. Increased 
numbers of apoptotic neutrophils have been found in 
patients with SLE and are related to anti-dsDNA anti-
body levels [31]. Thus, our finding of upregulated pro-
teins in both comparison groups was mainly mapped 
to neutrophil activation networks with anti-dsDNA 
antibody positivity. A previous study also identified 

neutrophils/LDGs producing NETs in SLE-affected 
kidneys, which were correlated with anti-dsDNA anti-
body levels in these patients [32]. Proteins were mainly 
mapped to neutrophil activation networks, in addition to 
CysC, there are other proteins including NBEAL2, FGL2, 
CD93. NBEAL2 (neurobeachin-like 2) encodes a protein 
of 2754 amino acids and expressed in in platelets, mono-
cytes, and neutrophils [33, 34]. Neutrophils and NK cells 
function abnormally in the Nbeal2-deficient immune sys-
tem [35]. NBEAL2 is critically important for neutrophils 
as regulator of specific granule release [36]. Fibrinogen-
like 2 (FGL2) is a member of the fibrinogen superfamily 
that exists in a membrane-bound and soluble form [37]. 
FGL2 expressed on neutrophils in addition to endothe-
lial cells, macrophages and regulatory T cells (Treg) [38]. 
FGL2 mRNA expression is elevated in chronic kidney 
disease (CKD), and higher FGL2 levels are associated 
with fibrosis and worse outcomes [39]. Li et  al. illus-
trated that NETs formation was regulated by the FGL2 
in liver injury [40]. CD93 is a C-type lectin-like domain 
(CTLD) containing glycoprotein expressed on endothe-
lial cells, platelets and a variety of leukocytes [41]. CD93 

Fig. 5 Boxplot showing CysC levels in A normal complement C3 versus low complement C3, B SLE-non-DP versus SLE-DP groups, and C 
SLE-non-PN versus SLE-PN groups. D SLE disease activity index (SLEDAI) score: mild versus severe (a score of 0–8 indicated mild severity, and a score 
of ≥ 9 indicated moderate-to-severe). *P < 0.05, **P < 0.01, ***P < 0.001
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is upregulated on the surface of neutrophils upon activa-
tion in vitro, suggesting it is present in neutrophil gran-
ules [42]. Moosig et al. showed that CD93 expression was 
unchanged between SLE patients and controls; however, 
CD93 expression was inversely correlated with pred-
nisone dosage [43]. These findings explain the association 
of neutrophil activation networks with organ damage and 
disease progression in SLE.

CysC is a member of the CysC superfamily that is 
encoded by the housekeeping gene CST3 and is associ-
ated with numerous immunological processes, which 
results in inflammatory autoimmune diseases and 
tumor development (multiple myeloma and breast can-
cer) [44, 45]. A significant association exists between 
high serum CysC levels, proteinuria, and reduced glo-
merular filtration rate, which could reflect renal dam-
age and impaired renal function [19]. Multiple studies 
have shown that CysC levels are higher in patients with 
SLE than in controls [46–48]. A meta-analysis showed 
serum CysC is clearly superior to creatinine as a marker 
of GFR prediction and earlier detection of renal failure 
[49]. Consistently, our proteomic analysis revealed that 
CysC levels were upregulated in both the SLE-PN and 
SLE-DP groups. We also validated the significant asso-
ciations between CysC level and proteinuria, anti-dsDNA 
antibody, lower C3 level, and SLEDAI scores in another 
independent cohort of patients with SLE. Reduced com-
plement C3 and C4 protein levels and high anti-dsDNA 
antibody levels occur with active disease in SLE [50]. 
These findings suggest that CysC is a biomarker for kid-
ney damage and disease activity in SLE. Additional rou-
tine renal function tests have identified CysC as a better 
marker of kidney function than creatinine due to its con-
stant secretion and non-dependence on filtrate or other 
factors, such as muscular mass and sex [19, 51] and SLE 
is an autoimmune disease that mainly affects female 
patients [52]. Thus, it is thought to be a noninvasive and 
reliable measure to estimate kidney function.

Our study has some limitations. First, other proteins in 
neutrophil activation networks have not been validated 
in independent samples. Second, the majority of patients 
with SLE presented with a chronic disease, and some of 
them were receiving systemic therapy, which may affect 
CysC levels. Finally, we did not test CysC levels in a 
matched healthy control group.

Conclusions
Overall, our results may serve as novel and sensitive 
non-invasive biomarkers for renal damage and disease 
activity. This study adds to our understanding of neu-
trophil activation and CysC levels in the pathogenesis 

of SLE. Additionally, the study suggests that target-
ing CysC and key biomarkers in neutrophil activation 
networks may play an important role in the treatment 
of SLE. Future studies with larger sample sizes are 
required to validate the generalizability of our findings.
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