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Abstract 

Despite recent innovations in imaging and genomic screening promotes advance in diagnosis and treatment of lung 
adenocarcinoma (LUAD), there remains high mortality of LUAD and insufficient understanding of LUAD biology. Our 
previous study performed an integrative multi‑omic analysis of LUAD, filling the gap between genomic alterations 
and their biological proteome effects. However, more detailed molecular characterization and biomarker resources 
at proteome level still need to be uncovered. In this study, a quantitative proteomic experiment of patient‑derived 
benign lung disease samples was carried out. After that, we integrated the proteomic data with previous dataset 
of 103 paired LUAD samples. We depicted the proteomic differences between non‑cancerous and tumor samples 
and among diverse pathological subtypes. We also found that up‑regulated mitophagy was a significant characteristic 
of early‑stage LUAD. Additionally, our integrative analysis filtered out 75 potential prognostic biomarkers and validated 
two of them in an independent LUAD serum cohort. This study provided insights for improved understanding pro‑
teome abnormalities of LUAD and the novel prognostic biomarker discovery offered an opportunity for LUAD precise 
management.
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Introduction
In recent years, despite the incidence and mortality rate 
of lung cancer decreased gradually in the whole world [1], 
lung cancer remains the most common cancer in China 
and the leading cause of cancer-related death worldwide 
[1–3]. Non-small cell lung cancer (NSCLC) is a major 
subtype of lung cancer (about 80–85%). In further subdi-
vision, lung adenocarcinoma is most dominant histologi-
cal NSCLC phenotypes, accounting for approximately 
40% of histologic type of whole lung cancer types [4].

According to the IASLC/ATS/ERS classification sys-
tem, invasive adenocarcinomas are usually classified to 
lepidic, acinar, papillary, micropapillary, solid subtypes by 
predominant histologic pattern [5] (defined as LEP, ACI, 
PAP, MIP and SOL separately in the following paper). 
Among them, SOL tumors were associated with poor OS 
for patients receiving adjuvant chemotherapy and poor 
DFS for stage III/IV patients without radiotherapy [6]. 
Genomics alterations of predominant histologic subtypes 
were described in previous study, in which SOL and MIP 
tumors harbor higher tumor mutational burden. Higher 
BRAF-V600E mutation frequency was observed in SOL/
MIP tumors. In addition, significant genomic altera-
tions  of Myc, p53 and Wnt pathway were identified in 
SOL/MIP tumors [7]. However, it remains unclear about 
the proteomic characteristics of the malignant solid path-
ological LUAD subtype.

Within invasive techniques for lung cancer diagnosis, 
transthoracic fine needle aspiration and biopsy are widely 
utilized [8]. Meantime, some non-invasive imaging tools 
such as CT and PET have already played important roles 
in diagnosis and staging of NSCLC [8–10]. However, lim-
ited by cost and potential radiation injury, frequent CT/
PET examination in follow-up disease monitoring and 
risk assessment may be improper. As supplement to cur-
rent risk assessment system, exploration of non-invasive 
new biomarkers  with  high sensitivity and high specific-
ity appear particularly important. In recent years, appli-
cations of genomic biomarker made great progress in 
NSCLC subtyping and therapeutic decision making [11], 
which have contributed to the reduction of population-
level mortality of NSCLC in US from 2013 to 2016 [12]. 
Although the genomic characteristics of LUAD show dis-
parities between different ethnic groups [13–15], testing 
for dominant genomic level variation event such as EGFR 
mutation, ALK rearrangement, ROS arrangement and 
BRAF V600 mutation status was recommended in clini-
cal practice by both NCCN Guidelines and Pan-Asian 
adapted Clinical Practice Guidelines [8, 16]. Neverthe-
less, due to the limited application range, the proportion 
of patients who benefited from genome-driven treatment 
was low (4.90% in US, 2018) [17]. As the results of all 
kinds of downstream processes (alternative splicing, RNA 

processing, translation, miRNA, etc.) of the genome, the 
proteome profiles, with high complexity and dynamics, 
connect the genotype to disease phenotype [18]. There-
fore, exploration of biomarkers at proteome level could 
help improve the understanding of tumor biology and 
promote their clinical application.

In this study, we performed a label-free quantita-
tive proteomic analysis of 14 benign lung disease cases, 
including pneumothorax, bronchiectasis etc. Next, we 
integrated the proteomic data from these non-cancerous 
lung disease samples with our previously acquired 103 
paired LUAD with nearest adjacent tissue (NAT) samples, 
underlying the molecular characteristics of early-stage 
LUAD and diverse LUAD  pathological subtypes, espe-
cially for the malignant solid pathological LUAD subtype. 
Furthermore, we used this large-scale LUAD proteomic 
cohort with their survival information to explore novel 
protein prognostic biomarkers and verified two of the 
prognostic biomarkers in an independent serum cohort. 
Our study provided important proteomic  information 
of pathological LUAD subtypes, indicating the potential 
clinical utilization value of proteomic outcome.

Results
Proteome landscape
We conducted the label-free quantitative proteomic 
experiment and analysis of 14 benign lung disease sam-
ples derived from pneumothorax (n = 3), bronchiectasis 
(n = 2), benign lung hyperplasia (n = 6) and granuloma-
tous inflammation (n = 3) patients (Additional file  1: 
Fig S1A) according to the method used in our previous 
LUAD proteome analysis [19]. After that, we combined 
the proteomic data of 14 benign lung disease cases with 
our previous 103 paired LUAD proteome (Chinese 
Human Proteome Project, CNHPP dataset), and then re-
normalized them for further integrative analysis (Fig.  1, 
Additional file  6: Table  S1). We evaluated the correla-
tion between the proteomic data in CNHPP dataset and 
that re-normalized in our current matrix to avoid bias 
introduced during data normalization process. For each 
LUAD and NAT sample, the proteome profiles normal-
ized in CNHPP study and in this study shown high con-
sistency (p < 0.05, r > 0.9999) (Additional file  1: Fig S1B). 
In addition, the protein abundances of all samples met 
the criteria of a same unimodal distribution after quan-
tile normalization (Additional file 1: Fig S1C). As a result, 
we identified a total of 11,726 proteins (11,234   unique 
gene names) for all 220 samples. For tumor samples, the 
average number of quantified proteins (summed to gene 
levels) was 7,362. For NAT and benign lung disease sam-
ples, the average number of quantified proteins was 5,946 
and 5,721, respectively (Additional file 1: Fig S1D). After 
that, we assessed the protein subcellular localization of 
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the identified proteins, and the results showed that these 
proteins were located primarily at nuclear, cytosol, serum 
membrane and mitochondria. Meantime, a small part of 
the identified proteins was in the components of centro-
some, peroxisomes, and lysosomes. In addition, the iden-
tified protein numbers of each subcellular component 
were higher in the tumor samples in comparison with 
that observed in NAT and benign lung disease samples 
(Additional file 1: Fig S1E).

Proteomic features of tumor and non‑tumor sample
We performed principal component analysis for the 
whole 220 samples. The tumor samples could be sepa-
rated clearly with NATs and benign lung disease samples 
in principal component 1  which explained up to 30.3% 
variance of the normalized data matrix (Fig. 2A). Though 
there was little difference between NAT and benign lung 
disease samples in principal component analysis, we 
found some altered signaling pathways between these 
two groups through differential analysis. We noticed 
that proteins in sphingolipid signaling pathway, relaxin 
signaling pathway and apelin signaling pathway were up-
regulated in benign lung disease when compared with 
both NAT and tumor groups. Meanwhile, ECM-recep-
tor interaction pathway was up-regulated only in NAT 
group, which suggested a reduced function of ECM-
receptor even in non-tumor lung disease (Additional 

file 2: Fig S2A). As described above, the number of pro-
teins identified in tumor samples was much higher com-
pared to that observed in non-tumor samples (NAT and 
benign lung disease samples), and the results showed 
that a part of proteins could be only identified in tumor 
samples. We firstly calculated the frequency of protein 
identification before missing value imputation, which 
provided abundant information about the biological dif-
ferences of tumor and non-tumor samples. Therefore, 
we defined 480 proteins that identified in more than 70% 
tumor samples and less than 30% non-tumor samples 
as LUAD related proteins (LRPs) while 64 proteins that 
identified in more than 70% non-tumor samples and less 
than 30% non-tumor samples were defined as NATs and 
benign lung disease related proteins (NDRPs) (Fig.  2B). 
WebGestalt over-representation analysis demonstrated 
that oncogenic pathways related to RNA and histone 
epigenetic modification, cell cycle, nucleotide excision 
repair and protein ubiquitination et.al were significantly 
in LRPs, while pathways related to circulatory system 
and cell junction were enriched in NDRPs. This result 
indicated the activated signaling of cell proliferation and 
metastasis as well as the loss of cell adherent molecular 
in tumor tissues (Fig.  2C). Additionally, we constructed 
a functional association network of LRPs with STRING 
and extracted 3 major sub protein clusters through 
MCODE algorithm. Among them, Cluster 1 consisted of 

Fig. 1 Label‑free based proteome landscape of benign lung disease, LUAD and NATs. Workflow of MS/MS data collection and analysis
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proteins belonging to ribonucleoprotein complex biogen-
esis pathway such as DEAD box (DDX) family proteins 
and RNA binding motif (RBM) family proteins. Clus-
ter 2 consisted of proteins involved in DNA replication 
process such as mini chromosome maintenance (MCM) 
family proteins and ribonucleotide reductase regulatory 
subunit M1/2(RRM1/2) (Fig. 2D).

Characteristics of solid pathological subtype
Our dataset covered most clinical LUAD histologic sub-
types including acinar-predominant (ACI, n = 49), papil-
lary-predominant (PAP, n = 18), solid-predominant (SOL, 
n = 22), lepidic-predominant (LEP, n = 5) adenocarci-
nomas and mix subtype (n = 8) adenocarcinomas. ACI, 
PAP and LEP adenocarcinomas together with one sample 
without pathological information were defined as non-
solid-predominant (non-SOL, n = 81). In our dataset, a 
tendency of poor prognosis was observed in SOL adeno-
carcinoma patients (p = 0.07, Fig. 3A), and this result was 
consistent with pervious study [6, 20].

To further understand biological characteristics of 
SOL, we evaluated the molecular difference between SOL 
and non-SOL adenocarcinoma samples in proteomic 
level. GSEA analysis showed that many cell proliferation 

related pathways were significantly up regulated in SOL 
adenocarcinomas, including DNA replication, mismatch 
repair, cell cycle, ribosome biogenesis, etc. Beyond that, 
NF-kappa B signaling pathway, a classic carcinogenic 
which could promote lung carcinoma progression [21, 
22] was unveiled to be enhanced in SOL adenocarcino-
mas. Additionally, complement and coagulation cascade, 
neutrophil extracellular trap formation and NOD-like 
receptor signaling pathways were also up-regulated in 
SOL adenocarcinomas while valine, leucine and isoleu-
cine degradation pathway was down-regulated (Fig. 3B). 
We identified 15 up-regulated proteins and 30 down-
regulated proteins in SOL subtypes. In addition, for each 
protein, we calculated the median CERES score [23] 
across all LUAD cell lines to evaluate the gene depend-
ency (Fig. 3C). Among these differentially expressed pro-
teins, MCM6, LCN2 and PADI4 were highly expressed in 
SOL adenocarcinomas and the high expression of which 
was correlated with poor OS. MCM6, a DNA replica-
tion licensing factor, had median CERES score less than 
-0.6. Lipocalin-2 (LCN2) was previously unveiled to be 
elevated in human LUAD but able to counteracts LUAD 
development by maintaining antitumor immunity in the 
early pathogenesis of LUAD [24], indicating a complex 

Fig. 2 Proteomic features of LUAD and non‑tumor samples. A Principal component analysis for benign lung disease, NATs and LUAD samples. 
B Definition of LUAD related proteins, NAT and benign lung disease related proteins. C ORA pathway enrichment results for LRPs and NDRPs. D 
STRING protein–protein interaction network (top panel) and MCODE protein cluster analysis for LRPs (bottom panel)
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role of LCN2 in the LUAD progress. Peptidyl arginine 
deiminase 4 (PADI4) was recently found to be involved 
in HIF-dependent transcriptional response to tumor vas-
cularization and hypoxia through histone citrullination 
[25], which might explain its correlation to poor prog-
nosis. Parallel to that, 5 proteins were expressed lower in 
SOL adenocarcinomas and the low expression of which 
was correlated with poor OS, including PIGR, CHDH, 
NAPSA, PLEKHA7 and SELENBP1(Fig. 3D).

Common and special molecular alterations in entire 
and early stage LUAD samples
Although tumor node metastasis (TNM) Stage I LUAD 
patients who receive surgical resection have a high recov-
ery rate, up to 20–30% of early-stage patients have a poor 
prognosis [26]. In the CNHPP study, we mainly analyzed 
the different molecular characteristics between early 
stage (stage I) LUAD patients with good or poor prog-
nosis [19]. Considering the complexity and dynamics 
of protein expression during the progress of LUAD, we 
compared the differences between early stage or entire 
LUAD samples to non-tumor samples. A criteria of fold 
change > 2 and p < 0.05 was applied in filtering of signifi-
cant up-regulated proteins (Fig.  4A). Most significant 

up-regulated proteins in comparison to non-tumor sam-
ples were shared (n = 3,414) in early stage or entire LUAD 
samples, and we defined them as “shared up-regulated 
proteins”. These proteins were enriched in pathways 
related with cell cycle, protein synthesis and degrada-
tion, RNA metabolism and apoptosis, etc. (Fig.  4A, 
B). We then visualized their survival information and 
added annotations for  clinical utilized drugs or poten-
tial drug targets. Among these shared up-regulated pro-
teins, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) showed 
the minimum log-rank p value in our dataset (Fig.  4C). 
PLOD1 was also reported to be a prognostic biomarker 
for osteosarcoma [27]. According to Therapeutic Target 
Database (TTD) [28], PLOD1 is a potential drug target 
under clinical trial stage. For each protein related with 
poor prognosis, we calculated their median CERES 
scores. The results showed that MCM6 and NEDD9-
activating enzyme E1C (UBA3), annotated as literature-
reported targets, had median CERES scores less than 
-0.6, which prompted potential new therapeutic strate-
gies (Fig. 4C). A small part of proteins was only up-reg-
ulated in early stage LUAD (n = 228, defined as ‘Stage I 
unique up-regulated proteins’ in the following paper) 
and the KEGG mitophagy pathway was enriched in these 

Fig. 3 Characteristics of solid‑predominant adenocarcinomas. A Kaplan–Meier curve of overall survival in SOL and non‑SOL adenocarcinoma 
samples. B Pathway enriched in SOL or the rest tumor samples based on GSEA. Enrichment ratio > 0 indicated the pathway was enriched 
in SOL samples; Enrichment ratio < 0 indicated the pathway was enriched in the rest tumor samples. C Differentially expressed proteins 
between SOL and non‑SOL adenocarcinoma samples. A criteria of p < 0.05 and abs (log2 fold change) > 2 was applied to define significantly 
up‑ or down‑ regulated proteins. D Differentially expressed proteins which were significantly correlated with prognosis. Top panel: protein 
expression level in SOL and non‑SOL adenocarcinoma samples. Bottom panel: Kaplan–Meier curve of overall survival in samples with high 
expression (red line) and low expression (blue line) of the same protein presented in the top panel
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proteins (Fig. 4D). In mitophagy pathway, a total of seven 
proteins belonged to Stage I unique up-regulated pro-
teins, among which TFEB, BNIP3L and SP1 were either 
statistical significantly up-regulated in Stage I when com-
pared to middle and late stage tumor groups (Fig. 4E). In 
the contrast, no significant differences of protein expres-
sions were observed between Stage I and Stage II/III/IV 
groups  for FUNDC1, CALCOCO2, SRC and BCL2L1 
(Additional file 3: Fig S3A).

Further analysis indicated that the high expression of 
FUNDC1 and TFEB was correlated to poor OS in our 
dataset (Additional file  3: Fig S3B;  Fig.  4F). FUNDC1 is 
a mitochondrial outer membrane protein involved in 
hypoxia-induced mitophagy as a mitophagy receptor 
[29]. Transcription factor EB (TFEB), belonging to the 
microphthalmia family of transcription factors, is a mas-
ter regulator of lysosomal biogenesis and autophagy [30, 
31]. TFEB was previously reported to be associated with 
poor prognosis in NSCLC samples [32] and mediated 
lysosomal and autophagosomal biogenesis triggered by 
inhibition of p53 in lung cancer cells [33]. The findings 
indicated that mitophagy could be enhanced especially 
in early LUAD progress, and the abnormal activation of 
mitophagy may contribute to poor survival in LUAD. 
Besides, protein acylation and Golgi vesicle transport 

pathway were also enriched in Stage I unique up-regu-
lated proteins (Fig. 4D).

In addition, we compared the early-stage upregulated 
proteins (early stage LUAD vs non-tumor) and late-stage 
upregulated proteins (late stage LUAD vs early stage 
LUAD) (Additional file  3: Fig S3C). The range of fold 
changes of early stage LUAD to non-tumor samples was 
larger than that of late stage vs early stage LUAD sam-
ples, which was mainly caused by the higher similarity 
inside tumor samples. Regrettably, there were few late-
stage-specific proteins found in this analysis (Additional 
file 3: Fig S3C).

Screening of LUAD prognostic biomarkers
Non-invasive diagnosis possesses the advantages of con-
venience and high patients’ compliance. Therefore, we 
explored new serum prognostic biomarker based on our 
dataset. Considering that our proteomic data was col-
lected from tissues and there were differences between 
the protein abundance in tissue and serum, we custom-
ized a series of criteria to filter potential poor prognostic 
biomarkers [19]. Firstly, only proteins identified in more 
than 70% tumor samples (n = 6,238) and among the top 
1,000 high abundant proteins were selected to ensure the 
detective probability. Secondly, considering the tumor 

Fig. 4 Shared and special molecular alterations in entire and early stage LUAD samples. A Comparison of fold‑changes in early stage or entire 
LUAD samples to non‑tumor samples. Red dots: proteins up‑regulated (fold of change > 2, p < 0.05) in both early stage or entire LUAD groups. Blue 
dots: proteins down‑regulated (fold of change < 1/2, p < 0.05) in both early stage or entire LUAD groups. Orange dots: proteins up‑regulated (fold 
of change > 2, p < 0.05) in only early stage group. Pink dots: proteins up‑regulated (fold of change > 2, p < 0.05) in only entire LUAD group. Grey 
dots: proteins without significant change (p > 0.05) in both early stage or entire LUAD groups. B KEGG pathways enriched in shared up‑regulated 
proteins. C The log‑rank p values and fold of changes of the shared up‑regulated proteins. Proteins belonging to clinical successful or potential drug 
targets were labeled with gene names. D KEGG pathways enriched in Stage I unique up‑regulated proteins. E Distributions of the expression level 
of four ‘Stage I unique up‑regulated proteins’ belonging to mitophagy pathway in non‑tumor, early stage and middle and late stage tumor groups. 
(*p < 0.05. **p < 0.01. ***p < 0.001.). F Kaplan–Meier curve of overall survival in samples with high expression (red line) and low expression (blue line) 
of TFEB
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specificity, proteins with fold of change > 4 and p < 0.05 
were picked out. As a result, among the 128 proteins 
selected, 75 proteins were correlated with poor progno-
sis in LUAD (Fig. 5A, B, Additional file 7: Table S2). We 
chose 2 candidates from the potential biomarkers, ENO1 
and NDRG1, for subsequent validation in an independent 
serum cohort. Alpha-enolase (ENO1) were previously 
reported to promote metastasis of lung cancer via HGDR 
and Wnt signaling pathway [34] and higher anti-ENO1 
antibody level was associated with better progression-
free survival in non-small cell lung carcinoma (NSCLC) 
patients after surgery [35]. Our ELISA results showed 
that the high expression of ENO1 was positively cor-
related with both poor overall survival (OS, p = 0.0147) 
and poor disease-free survival (PFS, p = 0.0156) (Fig. 5C). 
N-myc downstream-regulated gene 1 (NDRG1), encod-
ing a growth and cancer related protein, was confirmed 
to be overexpressed in lung tumor tissues [36] and cor-
related with tumor angiogenesis in LUAD patients [37]. 
In our cohort, the high expression of EDRG1 was signifi-
cantly correlated with poor DFS (p = 0.0443) (Fig.  5D). 
Meanwhile, the expression level of NDRG1 increased 
along with the tumor stage (Additional file  4: Fig S4A). 
Asides from NDRG1, we identified a total of 52 up-
regulated proteins and 36 down-regulated proteins 
altered gradually along with the tumor stage (Additional 
file  4: Fig S4B), among which IL-1 receptor-associated 
kinase 1 (IRAK1) and colony stimulating factor 1 recep-
tor (CSF1R) were already reported to be potential drug 
targets in the therapy of nasopharyngeal carcinoma [38], 
FGFR1-driven hematological malignancies [39] and sar-
coma [40], separately (Additional file 4: Fig S4C). In addi-
tion to potential prognostic biomarkers, we also filtered 
potential early stage diagnostic biomarkers using follow-
ing criteria (Additional file 5: Fig S5A): 1. The candidate 

proteins were expressed in more than 70% of the 51 
early-stage LUAD samples; 2. The candidate biomarkers 
had top 1000 high abundances; 3. The candidates were 
expressed at least fourfold higher in Stage I LUAD than 
the adjacent tissues (Wilcoxon rank-sum test, multiple 
hypothesis testing correction, FDR < 0.05); 4. The candi-
dates belong to the HPA secretory database (n = 1,871). 
As result, a total of 9 potential diagnostic biomarkers 
(COPA, NAMPT, GPI, CTSB, MIF, SFN, MZB1, PIGR, 
MUC5B) were filtered out (Additional file 5: Fig S5A, B).

Discussion
In this study, we conducted a quantitative proteomic 
analysis of 14 benign lung disease cases and combined 
their data into our previous 103 paired LUAD proteomic 
dataset. Our dataset showed that a set of proteins, which 
mainly belong to cell proliferation and ubiquitin medi-
ated proteolysis pathways, were expressed more fre-
quently in tumor samples. In the comparison of SOL to 
the non-SOL adenocarcinoma samples, we found that 
cell proliferation related pathways and NF-kappa B sign-
aling pathway were dominant in SOLs, which promoted 
the understanding of the clinical poor prognosis in SOL 
adenocarcinoma patients. Additionally, we uncovered 
that the hypoxia-induced mitophagy pathway was up-
regulated particularly in early stage LUAD, which was the 
main characteristic of early stage LUAD in our proteome 
data.

This study provided opportunities for identification of 
diagnostic and prognostic biomarkers. In the biomarker 
analysis approach, we chose the proteins identified in 
over 70% tumor samples, the relative loose criterion 
mitigated the information loss caused by missing val-
ues in the label-free proteomic quantification strategy. 
In addition, the top 1,000 proteins with high abundance 

Fig. 5 Screening of LUAD prognostic biomarkers. A Flow chart of prognostic biomarker selection. B Log‑rank p values and fold of changes 
(tumor vs non‑tumor) of 75 potential prognostic biomarkers. C Kaplan–Meier curve of overall survival (top plot) and disease‑free survival (bottom 
plot) in samples with high expression (red line) and low expression (blue line) of ENO1. D Kaplan–Meier curve of overall survival (top plot) 
and disease‑free survival (bottom plot) in samples with high expression (red line) and low expression (blue line) of NDRG1
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were selected based on the hypothesis that proteins 
exhibiting higher levels of abundance are more likely to 
be detected in serum. Apart from the two prognostic 
biomarkers (ENO1 and NDRG1) we have already vali-
dated in independent serum cohort; our analysis also 
generated a wealth of data resource of potential prog-
nostic and early-stage diagnostic biomarkers of LUAD. 
Some of the biomarkers listed in this paper were also 
supported by other researches. For example, the associa-
tion between the over-expression of ERO1L and the poor 
survival of LUAD was already verified in patients’ tissue 
level by immunohistochemical staining [41]. The recent 
discovery of ERO1L’s role in promoting proliferation and 
metastasis in LUAD [42] also confirmed the reliability of 
our findings. In addition, among the early-stage diagnos-
tic biomarkers we filtered, PIGR was already reported as 
lung cancer-related plasma biomarker [43]. MUC5B [44, 
45], SFN [46] and MIF [47–49] were detectable in serum 
and related to lung-associated diseases. MZB [50], CTSB 
[51, 52], GPI [53], NAMPT [54] were detectable in serum 
and related to other diseases.

Proteins that gradually up-regulated during LUAD pro-
gress and positively correlated with unfavorable prog-
nosis may play essential roles in tumor development, 
warranting further investigation (Additional file  5: Fig 
S5B). Within these proteins, we considered IRAK1 and 
CSF1R as potential pharmacological targets for the treat-
ment of LUAD, based on previous research indicating 
they could be targeted by FDA-approved drugs, though 
in other tumor types [38, 40].

Generally speaking, cancer cells were characterized 
by capability to escape from apoptosis [55]. Higher sus-
ceptibility to mitophagy and apoptosis in lung cancer 
cells has been reported to decrease proliferation [55, 56]. 
However, we observed a significant upregulation of the 
mitophagy pathway in early-stage LUAD. Specifically, 
two up-regulated proteins, Bnip3L and FUNDC1, were 
outer mitochondrial membrane proteins which could 
bind directly to LC3 on autophagosome and involved 
in hypoxia-induced mitophagy [57–59]. The findings 
revealed the potential role of hypoxia-induced mitophagy 
in early LUAD, which may act as a transitional biological 
process in the tumor genesis. Nevertheless, further evi-
dence is required to support this hypothesis.

Method
Protein extraction and tryptic digestion
Samples were washed with phosphate buffer saline (PBS) 
buffer for five times to remove debris and blood. Urea 
lysis buffer was prepared as following formula: 8 M urea, 
100  mM ammonium bicarbonate, added with protease 
inhibitors and pH 8.0. Samples were cut up and then 
lysed in lysis buffer for 20 min on ice. Samples were then 

sonicated for 2  min (sonicated for 3  s and suspended 
for 3 s) on ice. After centrifuged (21,000 g, 10 min), the 
supernatants containing soluble proteins were collected. 
The BCA protein assay was used for the protein concen-
tration measurement. Extracted proteins were reduced 
in 5 mM dithiothreitol (56 ℃, 30 min) and then alkylated 
in 15  mM iodoacetamide (room temperature, darkness, 
30  min). Alkylation reaction was quenched in 30  mM 
cysteine (room temperature, 30  min). Proteins were 
digested with trypsin solution (1:50 w/w, 37 ℃, 16 h) and 
then desalted by SepPak C18 cartridges. The peptides 
were dried in vacuum environment of Speed Vac.

Peptide pre‑fractionation by high‑pH HPLC
Tryptic peptides were fractioned to 10 fractions by high-
pH HPLC before MS/MS detection. Briefly, vacuum-
dried peptides were dissolved in buffer A (2% acetonitrile 
(ACN), pH 9.5) and then loaded on an Xbridge C18 col-
umn (4.6  mm × 100  mm, 130A˚,3.5  μm) and eluted at a 
flow rate of 0.6 mL/min with a 60 min gradient from 0 to 
95% buffer B (98% ACN, pH 9.5).

Nano‑LC–MS/MS
Peptide samples were analyzed on Orbitrap Fusion mass 
spectrometry coupled with an EASY-nLC 1000 LC. Pep-
tides were re-dissolved in mobile phase A (2% ACN and 
0.1% formic acid) and then separated in a home-made 
C18 nano-capillary analytical column with a 60 min gra-
dient from 5 to 80% of buffer B (buffer A: 0.1% formic 
acid in water; buffer B: 0.1% formic acid in 90% ACN) at a 
flow rate of 350 nL/min.

The eluted peptides were then analyzed in mass spec-
trometry at data-dependent acquisition mode. Ions with 
m/z ranging from 350 to 1300 were acquired for the MS1 
full scan by Orbitrap with following parameters: resolu-
tion was set to 120,000, the maximal ion injection time 
(IT) was set to 50  ms and the automatic gain control 
(AGC) was set to 5 ×  105. MS2 acquisition was performed 
in a top-speed mode with a duty cycle time of 3  s. Pre-
cursor ions were fragmented in higher energy collision 
dissociation (HCD) and then the fragment ions were ana-
lyzed in ion trap with following parameters: The maximal 
IT of MS2 was set as 35 ms. The AGC was set at 7000 and 
the dynamic exclusion was set as 60 s.

MS database searching
MS raw files generated by LC–MS/MS were searched 
using MaxQuant (version 1.6.5.0) software against the 
same UniProt human proteome database used in the 
previous study [19]. Research parameters were set as fol-
lowing: digestion type was set as trypsin/P. Max missed 
cleavages were set as 2. Carbamidomethyl (C) were set as 
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fixed modification. Oxidation (M) and acetylation (Pro-
tein N-term) were set as variable modifications.

Data normalization
Reverse or potential contaminant peptides were 
removed from MaxQuant search result. Search results 
of CNHPP cohort and benign lung disease samples were 
log2 transformed and combined to a matrix including 
220 samples. The protein matrix was quantile normal-
ized with R package ‘preprocessCore’. Finally, we used 
the mean abundance of gene-coding proteins per gene 
to represent the abundance of the gene and generated 
a normalized gene level expression matrix. Except for 
analysis mentioned particularly, we performed differ-
ential protein analysis using the proteome matrix with 
less than 50% missing values and without missing value 
imputation. Considering that many tumor related pro-
teins didn’t detected in most non-tumor samples, to facil-
itate biomarker filtering, for early-stage/late-stage special 
proteins analysis and prognostic/diagnostic biomarker 
filtering analysis, we used proteome matrix with less than 
70% missing values in whole tumor (n = 103) or early-
stage tumor samples (n = 51) and imputed the missing 
values with minimum value of original matrix (n = 220, 
containing 11,234 genes).

Protein subcellular location summary
The protein subcellular location database was down-
loaded from The Human Protein Atlas website. Some 
subcellular groups were merged based on the informa-
tion of cellular & organelle proteomic module on the 
website [60] (https:// www. prote inatl as. org/ human prote 
ome/ subce llular).

Pathway enrichment analysis
Over Expression Analysis was conducted for LRPs, 
NDRPs, Stage I unique up-regulated proteins, and shared 
up-regulated proteins through WebgestaltR [61]. Gene 
Set Enrichment Analysis (GSEA) [62] was conducted for 
the comparison between SOL and non-SOL adenocarci-
noma samples.

Protein network analysis
LRPs were introduced to and analyzed in STRING 
website [63]. The STRING output was visualized in 
Cytoscape (v3.9.1). Protein cluster analysis were con-
ducted by the plug-in MCODE of Cytoscape [64, 65].

Differentially expressed protein analysis
Wilcoxon sum rank test was applied for differentially 
expressed protein analysis between every two groups. 
Fold of change per gene was defined as the ratio of 
median expression value of the gene in each group.

CERES score calculation
CERES data (CRISPR_gene_effects.csv, 2021.06) was 
downloaded from DepMap Portal [23]. For each gene, 
the median of CERES scores of the gene in 88 lung ade-
nocarcinoma cell lines was calculated.
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