
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Hemken et al. Clinical Proteomics           (2023) 20:53 
https://doi.org/10.1186/s12014-023-09444-7

Clinical Proteomics

†Philip M. Hemken and Xuzhen Qin are Joint first authors.

*Correspondence:
Philip M. Hemken
philip.hemken@abbott.com
Gerard J. Davis
gerard.davis@abbott.com

Full list of author information is available at the end of the article

Abstract
Background Diagnosis of liver disease at earlier stages can improve outcomes and reduce the risk of progression 
to malignancy. Liver biopsy is the gold standard for diagnosis of liver disease, but is invasive and sample acquisition 
errors are common. Serum biomarkers for liver function and fibrosis, combined with patient factors, may allow for 
noninvasive detection of liver disease. In this pilot study, we tested and validated the performance of an algorithm 
that combines GP73 and LG2m serum biomarkers with age and sex (GLAS) to differentiate between patients with liver 
disease and healthy individuals in two independent cohorts.

Methods To develop the algorithm, prototype immunoassays were used to measure GP73 and LG2m in residual 
serum samples collected between 2003 and 2016 from patients with staged fibrosis and cirrhosis of viral or non-viral 
etiology (n = 260) and healthy subjects (n = 133). The performance of five predictive models using combinations of 
age, sex, GP73, and/or LG2m from the development cohort were tested. Residual samples from a separate cohort with 
liver disease (fibrosis, cirrhosis, or chronic liver disease; n = 395) and healthy subjects (n = 106) were used to validate 
the best performing model.

Results GP73 and LG2m concentrations were higher in patients with liver disease than healthy controls and higher 
in those with cirrhosis than fibrosis in both the development and validation cohorts. The best performing model 
included both GP73 and LG2m plus age and sex (GLAS algorithm), which had an AUC of 0.92 (95% CI: 0.90–0.95), a 
sensitivity of 88.8%, and a specificity of 75.9%. In the validation cohort, the GLAS algorithm had an estimated an AUC 
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Background
Liver disease is a major cause of death in many coun-
tries [1], and patients with liver fibrosis and cirrhosis 
are at high risk of developing liver cancer. Liver cancer 
is ranked among the top three cancers in 46 countries. 
In 2020, 905,700 persons worldwide were diagnosed 
with liver cancer, and 830,200 died from the disease. The 
global burden of primary liver cancer is estimated to 
increase by more than 55% from 2020 to 2040 [1]. Ear-
lier diagnosis of liver disease can improve outcomes and 
reduce the risk of progression to malignancy.

Current clinical practice guidelines include liver biopsy 
as the gold standard for the diagnosis of liver fibrosis and 
cirrhosis [2]; however, liver biopsy is invasive and is prone 
to sampling error. Noninvasive tests of liver function 
and fibrosis provide additional diagnostic information, 
and diagnostic accuracy can be improved by combining 
information into algorithms that include patient factors 
and clinical biomarkers. Current diagnostic algorithms 
include Fib-4, the enhanced liver fibrosis (ELF) test, the 
aspartate platelet ratio index (APRI), Fibrotest (CE)/
FibroSure (US), and Fibrometer (see Additional File 1). 
Imaging tests include Fibroscan and magnetic resonance 
elastography (MRE). While these tests and algorithms 
help guide clinical decision making, each of them has 
drawbacks and limitations. Additional biomarkers are 
needed to improve the accuracy of current methods, 
particularly for the earlier detection of liver fibrosis and 
cirrhosis.

GP73 was initially described as a novel Golgi-localized 
protein that is upregulated in viral and nonviral liver dis-
ease [3]. A subsequent study found that GP73 protein 
levels were minimal or undetected in normal liver but 
significantly elevated in hepatitis B virus (HBV)-, hepati-
tis C virus (HCV)-, and alcohol-induced liver disease, as 
well as autoimmune liver disease [4]. Several groups have 
since developed immunoassays to study serum GP73 
levels for the diagnosis of liver disease [5–14] including 
chronic hepatitis, cirrhosis, and hepatocellular carcinoma 
(HCC). One study found that GP73 detected by enzyme-
linked immunosorbent assay (ELISA) was a more accu-
rate biomarker of liver fibrosis compared to Fib-4 (area 
under the curve [AUC] 0.751 for Fib-4 versus 0.898 for 
GP73) [14]. However, we previously showed that GP73 

was not significantly elevated in HCC compared to the 
biomarker PIVKA-II (protein induced by the absence of 
vitamin K or antagonist-II) and AFP [15].

Laminin-332 (Ln-322) is abundant in HCC tissue, 
where it has been reported to support proliferation, 
migration, and invasion of tumor cells [16–19]. More 
specifically, a component of Ln-322, the Laminin-gamma 
2 monomer (LG2m), is frequently expressed in several 
types of malignant cancer cells and tissues [20] and pro-
motes the adhesion, migration, and scattering of HCC 
cells [21]. LG2m may play a crucial role in cancer inva-
sion and metastasis as it is deposited in high concen-
trations at the invading edge of solid tumors, where it 
mediates the migration and invasion of transformed cells 
[20, 22, 23]. A previous study reported that serum LG2m 
levels were significantly elevated in patients with HCC 
and the presence of both LG2m and PIVKA-II was more 
sensitive for diagnosis of HCC than existing liver tumor 
markers [24]. In addition, the level of LG2m was found 
to predict extrahepatic spread in patients with HCC and 
the development of HCC in patients with chronic hepa-
titis C who achieved a sustained virological response 
[25]. Therefore, LG2m in human serum may be useful as 
a biomarker for HCC surveillance and risk stratification 
for HCC development and metastasis in patients with 
chronic liver disease.

In previous work, we developed and validated a new 
algorithm for the early detection of HCC that included 
age, sex, alpha fetoprotein (AFP), and PIVKA-II (ASAP) 
[26]. Other studies have since validated the same four 
biomarkers using different statistical approaches (e.g., 
GAAD/GALAD and GAAP models) [27, 28] and have 
developed an online calculator for detecting HCC in 
patients with HBV [29]. Applying the same approach 
here, we conducted a pilot study to evaluate the utility of 
combining GP73, LG2m, age, and sex (GLAS algorithm) 
for the detection of liver fibrosis and cirrhosis. GP73 and 
LG2m were measured using newly developed, robust 
chemiluminescent immunoassays run on the Abbott 
ARCHITECT system. A pilot study of the GLAS algo-
rithm was performed at Johns Hopkins University School 
of Medicine (JHU) and a validation study was performed 
at Peking Union Medical College Hospital (PUMCH) in 
China.

of 0.93 (95% CI: 0.90–0.95), a sensitivity of 91.1%, and a specificity of 80.2%. In both cohorts, the GLAS algorithm had 
high predictive probability for distinguishing between patients with liver disease versus healthy controls.

Conclusions GP73 and LG2m serum biomarkers, when combined with age and sex (GLAS algorithm), showed high 
sensitivity and specificity for detection of liver disease in two independent cohorts. The GLAS algorithm will need to 
be validated and refined in larger cohorts and tested in longitudinal studies for differentiating between stable versus 
advancing liver disease over time.
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Methods
GP73 antibodies and immunoassay development
Mice were immunized with recombinant GP73 and 
fusions were performed with an NSO myeloma cell line 
to produce monoclonal antibodies. Twelve IgG antibod-
ies were produced in-house and were screened for use in 
a prototype GP73 ARCHITECT immunoassay, for a total 
of approximately 144 antibody pairs. The best antibody 
pairs were initially selected based on sensitivity, range, 
and reagent stability. The capture IgG1 (kappa) antibody 
was coated on magnetic microparticles. The conjugate 
antibody was murine human chimeric Fab (muhuFab) 
produced in CHO cells. This conjugate design minimized 
interference by human anti-mouse antibodies (HAMA) 
because it lacks the Fc region of the antibody and pro-
vided better sensitivity [30]. Microparticle reagent bulk 
stability was tested under heat stress for 3 days at 45 °C 
compared to controls at 2–8  °C (see Additional File 2). 
The conjugate reagent bulk stability was tested with heat 
stress at 30 and 37 °C for 7 and 14 days compared to the 
2–8 °C control condition (see Additional File 3). Further 
prototype verification studies with the selected anti-
body pair included reagent stability, limit of blank, limit 
of detection, and limit of quantitation (LoBDQ), dilu-
tion linearity, 20-day precision, range, and interference 
testing.

LG2m assay development
A hybridoma of an anti-LG2m monoclonal antibody 
(Clone 1) used for capture was originally developed by 
Koshikawa et al. [31]. A hybridoma of an anti-LG2m 
monoclonal antibody (Clone 2) used for detection was 
developed by Abbott Laboratories (Lake County, IL, 
USA). Clone 1 detected only the LG2m monomer, and 
not LG2m as a component of Ln-332. Monoclonal anti-
bodies were prepared and purified by Abbott Laborato-
ries on a protein A column. The capture antibody (Clone 
1) was produced in CHO cells and coated on magnetic 
microparticles. The conjugate antibody (Clone 2) was 
labeled with acridinium for the detection of LG2m. Assay 
prototype verification studies including LoBDQ, dilu-
tion linearity, 20-day precision, range, auto-dilution, and 
interference testing were performed.

Study design and serum samples
The prototype GP73 and LG2m ARCHITECT immuno-
assays were used to measure GP73 and LG2m concen-
trations in residual serum samples collected between 
2003 and 2016 at JHU in Baltimore, MD, from patients 
with fibrosis or cirrhosis with viral or non-viral etiology, 
and healthy controls (n = 147) [26]. All fibrosis samples 
had a known stage determined by traditional methods 
of biopsy and standard liver enzyme tests. Additional 
residual serum samples were analyzed at JHU that had 

been collected after obtaining informed consent from 
patients with liver cirrhosis at the University of Texas 
Southwestern Medical Center (UTSMC) in Dallas, TX. 
For each residual serum sample, the following de-identi-
fied data was collected: age, sex, race/ethnicity, and etiol-
ogy of liver disease. An additional set of serum samples 
(collectively referred to as the Western Vendor Cohort, 
WVC; n = 246) were purchased from BioIVT (Wesbury, 
NY), Biomex GmbH (Heidelberg, Germany), Discovery 
Life Sciences (Huntsville, AL), and ProMedDx (Norton, 
MA). These three sample sets (JHU/UTSMC/WVC) 
were combined to develop and train the liver fibrosis and 
cirrhosis diagnostic algorithm (development cohort). The 
study was approved by the JHU IRB (#IRB00196747).

For the validation cohort, samples were obtained from 
PUMCH (Bejing, China), from patients with liver disease 
(fibrosis, cirrhosis, or chronic liver disease) and healthy 
subjects (n = 501). This cohort was used to validate the 
model derived from the development cohort. Patients 
with chronic liver disease included those with fatty liver 
disease, HBV-induced liver disease, and/or autoimmune 
hepatitis. For each serum sample, the following de-iden-
tified data was collected: age, sex, race/ethnicity, and 
etiology of liver disease. The study was approved by the 
PUMCH IRB (HS-2386).

Sample storage and assays
Serum samples were stored at approximately − 80  °C 
prior to analysis. GP73 and LG2m levels were measured 
using the prototype GP73 and LG2m ARCHITECT 
immunoassays on an ARCHITECT i2000SR analyzer 
(Abbott Laboratories, North Chicago, IL). Each two-step 
sandwich immunoassay utilizes paramagnetic micropar-
ticles coated with either anti-GP73 [32] or anti-LG2m 
[33] antibodies and produces a chemiluminescent signal 
for the quantitative measurement of GP73 or LG2m in 
human serum and plasma. The performance character-
istics for the prototype ARCHITECT GP73 and LG2m 
assays are described in Table  1. Both assays were ana-
lytically robust, with performance similar to that of other 
automated in vitro diagnostic immunoassays.

Statistical analysis
Biomarker concentrations were stratified by disease cat-
egory. The probability of each biomarker to detect non-
cancer liver disease (chronic liver disease, fibrosis, and/
or cirrhosis) was determined and logistic regression (LR) 
classification models were used to explore the best com-
bination of biomarkers for the detection of non-cancer 
liver disease. For biomarkers with skewed distribution, 
logarithmic transformation was applied prior to model-
ing. Wilcoxon tests were used for significance testing.

All of the samples from the development cohort (JHU/
UTMSC/WVC) were used to train the models. The 
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response variable for the models was the binary liver 
disease status (fibrosis and/or cirrhosis versus healthy). 
Multiple LR models were developed by selecting differ-
ent combinations of age, sex, and the two biomarkers as 
the classifiers. The best model was selected based on the 
combination of classifiers with the highest ROC AUC. 
Confidence intervals for AUCs were calculated by tak-
ing 2000 stratified bootstrapped replicates. The sensi-
tivities (SEs) and specificities (SPs) were reported at the 
default cutoff of 0.5 for LR. Additionally, sensitivity at a 
fixed specificity of 90% was reported as the median value 
across 2000 stratified bootstrapped replicates. Median 
values were also calculated from specificity at fixed sensi-
tivities of 90% and 75%. AUCs were compared by pairing 
AUC curves as described by Delong et al. [34].

The best model selected from the development cohort 
was further assessed. To evaluate the generalizability of 
the best model in a different population, an independent 
validation cohort was used to validate model perfor-
mance. Non-cancer liver disease was added to chronic 
liver disease (including fatty liver disease, HBV-induced 
liver disease, and/or autoimmune hepatitis) to better 
evaluate the performance in clinical practice.

All statistical analyses were performed using R 4.1.1 
(The R Foundation for Statistical Computing).

Results
Algorithm development cohort demographics
The development cohort consisted of serum samples 
from 78 patients with fibrosis (with or without hepatitis), 
182 patients with cirrhosis (with or without hepatitis), 
and 133 healthy subjects (Table 2; N = 393). The median 
ages for patients in the fibrosis, cirrhosis, and healthy 
control groups were 54 (interquartile range [IQR] 45–63), 
56 (IQR 48–63), and 40 (IQR 33–56) years, respectively, 
with the majority of patients being White males (fibrosis/
cirrhosis) or Black males (healthy).

Algorithm validation cohort demographics
The validation cohort included 503 individuals; of these, 501 
were included in this analysis and 2 were excluded for miss-
ing assay results as these specimens had been depleted prior 
to the study. The validation cohort included 119 patients 
with cirrhosis, 129 patients with fibrosis, 147 patients with 
chronic liver disease, and 106 healthy subjects (Table  3). 
Patient age ranged from 19 to 88 years, with a greater pro-
portion of men in the chronic liver disease and fibrosis 
groups and a greater proportion of women in the healthy 
and cirrhosis groups. All individuals in the validation cohort 
were Asian.

Biomarker concentrations
In the development cohort, median GP73 and LG2m 
concentrations were found to be higher in patients with 
fibrosis/cirrhosis (GP73 121.27 ng/mL; LG2m 29.16 pg/mL) 
than in healthy controls (GP73 52.99 ng/mL; LG2m 9.01 pg/
mL). On average, patients with cirrhosis had higher median 
biomarker concentrations (GP73 152.49 ng/mL; LG2m 
48.39 pg/mL) compared to patients with fibrosis GP73 72.12 
ng/mL; LG2m 10.46 pg/mL; Fig.  1A, B). In the validation 
cohort, median GP73 and LG2m levels were also higher 
overall in patients with fibrosis/cirrhosis (GP73 105.14 
ng/mL; LG2m 31.70 pg/mL) compared to healthy con-
trols (GP73 51.80 ng/mL; LG2m 10.40 pg/mL; Fig. 1C, D). 
However, both GP73 and LG2m median concentrations in 
the validation cohort were slightly higher for patients with 
fibrosis (GP73 115.10 ng/mL; LG2m 42.30 pg/mL) com-
pared to patients with cirrhosis (GP73 91.11 ng/mL; LG2m 
22.65 pg/mL; Fig. 1C, D). On average, biomarker levels for 
patients with chronic liver disease fell between those in the 
fibrosis/cirrhosis and healthy groups, with a median GP73 
concentration in the chronic liver disease group of 57.76 ng/
mL and 12.75 pg/mL for LG2m (Fig. 1C, D).

Table 1 Performance characteristics of the prototype GP73 and LG2m assays
Parameter GP73 ARCHITECT Assay LG2m Alinity i Assay
20-day precision Total within-laboratory %CV of less than 3.0% Total within-laboratory %CV of less than 4.6%
LoQ 0.20 ng/mL 3.45 pg/mL
LoD 0.04 ng/mL 0.13 pg/mL
Dilution linearity Deviation from linearity (DL) of < 10% within the 

range of 10 ng/mL to 1,000 ng/mL
Deviation from linearity (DL) within ± 3 
pg/mL for sample < 30 pg/mL, ± 10% for 
samples 30 to 5,000 pg/mL

Measuring interval LoQ – 1000 ng/mL LoQ – 50,000 pg/mL
Extended range with autodilution n/a 1:10 autodilution to 50,000 pg/mL
HAMA/RF and interferences Within ± 10% for HAMA/RF and potential inter-

ferents, no notable endogenous interferences 
observed

Within ± 10% for HAMA/RF* and potential 
interferents, no notable endogenous inter-
ferences observed

CV, coefficient of variation; HAMA, human anti-mouse antibodies; LoD, limit of detection; LoQ, limit of quantitation; RF, rheumatoid factor

*The LG2m assay showed differences in measured concentration of LG2m within ± 10% for samples when spiked with HAMA at a concentration of 900 ng/mL and 
purified RF at a concentration of 600 IU/mL.
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Model performance in the development cohort
Five models were created and compared from the develop-
ment cohort data using four potential variables: age, sex, 
GP73, and/or LG2m (Table 4). The AUC for differentiating 
fibrosis/cirrhosis from healthy controls was slightly higher 
for GP73 alone (Model 1: 0.86, 95% CI: 0.82–0.89) compared 
to LG2m alone (Model 2: 0.83, 95% CI: 0.79–0.87), but the 
difference was not statistically significant. The addition of 
age and sex to either the GP73 or LG2m models increased 
AUCs (Model 3: 0.91, 95% CI: 0.89–0.94 and Model 4: 0.88, 

95% CI: 0.85–0.92, respectively). The AUC values from both 
updated models were improved and statistically significant 
compared to the individual biomarkers alone (p < 0.0001 and 
p = 0.0003, respectively).

The best model included all four variables, GP73, LG2m, 
age, and sex (the GLAS algorithm), and increased the AUC 
to 0.92 (Model 5: 95% CI: 0.90–0.95), with a sensitivity of 
88.8% and a specificity of 75.9% (Fig. 2A). The increase was 
statistically significant compared to GP73 or LG2m alone 
(Models 1 and 2) and the model with LG2m, age, and sex 

Table 2 Development Cohort Demographics (N = 393)
Characteristic JHU/UTSMC

(N = 147)
WVC
(N = 246)

Overall
(N = 393)

Healthy
(n = 34)

Fibrosis
(n = 19)

Cirrhosis
(n = 94)

Healthy
(n = 99)

Fibrosis
(n = 59)

Cirrhosis
(n = 88)

Healthy
(n = 133)

Fibrosis
(n = 78)

Cirrhosis
(n = 182)

Age
 Median (IQR) 60

(51, 65)
47
(43, 51)

56
(49, 61)

37
(29, 46)

57
(49, 67)

54
(48, 65)

40
(33, 56)

54
(45, 63)

56
(48, 63)

 Range 40, 77 31, 57 23, 73 21, 65 20, 81 26, 94 21, 77 20, 81 23, 94
Sex, n (%)
 Male 17

(50%)
16
(84%)

56
(60%)

79
(80%)

27
(46%)

51
(58%)

96 (72%) 43
(55%)

107
(59%)

 Female 17
(50%)

3
(16%)

38
(40%)

20
(20%)

32
(54%)

37
(42%)

37 (28%) 35
(45%)

75
(41%)

Race, n (%)
 White 22

(67%)
10
(53%)

53
(58%)

5
(5.1%)

51
(88%)

43
(90%)

27 (20%) 61 (79%) 96
(69%)

 Black 1
(3.0%)

5
(26%)

30
(33%)

94
(95%)

2 
3.4%)

1
(2.1%)

95 (72%) 7
(9.1%)

31 
(22%)

 Hispanic 0
(0%)

2
(11%)

1
(1.1%)

0
(0%)

4
(6.9%)

2
(4.2%)

0 (0%) 6
(7.8%)

3
(2.1%)

 Asian 0
(0%)

1
(5.3%)

3
(3.3%)

0
(0%)

0
(0%)

0
(0%)

0 (0%) 1
(1.3%)

3
(2.1%)

 Other/Mixed Race 10
(30%)

1
(5.3%)

5
(5.4%)

0
(0%)

1
(1.7%)

2
(4.2%)

10 (7.6%) 2
(2.6%)

7
(5.0%)

 Unknown 1 0 2 0 1 40 1 1 42
Etiology, n (%) — — —
 Viral
  HBV 0

(0%)
13
(14%)

0
(0%)

20
(23%)

0
(0%)

33
(18%)

  HCV 0
(0%)

41
(44%)

0
(0%)

22
(25%)

0
(0%)

63
(35%)

 Non-Viral
  Alcoholic Liver Disease 0

(0%)
0
(0%)

8
(14%)

0
(0%)

8
(10%)

0
(0%)

  Fatty Liver Disease 0
(0%)

0
(0%)

33
(56%)

0
(0%)

33
(42%)

0
(0%)

  Hemochromatosis 0
(0%)

0
(0%)

8
(14%)

0
(0%)

8
(10%)

0
(0%)

  Simple Steatosis 0
(0%)

0
(0%)

6
(10%)

0
(0%)

6
(7.7%)

0
(0%)

  Non-Viral Cirrhosis 0
(0%)

40
(43%)

0
(0%)

0
(0%)

0
(0%)

40 (22%)

 Unknown 19
(100%)

0
(0%)

4
(6.8%)

46
(52%)

23
(29%)

46
(25%)

JHU, Johns Hopkins University School of Medicine; UTSMC, University of Texas Southwestern Medical Center; WVC, Western Vendor Cohort; IQR, interquartile range; 
HBV, hepatitis B virus; HCV, hepatitis C virus
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(Model 4; all p-values < 0.0001). The increase was not statis-
tically different compared to Model 3 with GP73, age, and 
sex (p = 0.0621).

Model validation in an independent cohort
The best model from the development cohort (Model 5, the 
GLAS algorithm) was evaluated using the validation cohort 
data as an independent assessment of clinical performance 
(Table 4). The GLAS algorithm had an estimated AUC for 
fibrosis/cirrhosis of 0.93 (95% CI: 0.90–0.95) in the valida-
tion cohort (Fig. 2B). It had an estimated sensitivity of 91.1% 
and a specificity of 80.2%; when specificity was held to 90%, 
the median sensitivity was estimated to be 81.0%. The GLAS 
algorithm was further assessed using the validation cohort 
data set after stratification of fibrosis and cirrhosis etiology. 
AUCs were comparable for viral and non-viral liver disease, 
with an AUC of 0.91 (95% CI: 0.86–0.96) for viral induced 
fibrosis/cirrhosis and 0.94 (95% CI: 0.91–0.97) for non-viral 
induced fibrosis/cirrhosis compared to healthy subjects. 
As an exploratory analysis, the GLAS algorithm was also 
applied to the validation cohort to discriminate patients 
with chronic liver disease from healthy subjects. For this 
application, the model had an estimated AUC of 0.65 (95% 
CI: 0.58–0.71), with a sensitivity of 42.9% and specificity of 
80.2%.

GLAS algorithm performance by disease state
The performance of the GLAS algorithm was assessed 
by disease state in both the development and validation 
cohorts (Fig. 3A, B). In the development cohort, the median 
GLAS algorithm predicted probability was 0.959 in the 
fibrosis/cirrhosis group compared to 0.232 in healthy con-
trols, and patients with cirrhosis had a median GLAS pre-
diction of 0.983 compared to 0.671 in patients with fibrosis 
(Fig.  3A). In the validation cohort, the GLAS algorithm 
predicted probability was also higher overall in the fibro-
sis/cirrhosis group (median 0.949) versus healthy controls 
(median 0.249; Fig. 3B). In the validation cohort, the median 
predicted probability using the GLAS algorithm was 0.950 
in patients with fibrosis versus 0.944 in patients with cirrho-
sis, which matches the trend observed for GP73 and LG2m 
biomarker concentrations in these groups (Figs. 1B and 3B). 
Additionally, the median GLAS prediction value for patients 
with chronic liver disease was 0.434, falling in between that 
of the healthy controls and patients with fibrosis/cirrhosis, 
which matches the trend seen in biomarker concentrations 
in each group (Figs. 1B and 3B).

Discussion
In this pilot study, we demonstrated that serum biomark-
ers GP73 and LG2m, when combined with age and sex to 
create the GLAS algorithm, showed superior sensitivity and 
specificity for detection of liver fibrosis and cirrhosis. Analy-
sis of the GLAS algorithm in an independent validation 

Table 3 Validation Cohort Demographics (n = 501)
Characteristic Healthy

N = 106
CLD
N = 147

Fibrosis
N = 129

Cirrhosis
N = 119

Age
 Median (IQR) 36 (30, 42) 43 (35, 51) 55 (42, 67) 58 (52, 66)
 Range 21, 71 23, 78 19, 88 32, 86
Sex, n (%)
 Male 30 (28%) 80 (54%) 69 (53%) 30 (25%)
 Female 76 (72%) 67 (46%) 60 (47%) 89 (75%)
Race, n (%)
 Asian 106 (100%) 147 (100%) 129 (100%) 119 (100%)
Etiology, n (%) —
 Viral
  HBV 89 (61%) 30 (23%) 17 (14%)
  HCV 0 (0%) 2 (1.6%) 3 (2.5%)
  Fatty Liver Disease & HBV 6 (4.1%) 0 (0%) 0 (0%)
 Non-Viral
  Alcoholic Liver Disease 0 (0%) 4 (3.1%) 0 (0%)
  Autoimmune Hepatitis 6 (4.1%) 2 (1.6%) 0 (0%)
  Fatty Liver Disease 45 (31%) 4 (3.1%) 2 (1.7%)
  Fatty Liver Disease & Autoimmune Hepatitis 1 (0.7%) 0 (0%) 0 (0%)
  Primary Biliary Cirrhosis 0 (0%) 0 (0%) 81 (68%)
  Non-Viral Cirrhosis 0 (0%) 0 (0%) 9 (7.6%)
  Non-Viral Fibrosis 0 (0%) 44 (34%) 0 (0%)
 Unknown 0 (0%) 43 (33%) 7 (5.9%)
CLD, chronic liver disease; IQR, interquartile range; HBV, hepatitis B virus; HCV, hepatitis C virus
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Table 4 Diagnostic Performance of Biomarkers Alone and in Combination with Clinical Factors in the Development Cohort (JHU/
UTSMC/WVC) and Model 5 in the Validation Cohort (PUMCH)

Model Predictor Variables N Events (n) AUC AUC 95% CI SE (%) SP (%) SE 
(SP = 90%)

SP 
(SE = 90%)

SP 
(SE = 75%)

Develop-
ment 
Cohort

1 GP73 393 260 0.86 (0.82, 0.89) 82.7 64.7 68.8 47.4 78.9
2 LG2m 393 260 0.83 (0.79, 0.87) 81.9 60.9 66.5 32.3 79.7
3 GP73 + Age + Sex 393 260 0.91 (0.89, 0.94) 89.6 73.7 76.2 73.7 91.7
4 LG2m + Age + Sex 393 260 0.88 (0.85, 0.92) 88.5 75.9 61.9 72.9 84.2
5 GP73 + LG2m + Age + Sex 

(GLAS)
393 260 0.92 (0.90, 0.95) 88.8 75.9 79.2 73.7 94.7

Model Etiology N Predicted 
Events (n)

AUC AUC 95% CI SE (%) SP (%) SE 
(SP = 90%)

SP 
(SE = 90%)

SP 
(SE = 75%)

Validation 
Cohort

5 
(GLAS)*

All Fibrosis/Cirrhosis 354 248 0.93 (0.90, 0.95) 91.1 80.2 81.0 82.1 93.4
Viral 158 52 0.91 (0.86, 0.96) 88.5 80.2 75.0 81.1 91.5
Non-viral 252 146 0.94 (0.91, 0.97) 93.2 80.2 86.3 84.9 93.4
Unknown Etiology 156 50 0.91 (0.86, 0.96) 88.0 80.2 74.0 73.6 89.6
Chronic Liver Disease 253 147 0.65 (0.58, 0.71) 42.9 80.2 26.5 15.1 39.6
All Liver Disease 501 395 0.82 (0.78, 0.86) 73.2 80.2 61.0 36.8 76.4

AUC, area under the ROC curve; SE, sensitivity; SP, specificity

*Comparison group for all analyses is healthy controls (n = 106)

Fig. 1 Distribution of GP73 and LG2m by disease state in the development (A, B) and validation cohorts (C, D). Biomarker concentrations were signifi-
cantly different between healthy and disease (fibrosis/cirrhosis) samples (Wilcoxon test)
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cohort showed similar clinical performance, although with 
lower AUC, sensitivities, and specificities. Differences in 
the demographics and disease classifications and etiolo-
gies between the development and validation cohorts may 
account for differences in biomarker levels and model 
performance; for example, the development cohort had 
a smaller number of patients with cirrhosis and a more 
diverse patient population than the validation cohort. Nev-
ertheless, the GLAS algorithm remained robust for distin-
guishing between healthy subjects and patients with fibrosis 
or cirrhosis in these two highly different cohorts.

The new GLAS algorithm outperformed other algorithms 
used for diagnosing liver disease that are reported in the lit-
erature. In our study, Model 5 had an AUC of 0.92, sensi-
tivity of 88.8%, and specificity of 75.9% in the development 
cohort and an AUC 0.93, sensitivity of 91.1%, and specific-
ity of 80.2% in the validation cohort for detection of fibro-
sis or cirrhosis. These AUC values are much higher than 
those for the FIB-4 (AUC 0.751) and APRI algorithms (AUC 
0.737) for significant fibrosis [14] (see Additional File 1). 
The diagnostic accuracy of the ELF algorithm, which com-
bines detection of hyaluronic acid, type III procollagen pep-
tide (PIIINP), and tissue inhibitor of metalloproteinase-1 
(TIMP1), was evaluated in a recent meta-analysis of studies 
including nearly 20,000 individuals with or at risk of devel-
oping a wide variety of viral and non-viral liver diseases [35]. 
The analysis reported an AUC of 0.811 for detecting fibrosis, 
0.812 for advanced fibrosis, and 0.810 for advanced cirrho-
sis. In patients with chronic HCV, the Fibrotest/FibroSure 
algorithm, which includes α2-macroglobulin, haptoglobin, 

gamma-glutamyltransferase, gamma-globulin, total biliru-
bin, and apolipoprotein A1, had an AUC of 0.74, sensitivity 
of 75.4%, and specificity of 71.4% for detection of fibrosis 
[36]. In a meta-analysis, the algorithm was found to have 
suboptimal diagnostic accuracy for fibrosis and cirrhosis in 
patients with HBV (AUC 0.84, sensitivity 61%, and speci-
ficity 80%) [37]. Fibrometer, which combines age, weight, 
platelet count, AST, ALT, ferritin, and glucose, has been 
evaluated for the detection of fibrosis in NAFLD. In a recent 
meta-analysis of 7 studies including 1616 patients with 
NAFLD, Van Dijk et al. reported an AUC of 0.82 (sensitivity 
83.5, specificity 91.1%) for Fibrometer in detecting advanced 
fibrosis, and lower accuracy (0.62–0.78) for detecting signif-
icant fibrosis in 3 studies [38]. In a study of 134 patients with 
various autoimmune liver diseases, Fibrometer was found to 
have an AUC of 0.66 for severe fibrosis, which increased to 
0.77 when combined with liver stiffness measured by tran-
sient elastography [39].

Differences between our findings and those of others 
may be related to the use of the LR model for statistical 
analysis, as well as differences in the patient popula-
tions. A limitation of this study was that the control 
groups in the development and validation cohorts 
were different in composition, given the retrospective 
nature of the analysis, which limits assessment of spe-
cific confounding variables.

This pilot study resulted in an algorithm consist-
ing of two biomarkers (LG2m, GP73) and two demo-
graphic variables (age and sex) that demonstrated 
promise for predicting liver disease (fibrosis and 

Fig. 2 ROC curves for the GLAS algorithm (Model 5) in the development (A) and validation (B) cohorts for fibrosis/cirrhosis versus healthy subjects
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cirrhosis). The GLAS algorithm will be further tested 
in cohorts with staged fibrosis and cirrhosis to evalu-
ate its performance in early detection of liver dis-
ease. The GLAS algorithm will also be compared in 
head-to-head studies with other leading blood-based 
algorithms such as FIB4 or APRI, as well as in larger 
cohorts with greater geographic and racial/ethnic 
diversity and various liver disease etiologies.

Conclusions
Compared to individual biomarkers, the combina-
tion of GP73 and LG2m with age and sex significantly 
improved the accuracy of detecting fibrosis and cir-
rhosis liver disease in two large and diverse patient 
cohorts. Further refinement of the GLAS algorithm 
will produce a highly accurate clinical tool to aid 
in the evaluation of signs of disease progression in 
patients with advanced liver disease. Larger longitudi-
nal studies are needed to validate the GLAS algorithm 

in detecting stable versus advancing liver disease in 
patients over time.
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