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Abstract 

Background This study investigates the proteomic landscapes of chromophobe renal cell carcinoma (chRCC) 
and renal oncocytomas (RO), two subtypes of renal cell carcinoma that together account for approximately 10% 
of all renal tumors. Despite their histological similarities and shared origins, chRCC is a malignant tumor necessitating 
aggressive intervention, while RO, a benign growth, is often subject to overtreatment due to difficulties in accurate 
differentiation.

Methods We conducted a label‑free quantitative proteomic analysis on solid biopsies of chRCC (n = 5), RO (n = 5), 
and normal adjacent tissue (NAT, n = 5). The quantitative analysis was carried out by comparing protein abundances 
between tumor and NAT specimens. Our analysis identified a total of 1610 proteins across all samples, with 1379 
(85.7%) of these proteins quantified in at least seven out of ten LC‒MS/MS runs for one renal tissue type (chRCC, RO, 
or NAT).

Results Our findings revealed significant similarities in the dysregulation of key metabolic pathways, including car‑
bohydrate, lipid, and amino acid metabolism, in both chRCC and RO. Compared to NAT, both chRCC and RO showed 
a marked downregulation in gluconeogenesis proteins, but a significant upregulation of proteins integral to the cit‑
rate cycle. Interestingly, we observed a distinct divergence in the oxidative phosphorylation pathway, with RO show‑
ing a significant increase in the number and degree of alterations in proteins, surpassing that observed in chRCC.

Conclusions This study underscores the value of integrating high‑resolution mass spectrometry protein quanti‑
fication to effectively characterize and differentiate the proteomic landscapes of solid tumor biopsies diagnosed 
as chRCC and RO. The insights gained from this research offer valuable information for enhancing our understanding 
of these conditions and may aid in the development of improved diagnostic and therapeutic strategies.
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Introduction
Renal cell carcinoma (RCC), a disease characterized 
by abnormal cell proliferation in the epithelial cells of 
the kidney, accounts for 400,000 new cases of adult 
kidney cancer globally each year [1]. There are several 
subtypes within the RCC classification, each display-
ing unique histological and cytological phenotypes [2]. 
Chromophobe renal cell carcinoma (chRCC) and renal 
oncocytomas (RO) are two RCC subtypes that repre-
sent approximately 10% of all renal tumors [3]. RO, a 
benign growth often found in the kidney collecting 
ducts, typically lends itself to conservative treatment 
approaches. Conversely, chRCC is a malignant tumor 
that, despite sharing a similar origin in distal kidney 
nephrons, requires more aggressive intervention to 
prevent dire consequences to the patient [3]. Given the 
strikingly similar anatomical origins and histological 
features of these two tumor types, their accurate dif-
ferentiation poses a significant challenge [4]. Therefore, 
most patients undergo surgery, often involving a partial 
or total nephrectomy. This can lead to overtreatment 
in RO, as benign lesions may not require such invasive 
interventions if correctly identified beforehand. Thus, 
accurately distinguishing between these two conditions 
is essential not only to guide optimal treatment strate-
gies but also to reduce the potential burden on patients 
and the healthcare system, thereby improving overall 
patient care [4, 5].

Building on our recent development of a highly effi-
cient, ultrasonic-based methodology for extracting, 
identifying, and quantifying the proteome of solid renal 
biopsies embedded in optimal cutting temperature 
(OCT) compound [6], we sought further to leverage 
these technological advancements in our current study. 
In this context, we employed the total protein approach 
(TPA), a computational tool adept at converting spec-
tral intensities into protein concentrations. The efficacy 
of the TPA methodology has been proven in various 
scenarios, such as evaluating metabolic pathways in 
slow and fast skeletal muscle [7], exploring biological 
processes associated with colorectal cancer [8], and 
assessing the impact on mitochondrial bioenergetics in 
disease-induced conditions [9]. Additionally, we previ-
ously investigated differentially expressed proteins in 
renal cancers using high-resolution MS combined with 
the TPA method [10]. In this work, we focused on the 
metabolic features associated with chRCC and RO ver-
sus NAT using the TPA method to identify undisclosed 
new features characterizing each tumor [11]. We com-
pared our findings with the literature addressing the 
metabolic characteristics of these renal neoplasms [12, 
13].

Materials and methods
Study design and sampling
In this manuscript, we have conscientiously reused a por-
tion of the raw data from our previous by Jorge et al. [11]. 
The raw data in question forms the basis of a comprehen-
sive dataset that was collected with significant effort and 
resources. This dataset is rich and multifaceted, allowing 
for various analyses and interpretations. While our pre-
vious publication focused on the identification of novel 
histochemical markers in renal neoplasm, the current 
manuscript focuses on the discovery of shared metabolic 
features between chromophobe renal cell carcinoma and 
renal oncocytoma. We believe that the use of this data, 
in this manner, is a responsible use of resources, avoid-
ing unnecessary duplication of data collection efforts. 
These data comprises the use of high-resolution mass 
spectrometry to examine the proteomes of 15 human 
renal tissue biopsies that were flash-frozen and embed-
ded in OCT. These included chromophobe renal cell car-
cinoma (chRCC, n = 5), renal oncocytoma (RO, n = 5) and 
normal adjacent renal tissue (NAT, n = 5). The University 
of Pittsburgh Biospecimen Core provided the human 
kidney tissue samples used in this study, which received 
approval from the University of Pittsburgh’s Institutional 
Review Board (IRB # 02–077). All neoplasms in the study 
consisted of at least 85% tumor cells. Additional file  1: 
Table  S1 summarizes the patient data involved in this 
research.

Proteomic analysis
The processing of biopsies followed the methodology out-
lined in Jorge et al. [6] Briefly, tissues were first cleaned of 
OCT using an ultrasonic bath model TI-H-5 from Elma 
(Singen, Germany). Then, proteins were extracted in 8 M 
urea prepared in 25  mM ammonium bicarbonate using 
an ultrasonic probe (UP50H from Hielscher Ultrason-
ics, Teltow, Germany). Next, protein digestion was car-
ried out with trypsin for four minutes using an ultrasonic 
microplate horn assembly device (QSonica, Newtown, 
CT, USA). The digested proteome extracts were subse-
quently analyzed by a label-free nanoLC-HR-MS/MS 
approach (UHR-QqTOF IMPACT HD from Bruker Dal-
tonics, Bremen, Germany) as described before by Jorge 
et al. [11] A step-by-step protocol, including OCT Clean-
ing, proteome extraction, proteome digestion, and LC–
MS/MS data acquisition is available in Additional file 2.

Data analysis and statistics
The MaxQuant software V1.6.0.16 was utilized for rela-
tive label-free quantification. All raw files were pro-
cessed in a single run using default settings [14, 15]. The 
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Andromeda search engine was employed for database 
searches, using the UniProt-SwissProt Human data-
base as a reference, along with a database of common 
contaminants.

For absolute protein quantification, the Total Protein 
Approach (TPA) was used to examine raw spectral inten-
sities from the MaxQuant output [10, 11]. The calcula-
tion of protein concentration was performed as follows:

Data processing was performed using Perseus (version 
1.6.15.0) with default settings [16, 17]. In brief, reverse 
hits and proteins only identified by site were removed 
from the protein list, and TPA-based concentrations 
were  log2-transformed to reduce the effect of outli-
ers. Protein groups were filtered based on a minimum 
presence of 70% in at least one group. Pearson correla-
tion was performed on filtered values. Missing values 
were imputed from the total matrix with width = 0.5 and 
downshift = 1.8. PCA was performed on the filtered and 
imputed data. Log ratios were calculated as the difference 
in average  log2 values between the two conditions tested 
in volcano plots (two-tailed Student’s t test, FDR = 0.01 
and S0 = 0.1). Protein network analysis was integrated 
and visualized using the software platform Cytoscape 
V3.8.2 with the application StringApp V1.6.0 [18]. KEGG 
[19], Reactome [20] and GO terms [21] were used as 
ontology databases.

Results
Renal tumor profiling
The tissue biopsies were analyzed in duplicate using liq-
uid chromatography coupled to tandem mass spectrom-
etry (nanoLC-ESI-HR-MS/MS). Raw spectral intensity 
values were converted into absolute concentrations using 
the TPA method [10]. A total of 1610 proteins were iden-
tified (1% FDR) across all samples, with 1379 (85.7%) of 
these proteins being quantified in at least seven out of the 
ten LC–MS/MS runs for one renal tissue type (chRCC, 
RO or NAT). Figure 1a displays the principal component 

c(i) =
MS signal (i)

total MS signal x MW (i)

[

mol

g total protein

]

analysis (PCA) of the quantified proteins, showing that 
each specimen class segregates into distinct clusters.

The reproducibility of the MS biological replicates was 
verified by comparing the Pearson correlation between 
all pairs of samples as well as visualizing pairwise scatter 
plots in a matrix (Fig. 1b). The calculated Pearson corre-
lation coefficients spanned from 0.79 to 0.97 for chRCC, 
from 0.76 to 0.95 for RO, and from 0.83 to 0.95 for NAT. 
The Pearson coefficients were higher when tumors were 
compared to each other (0.68–0.86) than when compared 
to NAT (0.56–0.70). These results underline a marked 
deviation of both chRCC and RO from NAT. Further-
more, the data also demonstrate that there are discern-
ible differences between chRCC and RO, highlighting the 
potential to differentiate these two neoplasms using this 
profiling approach.

Dysregulated proteins between tumors and NATs
A two-tailed Student’s t test (FDR = 0.01 and S0 = 0.1) was 
used to distinguish the abundance of proteins between 
each tumor and NAT. In chRCC, 532 proteins exhib-
ited significant differences compared to NAT, with 260 
upregulated and 272 downregulated proteins (Fig.  1c). 
Similarly, in the case of RO versus NAT, 578 proteins 
showed significant differences, with 226 upregulated and 
352 downregulated proteins (Fig.  1d). Comparing the 
upregulated and downregulated proteins between each 
tumor and NAT, 241 downregulated proteins (63%) and 
117 upregulated proteins (32%) were found to be com-
mon (Fig. 1e, f ).

To elucidate the biochemical processes driving the phe-
notypes of chRCC and RO, the differentially expressed 
proteins for each tissue type were used to interrogate 
comprehensive, functional proteomic databases. We 
found a common signature of metabolic dysregulation 
for chRCC and RO compared to NAT (Fig.  2a), affect-
ing carbohydrate metabolism, lipid metabolism, amino 
acid metabolism and oxidative phosphorylation. Among 
KEGG protein pathways linked to carbohydrate metabo-
lism, the most dysregulated were glycolysis/gluconeo-
genesis, pyruvate metabolism and the citric acid cycle 
(FDR < 8.94 ×  10–14). In our analysis, we identified up to 

(See figure on next page.)
Fig. 1 Classification of human renal tissue proteomes and protein expression profiles in tumors relative to NATs. Two instrumental replicates 
were run for each biopsy, resulting in 30 chromatograms that identified a total of 1610 proteins. Of these proteins, a total of 1379 were obtained 
from at least one tissue group (chRCC, RO, or NAT), with a reproducibility ranging from 70 to 100%. a Principal component analysis (PCA) of chRCC, 
RO, and NAT group samples. b Heatmap representation of Pearson correlation of biological (n = 5) and technical (n = 2, each sample) replicates 
(lower left) in combination with a scatterplot matrix protein of TPA‑based quantification (upper right) demonstrating the reproducibility of the MS 
data. Volcano plots illustrate the significantly different (FDR = 0.01, S0 = 0.1) protein expression levels between (c) chRCC and NAT samples and (d) 
RO and NAT samples. Venn diagrams comparing proteomes of chRCC and RO in terms of the (e) downregulated proteins and (f) upregulated 
proteins
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Fig. 1 (See legend on previous page.)
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Fig. 2 Metabolic pathway proteomes similarly affected in chRCC and RO tumors. a Network representation of a subset of pathways in four areas 
of metabolism in which proteins were differentially regulated in tumors. Significantly (FDR < 0.01) upregulated and downregulated proteins are 
shown in red and blue, respectively. Protein pathway analysis was performed by searching the KEGG database [19] using differentially expressed 
proteins between tumor and NAT biopsies. b Correlation between levels of dysregulation of individual proteins  (log2 fold change (FC) in abundance 
in tumor vs NAT) in chRCC and RO for proteins in carbohydrate (n = 47), lipid (n = 27) and amino acid (n = 91) metabolism and oxidative 
phosphorylation (n = 47). The correlation coefficient r was calculated using the Pearson test. Shading areas represent the confidence of the interval, 
and p represents the p value of the test
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23 proteins implicated in these pathways that exhibited 
dysregulation across both tumor subtypes.

The KEGG glycolysis/gluconeogenesis pathway 
includes processes involved in the degradation of glucose 
into pyruvate and the generation of glucose from non-
carbohydrates. Based on the differential protein expres-
sion data, proteins involved in gluconeogenesis, such as 
fructose-1,6-bisphosphatase 1 (FBP1), pyruvate carboxy-
lase (PC), and phosphoenolpyruvate carboxykinase 1 
and 2 (PCK1 and PCK2), were significantly downregu-
lated in tumors. In contrast, glycolytic proteins remained 
unchanged or upregulated, e.g., ATP-dependent 6-phos-
phofructokinase (PFKM). These data indicate that gluco-
neogenesis was downregulated in tumors compared to 
NATs. For instance, the results of FBP1 match well with 
its well-known inhibitory effects on glycolysis and tumor 
growth [22]. Furthermore, the downregulation of PC, 
which catalyzes the conversion of pyruvate to oxaloac-
etate in the first step of gluconeogenesis, suggests a shift 
in cellular metabolism toward the conversion of pyruvate 
into acetyl-CoA, as evidenced by the observed upregula-
tion of proteins such as pyruvate dehydrogenase E1 com-
ponent subunit alpha and beta (PDHA1 and PDHB) and 
the dihydrolipoyl lysine-residue acetyltransferase com-
ponent of the pyruvate dehydrogenase complex (DLAT). 
Several TCA cycle proteins were upregulated, includ-
ing citrate synthase (CS), aconitate hydratase (ACO2), 
isocitrate dehydrogenase [NADP] and [NAD] subunits 
alpha and beta (IDH2, IDH3A and IDH3B), dihydroli-
poyl lysine-residue succinyltransferase component of the 
2-oxoglutarate dehydrogenase complex (DLST), 2-oxog-
lutarate dehydrogenase (OGDH) and malate dehydroge-
nase (MDH2). The expression of proteins active in lipid 
metabolism was modified in both tumors, with most 
being downregulated relative to NAT controls. In the 
chRCC and RO samples, 91 downregulated proteins were 
linked to amino acid (AA) metabolism.

Pearson correlations were calculated for chRCC and 
RO based on the fold change in abundance of differen-
tially expressed proteins in carbohydrate, lipid and AA 
metabolism pathways (Fig. 2b). Positive correlations were 
found for the four pathways compared, with the oxidative 

phosphorylation pathway showing the highest p and low-
est Pearson correlation values.

Main chRCC and RO features
The functional protein pathway analysis also revealed 
divergent features between chRCC and RO that may 
underlie differences in the tumor subtypes. Proteins 
involved in energy metabolism of chRCC were less dys-
regulated than RO. For instance, in chRCC, 28 proteins 
involved in the oxidative phosphorylation pathway were 
expressed at different levels compared to NAT, while in 
RO, 40 proteins belonging to this pathway were dysregu-
lated (Fig. 2a). Comparing the variation between the pro-
teins belonging to the oxidative phosphorylation pathway 
in both tumors versus NAT, a Pearson coefficient of 0.79 
was obtained. The same comparison for carbohydrate, 
lipid, and AA metabolism resulted in Pearson coefficients 
of 0.94, 0.92 and 0.94, respectively (Fig. 2b).

Mitochondrial KEGG pathways were dysregulated 
more extensively in RO biopsies, with 256 differentially 
expressed proteins (Fig.  3a) compared to 175 in chRCC 
(Additional file 3: Table S2).

The common chRCC versus NAT and RO versus NAT 
dysregulations of proteins related to respiratory chain 
complexes were evaluated and compared. The results 
depicted in Fig.  3b present Pearson correlation coeffi-
cients of 0.81, 0.79, 0.93, 0.57, and 0.40 for complexes I, 
II, III, IV and V, respectively. The TPA-based concentra-
tion values for the respiratory chain complex proteins are 
presented in Fig. 3c, Additional file 4: Figs. S1, 2.

Discussion
In our research, we utilized the total protein approach 
to quantify the absolute protein amounts in chRCC, RO, 
and NAT tissues. These data enabled us to examine the 
unique protein expression patterns in chRCC and RO 
compared to NAT and to delve into potential biological 
implications. In this context, we believed that the most 
informative approach was to assess and compare the 
deviations from the normal state in both chRCC and 
RO. By contrasting these differences, we aimed to eluci-
date the unique dysregulation patterns associated with 

(See figure on next page.)
Fig. 3 Differences in protein pathways underlying each tumor subtype. a Specific dysregulation of mitochondrial protein pathways in ROs, 
including those of respiratory chain complexes. Protein pathway analysis was performed by using the differentially expressed proteins in each 
tumor biopsy (relative to NAT) in searches against KEGG [19] and GO [21] databases. Significantly (FDR < 0.01) upregulated and downregulated 
proteins are shown in red and blue, respectively. b Comparison of the protein deregulation  (log2 fold change (FC) in abundance in tumor relative 
to NAT) between chRCC and RO for the five respiratory chain complexes [Complex I, n = 44; Complex II, n = 4; Complex III, n = 10; Complex IV, 
n = 19; Complex V, n = 20]. Blue dots, downregulated proteins (RO vs NAT); red dots, upregulated proteins (RO vs NAT). The correlation coefficient r 
was calculated using the Pearson test. Shading areas represent the confidence of the interval, and p represents the p value of the test. c Absolute 
protein amount, expressed as pmol/mg of tissue, calculated through the TPA methodology
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Fig. 3 (See legend on previous page.)
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each malignancy, shedding light on their molecular 
characteristics.

PCA of the variance in protein abundance showed 
that the proteomes of the two tumor subtypes exhibited 
greater similarity to each other than to the proteomes of 
NAT samples. This similarity suggests a shared tumor 
phenotype between the two subtypes. However, PCA 
also highlighted discernible differences in the quantified 
proteomes of the two tumor subtypes, indicating unique 
characteristics associated with each subtype (Fig. 1a).

Comparing dysregulated pathways between chRCC 
and NAT with those between RO and NAT, as depicted 
in Fig. 2, reveals a similarity in dysregulation levels. This 
is evidenced by a Pearson coefficient of 0.92 or higher for 
carbohydrate metabolism, lipid metabolism, and amino 
acid metabolism, which strongly suggests parallel pat-
terns of dysregulation in both chRCC and RO subtypes 
when compared to normal tissue (Fig. 2b). This observa-
tion aligns with the well-established hallmark of cancer, 
namely, the reprogramming of central metabolic path-
ways. It also corroborates the findings reported by Xiao 
et al. [13] who similarly identified decreased levels of pro-
teins involved in gluconeogenesis and fatty acid metabo-
lism in chRCC compared to NAT. Additionally, our data 
suggest that gluconeogenesis and lipid metabolism are 
also reduced in RO compared to NAT, which aligns with 
the findings reported by Kürschner et al. [23].

This collective evidence sheds light on the shared 
metabolic traits between chRCC and RO, thus confirm-
ing common signatures of metabolic dysregulation for 
chRCC and RO compared to NAT. The evident suppres-
sion of amino acid synthesis in both cancer types further 
highlights the possibility of amino acid auxotrophy as a 
defining feature of these conditions. The downregulation 
of argininosuccinate synthetase (ASS1), phosphoglycer-
ate dehydrogenase (PHGDH), and glutamic-oxaloacetic 
transaminase 1 and 2 (GOT1 and GOT2) in both chRCC 
and RO tumors compared with NAT confirms this result 
[24]. Inhibition of this protein leads to decreased produc-
tion of important amino acids such as arginine, serine 
and glycine, forcing cancer cells to depend on healthy tis-
sue surrounding the tumor as a source of nutrients [24].

Additionally, the analysis of the oxidative phosphoryla-
tion pathway revealed a Pearson coefficient of 0.74 (Fig. 2b), 
suggesting the presence of distinct mechanisms of oxidative 
phosphorylation between the chRCC and RO subtypes. 
Notably, our findings align with previous studies, demon-
strating significant alterations in mitochondrial pathways in 
both RO and chRCC when compared to NAT [25, 26]. It is 
interesting to note that the levels of dysregulated mitochon-
drial-related proteins were higher in RO than in chRCC 
(Fig.  3). Our findings agree with those reported by Joshi 
et al. [25], who suggest that mitochondrial activity acts as 

a barrier to tumorigenesis in RO, which means that normal 
mitochondrial activity can prevent or slow down the devel-
opment of tumors. Reduced mitochondrial activity may 
contribute to the development of tumors by promoting a 
protumorigenic environment in cells. This is because nor-
mal mitochondrial activity is necessary to maintain healthy 
cellular metabolism, and altered mitochondrial activity in 
cancer cells can affect cellular metabolism and promote 
tumor growth. This suggests that targeting mitochondrial 
metabolism may be explored as a coadjutant therapeutic 
strategy for treating chRCC.

In addition to mitochondrial abnormalities, muta-
tions in respiratory chain complex I genes are frequently 
observed in RO [23]. Our RO versus NAT proteomic data 
revealed downregulation of complex I-related proteins 
and predominant upregulation of proteins associated with 
complexes III, IV and V, as shown in Fig. 3b, c, Additional 
file  4: Figs. S1, 2. Our data agree with the work of Xiao 
et al. [12], who also reported reduced expression of com-
plex I-related proteins and an increase in all other pro-
teins related to respiratory chain complexes. In this way, 
the direct difference in the absolute levels of expression 
of these mitochondrial proteins demonstrates the utility 
of the TPA in discriminating between these two tumor 
subtypes.

Conclusions
In summary, this work presents an in-depth exploration 
of the contrasting protein expression profiles found in 
chRCC and RO compared to their normal adjacent tis-
sue. The study used the TPA-based method to deter-
mine the absolute amounts of proteins in each tissue 
type. The findings suggest that both chRCC and RO 
show dysregulation of carbohydrate, lipid, and amino 
acid metabolism, as well as mitochondrial abnormali-
ties, when compared to NAT. The study found that the 
proteomes of the two tumor subtypes were more simi-
lar to each other than to NAT, reflecting their shared 
tumor phenotype. The observed decrease in arginino-
succinate synthetase (ASS1) expression in both chRCC 
and RO tumors relative to adjacent healthy tissue indi-
cates shared metabolic characteristics between these 
cancers. One such shared trait appears to be auxotro-
phy, which is prominently featured in both conditions. 
Targeting mitochondrial metabolism may be explored 
as a coadjutant therapeutic strategy for treating both 
chRCC and RO. The reduced number of samples per 
group used in this study must be considered in future 
studies.

Abbreviations
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OCT  Optimum cutting temperature
PCA  Principal component analysis
RCC   Renal cell carcinoma
RO  Benign renal oncocytoma
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