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Abstract 

Background Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, 
patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence 
that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view 
of the tumor microenvironment of this poorly characterized uterine cancer variant through multi‑region microsam‑
pling and quantitative proteomics.

Methods Tumor epithelium, tumor‑involved stroma, and whole “bulk” tissue were harvested by laser microdissec‑
tion (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis 
by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA‑sequencing for one 
patient’s tumor.

Results LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial 
intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular 
analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, 
which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis 
with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have 
been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal (https:// lmdom ics. org/).

Conclusions Here we identified extensive three‑dimensional heterogeneity within the USC tumor microenviron‑
ment, with disease‑relevant biomarkers present in both the tumor and the stroma. These data underscore the critical 
need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.
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Introduction
Cancer-related deaths have declined in the United States 
since 1990, though the incidence and mortality of spe-
cific malignancies such as uterine cancer have increased, 
with projections estimating 66,200 new uterine carci-
noma cases and 13,030 related deaths in 2023 [1]. Uterine 
serous carcinoma (USC) represents only a small propor-
tion of all uterine cancer cases, but patients with this 
aggressive subtype typically have high rates of chemo-
therapy resistance, disease recurrence, and constitute a 
disproportionately high percentage of the deaths, owing 
in part to significant heterogeneity present in the tumor 
microenvironment (TME) [2–4].

The guidelines for staging USC have recently incorpo-
rated results from molecular analyses, including evalua-
tion of microsatellite satellite instability (MSI), mismatch 
repair (MMR), HER2 overexpression and/or gene ampli-
fication, loss of PTEN, copy number variations (CNV), 
and the detection of mutations in TP53, PIK3CA, AKT, 
MAPK, and POLE [5–8]. Standard first-line clinical man-
agement of USC relies on surgical staging with consid-
eration of maximal tumor debulking for gross disease, 
followed by administration of systemic adjuvant platinum 
and taxane-based therapies with/without external beam 
radiation therapy (EBRT) and/or vaginal cuff brachy-
therapy (VBT) [8]. Trastuzumab is additionally recom-
mended for patients with stage III/IV HER2-positive 
disease [9]. Recent clinical trials have additionally dem-
onstrated significantly improved outcomes for endo-
metrial cancer patients when chemotherapy is given in 
combination with pembrolizumab [10], pembrolizumab 
plus lenvatinib [11], or dostarlimab [12], with further 
differences observed in the NRG-GY018 (pembroli-
zumab plus chemotherapy [10]) and RUBY (dostarli-
mab plus chemotherapy [12]) trials depending on MMR 
proficiency.

To improve our understanding of intratumor hetero-
geneity (ITH) within the USC TME, we investigated pro-
teome and transcriptome alterations in spatially resolved 
laser microdissection (LMD) enriched cellular subpopu-
lations from nine USC patient tumor tissue specimens. 
LMD enriched samples were analyzed by liquid chro-
matography-tandem mass spectrometry (LC–MS/MS) 
and reverse phase protein microarray (RPPA), and one 
patient’s tumor was further analyzed by targeted RNA-
sequencing (RNA-seq). Here we identified extensive 
intratumor heterogeneity in primary tumors from USC 
patients, emphasizing the value of enrichment of cellu-
lar subpopulations prior to molecular analysis for a more 
selective molecular view of the TME. We additionally 
highlight several similarities and differences between the 
proteomic profiles of LMD enriched cellular subpopu-
lations from USC patients with a similar TME-resolved 

sample set from high grade serous ovarian carcinoma 
(HGSOC) patient tumor specimens [13].

Methods
Tissue specimens
Surgically resected fresh-frozen tissue specimens embed-
ded in optimal cutting temperature (O.C.T.) compound 
were obtained from nine patients with stage II (n = 1; 
patient 343WD) or III (n = 8) USC (Additional file  8: 
Table  S1). All tissues used in this study were obtained 
from the primary site of disease, with the exception of the 
specimen from patient 343WE, from whom a metastatic 
lesion from the ovary was obtained. Eight of the nine 
patients were chemotherapy-naïve at the time of surgi-
cal resection and specimen acquisition; patient 343WF 
received neoadjuvant chemotherapy (NACT). All study 
protocols were approved for use under a Western IRB-
approved protocol “An Integrated Molecular Analysis of 
Endometrial and Ovarian Cancer to Identify and Vali-
date Clinically Informative Biomarkers” deemed exempt 
under US Federal regulation 45 CFR 46.102(f ). All exper-
imental protocols involving human data in this study 
were in accordance with the Declaration of Helsinki and 
informed consent was obtained from all patients.

The specimen blocks were sectioned by cryotome 
into 110–220 consecutive 10 µm thin tissue Sects.  (1.1–
2.2  mm total depth), depending on tissue availability to 
avoid complete exhaustion of the specimen block. Tis-
sue sections were placed on polyethylene naphthalate 
(PEN) membrane slides (Leica Microsystems). Repre-
sentative sections after every 10 PEN membrane slide 
Sects.  (100  µm) were mounted on charged glass slides 
and stained with hematoxylin and eosin (H&E).

Laser microdissection
The slides from each specimen block were separated into 
five equally sized and spatially distinct regions (levels) 
assigned by depth within the block, H&E stained, and 
laser microdissected (LMD7, Leica Microsystems) for 
analysis via liquid chromatography-tandem mass spec-
trometry (LC–MS/MS), reverse phase protein micro-
array (RPPA), and RNA sequencing (RNA-seq; patient 
343VY only), as previously described [13]. Briefly, LMD 
was used to isolate distinct cellular subpopulations of 
enriched tumor epithelium (ET) or tumor-involved 
stroma (ES) from slide sections throughout the 5 sepa-
rate spatially distinct levels of the specimen block. For 
each of the 5 levels, adjacent interlaced slides were used 
for whole (“bulk”) tissue (BT) harvests for the collection 
of all available tissue per section, with the exclusion of 
necrosis, blood, and adipose tissue. Slides designated for 
MS proteomics (n = 9 patients), RPPA (n = 9 patients), 
and transcriptomics (n = 1 patient) within each level were 
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interlaced as much as possible. Within each level per 
specimen block, LMD was used to enrich cross-sectional 
areas of 40  mm2 and 15  mm2 (ET, ES, and BT) for analysis 
via LC–MS/MS and RPPA, respectively. For case 343VY, 
cross-sectional areas of 25   mm2 of ET, ES, and BT were 
harvested for RNA-seq. Representative images before 
and after LMD were captured using the Aperio AT2 slide 
scanner (Leica Microsystems).

Peptide preparation and TMT liquid 
chromatography‑tandem mass spectrometry
LMD tissue underwent pressure-assisted, trypsin-diges-
tion, and 5 µg of tryptic peptides per sample were labeled 
with isobaric Tandem Mass Tags (TMTpro 16plex, 
ThermoFisher Scientific, Inc.) as previously described 
[13]. Samples were organized in patient-specific TMT 
multiplexes and fractionated by basic reversed-phase 
liquid chromatography (bRPLC). A patient-specific ref-
erence pooled sample was generated from all ET, ES, 
and BT samples from the patient for a given multiplex. 
Additional patient-specific BT pool samples were gen-
erated to fill TMT channels that would have otherwise 
been filled by samples with < 5  µg of peptide digest and 
were incorporated into each multiplex as needed. Sam-
ples were pooled to generate 24 concatenated fractions, 
each of which were analyzed by LC–MS/MS using a 
nanoflow LC system (EASY-nLC 1200, ThermoFisher 
Scientific, Inc.) coupled online with a Q Exactive HF-X 
MS (ThermoFisher Scientific, Inc.), as previously 
described [13]. Briefly, each sample was loaded onto a 
nanoflow HPLC system outfitted with a reversed-phase 
trap column (Acclaim PepMap100 C18, 2  cm, nanoVi-
per; ThermoFisher Scientific, Inc.) and a heated (50 ℃) 
reversed-phase analytical column (Acclaim PepMap 
RSLC C18, 2  µm, 100  Å, 75  μm × 500  mm, nanoViper; 
ThermoFisher Scientific, Inc.). Peptides were eluted by 
developing a linear gradient of 2% mobile phase B (95% 
acetonitrile with 0.1% formic acid) to 32% mobile phase 
B within 120 min at a constant flow rate of 250 nL/min. 
MS1 and MS2 spectra were collected in profile mode, 
S-lens RF level was set to 40 and voltage was set at 2 kV. 
MS1 parameters: resolution, 60,000 at m/z 200; mass 
range, m/z 400 – 1,600; AGC, 3e6; maximum IT, 45 ms. 
MS2 parameters: loop count, 12; resolution, 45,000 at 
m/z 200; AGC, 1e5; maximum IT, 95 ms; isolation win-
dow, m/z 1.0; isolation offset, m/z 0.2; fixed first mass, 
m/z 100; charge state, 2–4; intensity threshold, 2e5; nce, 
30; dynamic exclusion, 20 s. High resolution (R = 60,000 
at m/z 200) broadband (m/z 400–1600) mass spectra 
(MS) were acquired from which the top 12 most intense 
molecular ions in each MS scan were selected for high-
energy collisional dissociation (HCD, normalized col-
lision energy of 34) acquisition in the orbitrap at high 

resolution (R = 45,000 at m/z 200). Peptide identifica-
tion, normalization, and protein-level quantitation using 
patient-specific imputations was performed as previously 
described [14]. Briefly, global protein-level abundances 
were generated from peptide spectral matches (PSM) 
identified by searching.raw files with a publicly-available, 
non-redundant human proteome database (http:// www. 
unipr ot. org/, SwissProt, Homo sapiens, downloaded 
12–01-2017) using Mascot (Matrix Science, v2.6.0), Pro-
teome Discoverer (v2.2.0.388, Thermo FisherScientific, 
Inc., Waltham, MA, USA), and in-house tools using 
identical parameters. The.raw data files corresponding 
to each LC–MS/MS injection per TMTpro16 multiplex 
were searched using the following parameters: precur-
sor mass tolerance of 10 ppm, fragment ion tolerance of 
0.05  Da, a maximum of two tryptic miscleavages, static 
modification for TMT reporter ion tags (304.2071 Da) on 
N-termini and lysyl residues, and dynamic modifications 
for oxidation (15.9949  Da) on methionine residues. The 
resulting peptide spectral matches (PSMs) were filtered 
using a false-discovery rate (FDR) < 1.0% (q-value < 0.01), 
as determined by the Percolator [15] module of Proteome 
Discoverer. Quan correction was applied to all reagent 
ion abundances using TMTpro16 reagent lot UL297970. 
PSMs lacking a TMT reporter ion signal in TMT chan-
nel m/z 126 (TMT-126, the patient-specific pooled ref-
erence sample combined from all sample digests for a 
given patient), PSMs lacking TMT reporter ion intensity 
in all TMT channels, or PSMs exhibiting an isolation 
interference of ≥ 50% were excluded from downstream 
analyses. Protein-level abundances were calculated from 
normalized, median  log2-transformed TMT reporter 
ion ratio abundances from a minimum of two PSMs 
corresponding to a single protein accession. Normal-
ized  log2-transformed protein-level abundances for each 
TMTpro16 multiplex were merged and protein-level 
abundance for proteins not quantified in all patient sam-
ples, but in at least ≥ 50%, were imputed using a k-near-
est neighbor (k-NN) neighbor strategy using the impute 
R-package [16]. QA/QC standards were analyzed before 
and after every sample multiplex to confirm low techni-
cal variability (5.4% RSD in PSM counts).

RNA sequencing
Samples for RNA-seq from patient 343VY were prepared 
as previously described [13]. Briefly, cells were harvested 
by LMD into Buffer RLT with β-mercaptoethanol and 
RNA isolated using the RNeasy Micro Kit (Qiagen) per 
the manufacturer’s instructions. RNA concentrations 
were determined by fluorescence (Qubit HS and BR kits, 
ThermoFisher Scientific, Inc.). RNA integrity numbers 
(RIN) were determined using the RNA 6000 Pico Kit 
2100 Bioanalyzer (Agilent Technologies, Inc.); RIN values 

http://www.uniprot.org/
http://www.uniprot.org/
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were > 6 for all levels and collection types. RNA samples 
were reverse transcribed to generate barcoded cDNA 
libraries that were sequenced on the Ion Torrent S5 XL 
(ThermoFisher Scientific, Inc.). Barcoded cDNA libraries 
contained 6 LMD RNA samples, a Universal Human Ref-
erence RNA (UHR) standard (Stratagene), and a no-tem-
plate control (NTC) water blank. Successful sequencing 
runs achieved an average of 18 M reads/sample (with one 
exception) and 167-205X AQ20 mean coverage depth.

Reverse phase protein microarray
ET, ES, and BT lysates in the RPPA extraction/lysis buffer 
were boiled and used for microarray printing onto nitro-
cellulose-coated glass slides (Grace Bio-Labs) in technical 
triplicates using a 2470 Aushon Arrayer (Aushon Bio-
Systems, Inc.), as previously described [17, 18]. Briefly, 
selected arrays were stained with Sypro Ruby Protein 
Blot Stain (Invitrogen) to assess the amount of protein 
in each sample for normalization purposes. Prior to anti-
body staining, the arrays were first treated with Reblot 
Antibody Stripping solution (Millipore), washed with 
PBS, and incubated with I-block (Applied Biosystems). 
To reduce unspecific binding between endogenous pro-
teins and the detection system, arrays were then probed 
with 3% hydrogen peroxide, an avidin/biotin blocking 
system (Dako Cytomation), and an additional serum free 
protein block (Dako Cytomation) using an automated 
system (Dako Cytomation). Arrays were probed with 281 
antibodies targeting native and/or post-translationally 
modified proteins with known relevance to gynecologic 
cancers, co-arrayed in technical triplicates using the same 
antibodies as previously published in Hunt et  al. Addi-
tional file 8: Table S18 [13]. The selected antibodies were 
validated previously by Western blot to confirm sensitiv-
ity and specificity, specifically to confirm the presence of 
a single band of correct molecular weight in the positive 
control sample and the absence of a band in the nega-
tive control sample. Antibodies targeting phosphorylated 
epitopes were further validated by ligand induction, and 
a subset of antibodies was additionally validated against 
peptide competition. Each array was printed with a series 
of positive and negative control cell lysates derived from 
living cells under cell culture conditions wherein the cells 
were exposed to a known ligand (e.g. EGF) or chemical 
agent (e.g. pervanadate) that stimulates the activation 
(phosphorylation) of a known protein, or the lysate was 
derived from cell lines with known and verified expres-
sion of the specific protein being measured (e.g. HER2) 
[17, 18]. Signal amplification was achieved using a tyra-
mide-based avidin/biotin amplification system (Dako 
Cytomation) coupled with the fluorescent IRDye680 dye 
(LI-COR Biosciences), per manufacturer’s instructions. 
Arrays were imaged using a laser scanner (TECAN) 

and analyzed using the MicroVigene software (Vige-
netech). Each sample was normalized to the correspond-
ing amount of protein derived from Sypro Ruby stained 
slides and the triplicates were averaged.

Quantification and statistical analyses
Bioinformatic and statistical analyses were performed as 
previously described [13]. Briefly, unsupervised hierar-
chical clustering was performed using proteins exhibit-
ing a median absolute deviation (MAD) > 1 using Pearson 
correlations in Clustvis (version 1.2.0) in R (version 3.6.2). 
Co-quantified transcripts and proteins with a MAD > 0.5 
were prioritized for unsupervised hierarchical clustering. 
Differential analysis of proteins and/or transcripts was 
performed using limma (version 3.8, [19]). RPPA abun-
dances were  log2-transformed and target-wise median 
centered. RPPA abundances below the limit of detection 
were converted to a small non-zero value (e^-10) prior 
to normalization. The variance between sampling levels 
for selected RPPA targets not quantified by MS which 
represent biomarkers relevant to ongoing clinical trials 
enrolling USC or other endometrial cancer patients was 
calculated from the  log2-transformed target-wise median 
centered data. The significance of variance differences 
between LMD collection types were calculated by Mann 
Whitney U test. Only proteins in the MS dataset passing 
a limma adjusted p < 0.05 and exhibiting the same pattern 
of expression across all 9 patients were included in down-
stream analyses, including for comparison with proteins 
passing these criteria in the HGSOC study described 
previously [13], and association with known functional 
pathways using Ingenuity Pathway Analysis (IPA; Qia-
gen). The IPA-identified lists of associated drug targets 
were cross-referenced against Table 1 from Sun et al. [20] 
for identification of FDA-approved drug targets. Protein-
level and RPM-level data were processed in xCell (ver-
sion 1.1.0; [21]) for cell type enrichment analysis. Relative 
protein abundances or cell type signature scores were 
plotted using ggplot2 (version 3.2.1) [22]. Single-sample 
gene set enrichment analysis (ssGSEA) [23] was per-
formed using the protein-level data using the GSVA [24] 
package (version 1.34.0) in R (version 3.6.0). Signatures 
used for ssGSEA were generated by incorporating differ-
ential expression analysis with support vector machine 
recursive feature elimination (RFE) on quantitative 
proteomic data from a linearly diluted series of in  situ-
derived HGSOC ET, ES, and immune cells [25]. The 
ssGSEA clustermap and boxplots were plotted in Python 
(version 3.9.16) with seaborn (version 0.11.2), matplot-
lib (version 3.7.0) [26], and stat annotations (version 
0.5.0) [27]. Patient-specific dendrograms were generated 
using ggtree (version 2.0.1) and ape (version 5.3) using 
proteins with MAD > 1. Pairwise Spearman correlations 
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were calculated using all protein-level abundances (i.e., 
no MAD cutoff) between all sampling levels per case; 
protein–protein correlations (excluding the Spearman 
R = 1 correlations of each level to itself ) were plotted in 
a ridgeline plot using ggplot2 (version 3.4.1) [22]. Heat-
maps depicting the Spearman correlations between co-
quantified protein (LC–MS/MS) and transcript samples 
in Fig. 4 and between co-quantified protein (LC–MS/MS) 
and RPPA samples in Additional file  3: Figure S3 were 
generated using the Morpheus software from the Broad 
Institute (https:// softw are. broad insti tute. org/ morph eus/; 
version 1.0–1). Spearman correlations were calculated in 
MedCalc (version 20.109) using all proteins significantly 
co-altered between ET and ES (ie., from Additional file 8: 
Tables  S16 and S18; n = 455 proteins total) with those 
co-quantified (n = 442 proteins from their 7908 proteins 
total) in BT collections from n = 9 USC tumors reported 
by CPTAC [28] which had tumor purity values calcu-
lated through analysis of methylation data [29] reported. 
Quantitative abundances for these 442 proteins were 
directly compared to the methylation-derived metrics of 
tumor purity (Purity_Cancer), as reported in Additional 
file 8: Table S1 from Dou Y et al. [28]. Stroma scores for 
the global proteome data from the CPTAC dataset were 
calculated using ProteoMixture [25] and directly com-
pared to the methylation-derived stroma purity metrics 
(Purity_Stroma) from the CPTAC dataset [28].

Results
Multi‑omic analysis of LMD enriched cellular 
subpopulations from USC tumor specimens
Nine fresh-frozen USC patient tumor tissue specimens 
(Additional file 8: Table S1) were consecutively sectioned 
into ~ 200 tissue thin sections for subsequent LMD 
enrichment of tumor and stroma cell subpopulations 
for proteomic analysis. LMD enriched samples from 
343VY were further generated for transcriptomic analy-
sis. Representative cover-slipped hematoxylin and eosin 
(H&E)-stained sections interspersed throughout the 
depth of each block were reviewed by a board-certified 
pathologist (UNMR) to confirm histologic characteris-
tics and tumor cellularity, which ranged from 15 to 99% 
(Additional file  8: Table  S1). LMD enriched harvests of 
tumor epithelium (ET) or stromal cells (ES), as well as 
whole “bulk” tissue (BT) collections representing all tis-
sue material from a single section, were obtained from 
five equally sized and spatially distinct regions of tissue 
(“levels”) from alternating sections throughout the speci-
men blocks for proteomic and/or transcriptomic analy-
sis (Fig.  1A; Additional file  8: Table  S2). Representative 
images were collected before and after LMD for quality 
control (Fig. 1B).

Quantitative proteomic (LC–MS/MS and RPPA) and 
transcriptomic (RNA-seq; patient 343VY only) analyses 
were performed using LMD enriched samples. LC–MS/
MS analysis quantified an average of 9548 ± 450 proteins 
within each patient-specific TMT plex for a total of 6,503 
proteins co-quantified across all nine patients (Additional 
file 8: Table S3). A total of 15,558 transcripts were quanti-
fied from 343VY (Additional file 8: Table S4). RPPA anal-
ysis was performed using 281 antibodies [13] to assess 
the expression of native and/or post-translationally mod-
ified proteins (Additional file 8: Table S5).

The global protein abundance matrix (Additional file 8: 
Table  S3) from these nine patients can be accessed at 
our Heterogeneity Analysis Portal (https:// lmdom ics. 
org/), which we previously developed as a community 
resource for interrogation of a spatially resolved and 
LMD enriched sample series generated and molecularly 
profiled using similar methods from high-grade serous 
ovarian carcinoma (HGSOC) patient tumors [13].

ET and ES collections exhibit unique molecular profiles 
of regional molecular heterogeneity
Unsupervised hierarchical cluster analysis of 351 vari-
ably abundant proteins (median absolute deviation 
(MAD) > 1) revealed two predominant branches with 
independent clustering of the ET samples from ES 
(Fig.  2A). The association of BT with either ET or ES 
was related to tumor “purity”, as previously described 
[13]. Specifically, BT from specimens with overall higher 
or lower median tumor purity clustered with ET or ES, 
respectively. This result was further recapitulated in 
transcriptome data from 343VY, which showed similar, 
independent clustering of ET and ES samples (Fig.  2B). 
BT samples expectedly clustered with ET as the median 
tumor cellularity for each of the 5 levels from this case 
was ≥ 97% (Additional file 8: Table S1).

Proteomic abundances of epithelial and stromal mark-
ers were examined for each collection type (Fig.  3A). 
The epithelial markers Keratin Type I Cytoskeletal 19 
(KRT19) and Cadherin 1 (CDH1) were significantly ele-
vated in ET relative to ES (Wilcox p < 0.0001). Conversely, 
stromal markers Fibroblast Activation Protein Alpha 
(FAP), and Versican (VCAN) were significantly elevated 
in the ES relative to ET (Wilcox p < 0.0001). Intermedi-
ate abundances in BT correlated with the relative pro-
portions of tumor and stroma within the TME. Cell type 
enrichment scores (xCell [21]) using transcriptomic data 
from 343VY (Additional file 8: Table S6) and proteomic 
data from all nine cases (Additional file 8: Table S7) dem-
onstrated enrichment of epithelial cell scores in ET, and 
enrichment of cell type signature scores for fibroblasts, 
stroma, and microenvironment in ES (Wilcox p < 0.0001; 
Fig. 3B), as previously described [13].

https://software.broadinstitute.org/morpheus/
https://lmdomics.org/
https://lmdomics.org/
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We also explored a single sample gene set enrichment 
analysis (ssGSEA) classifier enabling prediction of tumor, 
stroma, and immune cell admixture optimized for prot-
eomic data (ProteoMixture [25]) for characterizing the 
ET, ES, and BT samples (Additional file 8: Table S8). BT 

samples with high tumor cellularity and ET had higher 
ssGSEA “tumor” scores, versus BT samples with low 
tumor cellularity and ES had higher ssGSEA “stroma” 
scores. The ssGSEA “immune” scores were more variable 
across sample types, though generally trended higher in 

Fig. 1 Study workflow. A Illustration of histological tissue specimen and LMD enriched sample preparation followed by quantitative 
proteomic [high‑resolution liquid chromatography‑tandem mass spectrometry (TMT LC–MS/MS) and reverse phase protein microarray (RPPA)] 
and transcriptomic (RNA‑seq) analyses. Frozen tissue specimens from 9 USC patients were sectioned into ~ 200 consecutive thin tissue sections 
which were divided into 5 evenly distributed sampling levels (quintiles). Tissue sections within each level were laser microdissected for harvest of ET, 
ES, and BT to support each downstream analytical workflow. B Representative pre‑ and post‑LMD micrographs from the top and bottom levels 
of tissue from case 343WC. The number in the bottom right corner of each micrograph indicates the section number. The scale bar in the bottom 
left corner of each micrograph indicates a length of 4 or 5 mm, as specified
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Fig. 2 Unsupervised hierarchical cluster analysis of differentially abundant proteins and transcripts. A 351 variably abundant proteins (MAD > 1) 
and B 464 variably abundant transcripts (MAD > 0.5) co‑quantified in both the RNA‑seq and mass spectrometry datasets. A Protein abundances are 
represented across 118 samples derived from n = 9 patients consisting of ET (n = 44 total; 4–5 levels/patient), ES (n = 29 total; 2–5 levels/patient), 
and BT (n = 45 total; 5 levels/patient). The color gradient inset below the heatmap depicts median tumor purity estimates per level, determined 
by manual pathology review for each of the BT collections
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Fig. 3 Protein abundance of cell type‑specific markers and cellular admixture analyses (xCell [21]). A Boxplots depicting relative protein 
abundances of classical tumor (KRT19 and CDH1) and stroma (FAP and VCAN) markers. B Cell type signature scores as determined by xCell. Wilcox 
p‑values with (*) indicate statistically significant differential expression (p < 0.0001) between ET and ES
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ES and lower tumor cellularity BT samples (Additional 
file 1: Figure S1).

Serum levels of CA-125, a cleaved extracellular domain 
of the MUC16 protein, are used clinically as a biomarker 
for monitoring USC progression and regression. Similar 
to our findings in HGSOC [13], MUC16 in the present 
study was significantly elevated in ET relative to ES of 
USC patient specimens (Wilcox p < 0.0001; Additional 
file 2: Figure S2). We previously demonstrated that pro-
teins possessing a signal peptide sequence and/or char-
acterized as “extracellular” by Gene Ontology were more 
variably abundant than proteins without these char-
acteristics [13]. Examination of 5 cases in the present 
study which had 4–5 sampling levels for both ET and ES 
revealed a significantly higher variance of proteins con-
taining a signal peptide sequence and/or categorized as 
extracellular between sampling levels relative to proteins 

lacking these features (p < 0.0001; Additional file  8: 
Table S9).

Integrated analysis of the LC–MS/MS and RNA-
seq data from 343VY revealed 6019 co-quantified 
protein:transcript pairs in both the proteomic and tran-
scriptomic datasets. The protein and transcript abun-
dances in LMD enriched samples were more strongly 
correlated (Spearman correlations ranging from 0.12 to 
0.36 in ET, and 0.46 to 0.54 in ES; Additional file 3: Fig-
ure S3A, B; Additional file  8: Table  S10) than those in 
BT (Spearman correlations ranging from − 0.05 to 0.06; 
Additional file 3: Figure S3C; Additional file 8: Table S10).

Orthogonal proteomic analyses reveal intratumor 
heterogeneity in therapeutic drug targets
RPPA was used to quantify the abundances of 281 
native and/or post-translationally modified proteins 

Fig. 4 Correlation matrices of samples using proteins co‑quantified by LC–MS/MS and RPPA. Spearman correlation analysis of samples using 160 
proteins that were co‑measured by TMT LC–MS/MS and RPPA for A ET, B ES, and C BT
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(Additional file 8: Table S5) as described previously [13] 
for two important reasons: [1] as an orthogonal immu-
noassay-based approach cognate with our MS-based 
profiling efforts to characterize the heterogeneity in 
the phosphoproteome using two separate complemen-
tary proteomic-based methods, and [2] to leverage the 
strength of content provided by the RPPA platform as 
a tool that can generate semi-quantitative information 
about the expression and activation (ie, phosphoryla-
tion) of key protein drug targets and signaling pathway 
proteins. These total and/or phosphoproteins repre-
sent key “actionable” drug targets measured by RPPA 
from the LMD tissue, which may be below the detec-
tion limits of MS analysis. Of the 160 proteins that were 
co-quantified by both MS and RPPA (from 142 anti-
bodies, some of which recognized multiple isoforms 
and/or phosphorylated epitopes of a protein, thus 
mapping to multiple Uniprot accessions), the strong-
est correlations were between ET and ES samples from 
the same patient, with intra-patient Spearman corre-
lations between -0.03 to 0.44 (median = 0.31) and 0.07 
to 0.54 (median = 0.31), respectively (Fig. 4A, B; Addi-
tional file 8: Table S11). The BT collections were often 
poorly correlated both within (Spearman correlations 
of −  0.32 to 0.37; median = 0.10) and between (mini-
mum Spearman correlation of − 0.36) patients (Fig. 4C; 
Additional file 8: Table S11).

A total of 119 proteins (corresponding to 139 unique 
antibodies) were exclusively assayed by RPPA, while not 
concurrently quantified by MS. Notable targets among 
these which have demonstrated therapeutic significance 
when targeted in recent endometrial cancer clinical tri-
als (Additional file  4: Figure S4) include programmed 
cell death protein 1 and programmed death-ligand 1 
(PD-1/PD-L1) [10–12]. The clinical benefit of selinexor, 
a selective inhibitor of exportin 1 (XPO1), as a mainte-
nance therapy was recently demonstrated in endometrial 
cancer patients with wild-type tumor protein 53 (TP53) 
[30]. TP53 and phosphorylated (p)TP53S15 were assayed 
by RPPA and not quantified by MS. Checkpoint kinase 
1  (CHK1S345), selectively inhibited by prexasertib (ACR-
368), was exclusively quantified by RPPA and has demon-
strated early promising results as a therapeutic target in 
platinum-resistant endometrial cancer (NCT05548296). 
While human epidermal growth factor receptor 2/3 
(HER2/3Total) were quantified by MS, RPPA further 
quantified several phosphorylated epitopes  (pHER2Y1248, 
 pHER2Y877,  pHER3Y1289) with relevance to clinical tri-
als investigating HER2-targeting agents in patients 
with USC and/or other endometrial cancer subtypes 
(NCT05256225, NCT04704661, NCT04486352). Among 
these notable markers, the variance between sampling 
levels was significantly improved by LMD enrichment of 

tumor for  CHK1S345, HER3, and  HER3Y1289 relative to the 
BT harvests (p < 0.05).

The identities of the proteins quantified in the MS data-
set and which were most positively or negatively corre-
lated (all p < 0.01) with their native and/or modified forms 
co-quantified in the RPPA dataset were examined in each 
LMD collection type (Additional file 8:  Table S12). Inter-
cellular adhesion molecule 1 (ICAM1), lamin A (LMNA; 
cleaved D230), annexin II (ANXA2), focal adhesion 
kinase I  (PTK2Y576/577), and annexin I (ANXA1) were the 
most highly correlated proteins in ET, whereas syndecan I 
(SDC1), mitogen activated protein kinase 8  (MAPK8T183/

Y185), proto-oncogene tyrosine-protein kinase Src 
 (SRCY416), tyrosine-protein kinase JAK1  (JAK1Y1022/1023), 
and protein kinase C beta type  (PRKCBS600) were the 
most negatively correlated. ANXA1/2 were similarly 
highly correlated in ES, in addition to diacylglycerol 
kinase alpha (DGKA), phosphatidylinositol 3,4,5-trispho-
sphate 5-phosphatase 1  (INPP5DY1020), and HLA class II 
histocompatibility antigen DR alpha chain (HLA-DRA). 
Proteins negatively correlated between MS and RPPA 
in ES included myristoylated alanine-rich C-kinase sub-
strate  (MARCKSS152/156), beta arrestin-1  (ARRB1S412), 
cyclin B1 (CCNB1), dual specificity mitogen-activated 
protein kinase kinase 1  (MAP2K1S298), and glucocor-
ticoid receptor  (NR3C1S211). While ANXA1/2 were 
highly correlated in both ET and ES, they were not cor-
related (p > 0.05) in BT samples. The most correlated 
proteins in BT included integrin-linked protein kinase 1 
(ILK), phosphatidylinositol 3,4,5-trisphosphate 3-phos-
phatase and dual-specificity protein phosphatase PTEN 
 (PTENS380), cyclin-dependent kinase 2 (CDK2), heat 
shock protein HSP 90-beta (HSP90AB1), and poly [ADP-
ribose] polymerase 1 (PARP1). The most negatively cor-
related proteins in BT were cytosolic phospholipase A2 
 (PLA2G4AS505), cAMP-dependent protein kinase cata-
lytic subunit beta  (PRKACBT197), SDC1,  SRCY416, and 
LMNA (cleaved D230).

Sampling levels within a tumor specimen display variable 
degrees of proteomic relatedness
The heterogeneity between collection levels within and 
between LMD enriched sample types was examined 
using a phylogenetic approach, as previously described 
[13], using six cases for which there were ≥ 3 LMD col-
lection levels available from ET and ES samples (Fig.  5; 
Additional file  8: Table  S13). The degree of heterogene-
ity measured between ET and ES significantly differed 
(p < 0.05 or p < 0.01, as noted) within each of the 6 cases, 
however there was no consistent trend across all patients 
of whether the degree of protein expression variability 
between collection levels was greater in ET or ES. ET 
had higher correlation between collection levels (i.e., 
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had less heterogeneity in protein expression patterns) in 
4 cases (Fig. 5A), while the ES from 2 cases were better 
correlated (Fig.  5B). The two cases that had higher cor-
relation between ES samples (and correspondingly more 

heterogeneity between ET samples) had lower overall 
median tumor cellularity per sampling level (Additional 
file 8: Table S1).

A

B

Higher correlation in ET

Higher correlation in ES

343VV

**

343VW

**

343WE

*

343WF

*

343VR

*

343WC

**
Fig. 5 Patient‑specific phylogenetic analyses. Dendrograms were constructed using Spearman correlations based on differentially expressed 
proteins between ET and ES. Spearman correlations were calculated within ET and ES for cases 343VR, 343VV, 343VW, 343WC, 343WE, and 343WF 
using the abundances of 106, 145, 1,061, 263, 175, and 278 proteins with MAD > 1, respectively. Statistically significant differences between LMD 
collection types are shown with (*) for p < 0.05 and (**) for p < 0.01. A Cases with higher Spearman correlations in ET. B Cases with higher Spearman 
correlations in ES
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We further examined pairwise correlations between BT 
samples from each case using the proteomic abundances 
quantified by LC–MS/MS analysis (Additional file 5: Fig-
ure S5). The median intra-patient, inter-level Spearman 
correlation of BT samples was 0.54 (range − 0.50 to 0.84; 
Additional file  8: Table  S14). The pairwise comparisons 
of BT samples from several levels were negatively corre-
lated in cases 343VY and 343WD, although these speci-
mens had the highest tumor cellularity (range 97–99% 
and 60–95%, respectively; Additional file  8: Table  S1). 
Conversely, case 343VR had the lowest tumor cellularity 
(range 15–20%; Additional file 8: Table S1) and the high-
est correlations between BT sampling levels (Additional 
file 8: Table S14). Collectively, these trends could reflect 
clonal heterogeneity present in the tumor, that is not also 
present in the stroma, thus warranting future investiga-
tion and highlighting the need for intratumor multire-
gion sampling.

Comparative analysis of cell type specific biomarkers 
in gynecologic serous carcinomas
To examine the proteomic similarities between two 
serous subtype gynecologic carcinomas, USC and 
HGSOC, we compared the significantly altered proteins 
between ET and ES from the present USC study with 
those in our previous HGSOC dataset [13]. A total of 313 
proteins were commonly significantly altered (LIMMA 
adj. p < 0.05) and exhibited the same abundance trends 
between ET and ES in both datasets (HGSOC LogFC val-
ues in Additional file 8: Table S15; USC LogFC values in 
Additional file 8: Table S16). There were 483 (Additional 
file  8: Table  S17) and 142 (Additional file  8: Table  S18) 
significantly altered proteins unique to the HGSOC and 
USC datasets, respectively (Fig. 6).

We prioritized investigation of FDA-approved drug 
targets [20] and the top 5 IPA canonical pathways (by 
z-score; Fig. 6). The complete lists of all drug targets and 
canonical pathways analyzed (p < 0.05) are reported in 
Additional file 8: Table S19. Rho GDI pathway signaling 
was uniquely elevated in ET of USC specimens, based on 
the differential expression of 9 pathway-related proteins. 
Rho GDP-dissociation inhibitors 1 and 2 (ARHGDIA 
and ARHGDIB) were not included in this comparative 
analysis as they exhibited discordant abundance trends 
between patients, but both proteins were elevated over-
all in ES from both USC and HGSOC (limma p < 0.001). 
Conversely, pathway activity for RhoA signaling was 
lower in USC ET. Notably however, the abundance of the 
RhoA protein itself did not vary between collection types 
(limma p = 0.62, USC). The top 5 pathways that were 
uniquely elevated in ET from HGSOC patients included 
EIF2 signaling, oxidative phosphorylation, splicesosomal 

cycle, nucleotide excision repair, and acetyl-CoA 
biosynthesis.

Pathways commonly enriched in ET from both USC 
and HGSOC include the splicesosomal cycle (using pro-
teins significantly altered in both HGSOC and USC), 
cell cycle control of chromosomal replication, and 
dilated cardiomyopathy signaling. Semaphorin signaling 
was enriched in HGSOC ET while comparatively also 
enriched in USC ES, through coverage of different sets 
of pathway-related proteins. The coagulation system and 
ILK signaling were additionally commonly enriched in 
ET of both serous cancer types.

A 4-gene (KRT23, CXCL1, SOX9, and ABCA10) prog-
nostic signature that stratifies USC patients by risk and 
overall survival (OS) was recently reported [31]. CXCL1 
and ABCA10 were not measured in our proteomic 
dataset. SOX9 was significantly higher in ET (Wilcox 
p < 0.001), whereas KRT23 was elevated in ES (Wilcox 
p < 0.05) from most (notably not all) cases (Additional 
file 6: Figure S6).

Stromal expression of nicotinamide N-methyltrans-
ferase (NNMT) is correlated with disease progression 
and metastasis in high grade endometrial cancers (serous 
and others), in which elevated levels of stromal NNMT 
in the primary and metastatic tumors are associated with 
poor overall survival [32]. We identified NNMT as sig-
nificantly elevated in our ES samples (Wilcox p < 0.0001; 
Additional file 7: Figure S7).

We further correlated the expression of conserved pro-
teomic alterations between ET and ES from our USC 
cohort with the subset of USC tumors included within 
the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) uterine corpus endometrial carcinoma (UCEC) 
dataset [28], prioritizing nine CPTAC USC tumors which 
had methylation-derived tumor and stroma purity met-
rics reported (Fig. 7A). Of the 455 total significant pro-
tein alterations (collectively from Additional file  8: 
Tables S16 and S18) between in ET versus ES in our data-
set, 422 were co-quantified in the CPTAC tumors and 
were highly correlated (Spearman Rho = 0.93, p < 0.001). 
Analysis of the CPTAC proteomic data using ProteoM-
ixture [25] and further comparison of the ProteoMixture 
stromal scores with the inferred stromal purity scores 
revealed high correlation (Spearman Rho = 0.8, p < 0.01) 
of CPTAC purity values with the ProteoMixture stromal 
score (Fig.  7B). Collectively, these data underscore that 
tumors from the CPTAC dataset included several of low 
purity (< 50% tumor cellularity) without consideration of 
cell type deconvolution during sample preparation.

Finally, case 343VW was selected as a representative to 
highlight the extent of heterogeneity observable within 
a single USC tumor specimen because the histological 
composition was highly consistent throughout the depth 
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of the specimen block (Fig. 8, Additional file 8: Table S1). 
Proteomic expression of epithelial (CDH1 and KRT19) 
and stromal (FAP and VCAN) markers were consist-
ent in ET and ES specimens, respectively. Notably, the 

abundance of these protein markers in BT specimens was 
more variable as shown by the mixed patterns of CDH1 
and KRT19 expression, minimal representation of known 
stromal markers, and variable cell type classification 

Fig. 6 Disease‑specific alterations in USC versus HGSOC tissue specimens. Comparative analysis was performed using differentially expressed 
proteins in ET versus ES from USC and HGSOC specimens. Proteins passing limma adjusted p < 0.05 with the same pattern of enrichment (i.e., 
positive or negative LogFC values) across all patients within the respective USC (n = 455 proteins from Additional file 8: Table S3) and HGSOC 
(n = 796 proteins from Hunt et al. Additional file 8: Table S7 [13]) datasets were prioritized for comparative analyses between serous carcinoma types. 
The top 5 significantly altered canonical pathways identified by Ingenuity Pathway Analysis (IPA) are highlighted. Drug targets identified by IPA were 
further crossed with those that are FDA‑approved [20]. Canonical pathways and drug targets with positive z‑scores (highlighted blue) are elevated 
in ET, while those with negative z‑scores (highlighted red) are elevated in ES
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scores (admixture scores for epithelial cells and fibro-
blasts) [21] across sampling levels.

Discussion
Uterine cancer, of which USC represents a particularly 
aggressive histotype, is one of the few malignancies with 
increasing incidence and mortality rates [1], warrant-
ing critical need for improved disease characterization 
and identification of targetable biomarkers. The con-
tributions of stromal-derived disease contributors are 
increasingly being recognized for HGSOC [33–35], pan-
creatic ductal adenocarcinoma [36], and breast cancer 
[37]. Indeed, examination of proteomic abundances for 
genes relating to a USC prognostic signature [31] in the 
present study revealed that while SOX9 was generally 
seen to be elevated in the epithelium (Wilcox p < 0.001), 
KRT23 was elevated in the stroma from most cases (Wil-
cox p < 0.05). NNMT is also a biomarker of USC disease 
aggressiveness where it has been shown to be elevated 
in the stroma of primary high grade endometrial tumors 
(relative to benign endometrial tissue), and further 
elevated in metastases [32]. We consistently observed 
significantly elevated NNMT expression in the stroma 
(Wilcox p < 0.0001). These results collectively empha-
size that decoupling of cellular subpopulations within 
the TME through LMD, single cell proteomics and/or 
sequencing, or in situ molecular analysis is necessary for 

identification and quantification of disease markers of 
tumor epithelium and stromal origin [13, 38–40]. Unique 
proteomic and transcriptomic profiles are present in 
both epithelium and stroma, each with locoregional het-
erogeneity relating to spatial distribution throughout the 
cancer TME.

Serous cancers of uterine and ovarian primary origins 
have several morphological [41], chromosomal [42], 
genomic and/or proteomic similarities [42, 43] that com-
plicate clinical distinction and diagnosis. Both USC and 
HGSOC are typified by chromosomal instability, somatic 
copy number alteration (SCNA), and frequent mutations 
in TP53 and other genes. Specifically, a recent analysis 
using TCGA data co-identified mutations in MUC16, 
FLG, and AHNAK in both serous cancers, though the 
incidences were < 25% [42]. Historically, clinical manage-
ment of both USC and HGSOC has largely consisted of 
platinum and paclitaxel-based chemotherapy regimens, 
but response rates to biologic therapies (i.e. immune 
checkpoint inhibitors, PARP inhibitors, etc.) may dif-
fer due to differences in targetable alterations as well as 
adaptive chemoresistant pathways [44]. Comparative 
analysis of significantly altered proteins between ET and 
ES in the current USC dataset with those from a previ-
ous HGSOC dataset [13] revealed several pathways that 
were commonly enriched in both serous cancer types, as 
well as several that were uniquely measured in only one 

Fig. 7 Comparison of proteins altered between ET and ES in USC and stromal admixture scores with proteomic data generated from BT collections 
of USC tumors reported by Dou Y et al. 2020 [28]. A Proteins significantly co‑altered (limma adj. p < 0.05) between ET and ES for n = 9 USC tumors 
(from Additional file 8: Tables S16 & S18; n = 455 proteins total) were correlated with global proteome data from bulk tissues collections for n = 9 
USC tumors reported by Dou Y et al. Among 7908 total proteins quantified in all samples by Dou Y et al., 442 proteins were co‑quantified in our 
cohort with tumor and stroma alterations. Correlation of the quantitative abundances for these 442 proteins were directly compared to metrics 
of tumor purity derived from analysis of methylation data (Purity_Cancer) as reported in Dou Y et al. B Stroma scores were calculated for global 
proteome data reported by Dou Y et al. using ProteoMixture [25] and directly compared to stroma purity metrics derived from methylation data 
(Purity_Stroma) reported by Dou Y et al.
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Fig. 8 Representative case (343VW) depicting variable molecular expression by LMD sampling level. Representative micrographs of H&E‑stained 
tissue sections mounted on glass slides from the top of each sampling level. The tissue section number is notated in the bottom right corner. The 
scale bar in the bottom left corner of each micrograph indicates a length of 5 mm. The median tumor cellularity (%), as determined by manual 
pathology review, per level with relative standard deviation (%CV) is shown (middle table). The proteomic abundances of representative tumor/
epithelial (CDH1 and KRT19) and stroma (FAP and VCAN) markers, and xCell cell type enrichment scores for epithelial cells and fibroblasts [21] are 
shown in the heatmap
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of the respective datasets. An improved understanding of 
both commonalities as well as differences between these 
serous tumors provides opportunities for treating some 
gynecologic cancers on the basis of histology whereas 
others may require different therapeutic approaches 
based on both histology and the organ of origin (i.e. tube/
peritoneum/ovary and endometrium).

Rho guanine nucleotide dissociation inhibitors (GDIs) 
and their interactions with Rho family proteins have 
known involvement in several malignancies, though their 
specific activity and enrichment differ between cancer 
types [45]. GDIs are involved in the regulation of Rho 
activity through inhibition of GTP binding [46] and/or 
extraction of membrane-bound Rho GTPases for storage 
of the inactivated protein in the cytosol, while protecting 
the cytosolic Rho GTPases from proteolytic degradation 
[47, 48]. In our study, we observed that Rho GDI signal-
ing was significantly enriched in USC ET, while RhoA 
signaling was conversely enriched in USC ES. Activation 
of Rho GDI and RhoA signaling were not differentially 
localized in the HGSOC dataset [13], despite the known 
elevation of transcriptomic and proteomic abundances of 
RhoA, RhoC [49], and RhoGDI2 [50] in invasive HGSOC.

Several pathways typified by expression of MYL6, 
MYL9, and RRAS were uniquely differentially enriched in 
USC only, in which they were elevated in ES. MYL6 and 
MYL9 are myosin light chain family polypeptides specific 
for non-muscle myosin II [51], which are not normally 
expressed in endometrial stroma [52] and are involved 
in semaphorin pathway signaling [53]. Semaphorin sign-
aling was elevated in USC ES and has previously been 
implicated as a targetable pathway for endometrial can-
cer treatment. Specifically, upregulation of SEMA3B and 
SEMA3F following progesterone (P4) and 1,25-dihy-
droxyvitamin D3 treatment increases caspase-3 activ-
ity, thereby inhibiting the growth of cancer cells [54]. 
Comparatively, proteins relating to semaphorin signal-
ing were also differentially localized in HGSOC, though 
the pathway was instead elevated in HGSOC ET and was 
identified through the quantification of a separate set of 
pathway-related proteins.

Through integrated interrogation of several native and 
post-translationally modified proteins via RPPA analy-
sis and their co-quantified proteomic abundances in 
the MS data, we report the strength of correlation for 
known cancer-related proteins, including several in the 
drug target space, and the variability of these correla-
tions within LMD enriched versus bulk tissue samples. 
ICAM1 was the most highly correlated protein in ET by 
RPPA and MS. ICAM1 overexpression is correlated with 
reduced recurrence-free and overall survival in HGSOC 
[55], and is a STAT1-associated gene with known correla-
tion with disease metastasis in several cancers, including 

serous papillary endometrial cancer [56]. ANXA2, whose 
expression was highly correlated in both ET and ES, is 
predictive of recurrence in endometrial carcinoma [57]. 
Comparatively, ANXA2 abundances were poorly corre-
lated in BT. Notably, the abundances of several proteins 
involved in mismatch repair (MLH1, MSH2, and MSH6) 
quantified by RPPA and MS were not correlated in any 
of the LMD enriched or bulk tissue collections (p > 0.05). 
Differential MMR proficiency has been demonstrated 
in several recent phase 3 clinical trials to impact the 
responsiveness to immune checkpoint inhibition admin-
istered in combination with chemotherapy [10, 12].We 
acknowledge that our analysis of specimens from nine 
USC patients represents a limitation regarding how accu-
rately the heterogeneity observed here is generalizable 
to all USC cancer tissues. Our investigation draws sig-
nificant strength from the numerous sampling levels that 
were harvested and analyzed within each patient speci-
men, which is not routinely performed in large-scale pro-
teomic and/or multi-omic studies (including those from 
TCGA and CPTAC) for independent (decoupled) molec-
ular analysis of ET and ES, and further from the integra-
tion of multi-omic analysis via quantitative proteomics 
(LC–MS/MS and RPPA), and transcriptomics (RNA-seq, 
for patient 343VY only). Future validation studies utiliz-
ing LMD enriched tissues from larger patient cohorts 
remains important. Lastly, we have compiled the data 
from this study and it can be accessed through our Heter-
ogeneity Analysis Portal (https:// lmdom ics. org/), which 
represents a community resource to examine protein 
level heterogeneity throughout the TME in USC patient 
specimens.

Conclusions
Extensive three-dimensional heterogeneity exists within 
the USC tumor tissue microenvironment, with disease-
relevant biomarkers present in both the tumor and the 
stroma. These data underscore the critical need for 
upfront enrichment of cellular subpopulations from tis-
sue specimens for spatial proteogenomic analysis.
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Additional file 1: Figure S1. ProteoMixture [25] ssGSEA scores of ET, ES, 
and BT samples. A Stacked heatmap depicting ProteoMixture ssGSEA 
scores for tumor, immune, and stroma in individual sampling levels from 
ET, ES, and BT harvests. B Boxplots of ssGSEA score enrichment by LMD 

collection type. Statistically significant differences between collections 
types are shown with (*) for p<0.01 and (****) for p<0.0001. NS not 
significant.

Additional file 2: Figure S2. Boxplot depicting relative protein abun‑
dance for MUC16. Asterisk (*) indicates significant difference between 
ES and ET (Wilcox p<0.0001).

Additional file 3:  Figure S3.Protein‑RNA Spearman Correlation Matrix 
for case 343VY. Spearman correlation analysis of 6,019 genes that were 
co‑measured as proteins and corresponding transcripts in 343VY. Size 
and color of each circle reflects Spearman correlation.

Additional file 4: Figure S4. Variance between sampling levels for 
each LMD collection type of selected RPPA analytes not quantified by 
MS. Selected analytes represent biomarkers relevant to ongoing clinical 
trials enrolling patients with USC and/or other endometrial cancers.

Additional file 5: Figure S5. Ridgeline plot of pairwise Spearman cor‑
relations between BT harvests per case. The red‑white‑blue color scale 
represents Spearman correlations calculated from pairwise compara‑
sions of each BT sampling level for the specified case. The greyscale 
color of the individual points (n=20 per case) represent the median 
tumor cellularity. The minimum and maximum values of median tumor 
cellularity per case are notated on the y‑axis. The vertical height of 
peaks on the y‑axis represent the density of the data points (correla‑
tions), scaled to 1.

Additional file 6: Figure S6. Boxplots depicting relative protein 
abundances for SOX9 and KRT23. Asterisks indicate significant differ‑
ence between ES and ET. A single asterisk (*) represents Wilcox p<0.05; 
double asterisks (**) represent Wilcox p<0.0001.

Additional file 7: Figure S7. Boxplot depicting relative protein abun‑
dance for NNMT. Asterisk (*) indicates significant difference between ES 
and ET (Wilcox p<0.0001).

Additional file 8: Table S1. Clinical features and manual pathology 
assessment of tumor purity throughout the depths of USC patient 
specimen blocks. Representative H&E stained tissue sections on 
glass slides were examined at ~100 µm intervals by a board‑certified 
pathologist for evaluation of the relative contributions (as percent‑
ages) of tumor cellularity, stroma, necrosis, normal ovarian epithelium, 
lymphocytes, and polymorphonuclear leukocytes (PMN) to the overall 
tissue composition. Multiple images per level/case were reviewed; the 
median estimates of tumor and stroma cellularity are reported with 
corresponding coefficient of variation (%CV) reported in parentheses. 
Abbreviations: NACT= neoadjuvant chemotherapy; NOS= not other‑
wise specified. Table S2. Depiction of study cohort. Numerical values 
indicate the number of LMD tissue sections that were used for each 
collection. Greyed boxes represent samples that were not collected or 
did not have sufficient yield of the target analyte for analysis. Table S3. 
Global protein matrix.  Log2 transformed fold‑change abundances of 
6503 proteins co‑quantified across all samples (n=118). Table S4. Tran‑
scriptome matrix for case 343VY.  Log2‑transformed normalized abun‑
dances of 15,558 RNA transcripts measured in case 343VY calculated 
relative to the average RPM abundance quantified across all samples 
for a given transcript. Table S5.  Log2‑transformed target‑wise median 
centered RPPA abundances of protein and phosphoprotein targets in 
ET, ES, and BT samples. Table S6. Cell type enrichment scores using 
transcriptomic data for case 343VY in xCell (http:// xcell. ucsf. edu/, [21]). 
Table S7. Cell type enrichment scores using proteomic data in xCell 
(http:// xcell. ucsf. edu/, [21]). Table S8. ssGSEA scores calculated from 
“tumor”, “stroma”, and “immune” classifiers. Table S9. Median absolute 
deviation (MAD) of LMD enriched samples expressing or lacking signal 
peptide sequences and extracellular classification. P‑values indicate the 
reliability of the presence or absence of a signal peptide or extracellular 
classification within the indicated LMD enriched tissue across all levels/
case. Table S10. Spearman correlations for co‑quantified proteins and 
transcripts from case 343VY. Spearman correlations were calculated 
using  Log2 transformed fold‑change abundances of 6,019 imputed 
proteins that were co‑measured as transcripts. Table S11. Spearman 
correlations between samples using proteins co‑quantified by MS and 
RPPA. Table S12. Spearman correlations for proteins co‑quantified 

https://doi.org/10.1186/s12014-024-09451-2
https://doi.org/10.1186/s12014-024-09451-2
http://xcell.ucsf.edu/
http://xcell.ucsf.edu/


Page 18 of 20Hunt et al. Clinical Proteomics            (2024) 21:4 

by MS and RPPA. Table S13. Pairwise Spearman correlations within and 
between ET and ES samples using proteins with MAD>1 for construction 
of patient‑specific dendrograms. Table S14. Pairwise Spearman correla‑
tions between BT harvests using proteomic abundances. Table S15. 
LogFC values of proteins measured in HGSOC specimens which were 
commonly differentially expressed (limma adj. p<0.05) in ET and ES from 
USC specimens. LogFC protein abundances from Hunt et al Table S7 [13] 
which displayed the same pattern of expression and passed limma adj. 
p<0.05 across all patients were prioritized for comparative analysis with 
LMD enriched samples from USC specimens. The median LogFC values for 
313 proteins co‑altered from HGSOC samples, which were used as input 
for Ingenuity Pathway Analysis (IPA). Proteins reported in this table corre‑
spond to the HGSOC LogFC values for proteins in the center panel of the 
venn diagram in Fig. 6. Table S16. LogFC values of proteins measured in 
USC specimens which were commonly differentially expressed (limma adj. 
p<0.05) in ET and ES from HGSOC specimens. LogFC protein abundances 
from USC LMD enriched samples which displayed the same pattern of 
expression across all patients were prioritized for comparative analysis 
with LMD enriched samples from HGSOC specimens. The median LogFC 
values for 313 proteins co‑altered from USC samples, which were used as 
input for Ingenuity Pathway Analysis (IPA). Proteins reported in this table 
correspond to the USC LogFC values for proteins in the center panel of 
the venn diagram in Fig. 6. Table S17. LogFC values of proteins measured 
in HGSOC specimens which were uniquely differentially expressed (limma 
adj. p<0.05) in ET and ES, which were not co‑altered in LMD enriched 
samples from USC specimens. The 483 proteins reported in this table cor‑
respond to the HGSOC only LogFC values for proteins in the left panel of 
the venn diagram in Fig. 6. Table S18. LogFC values of proteins measured 
in USC specimens which were uniquely differentially expressed (limma 
adj. p<0.05) in ET and ES, which were not co‑altered in LMD enriched 
samples from HGSOC specimens. The 142 proteins reported in this table 
correspond to the USC only LogFC values for proteins in the right panel of 
the venn diagram in Fig. 6. Table S19. Drug targets and canonical path‑
ways identified by Ingenuity Pathway Analysis (IPA) significantly altered 
in ET and ES from USC and/or HGSOC specimens. Targets and pathways 
designated as “HGSOC only” correspond to the those identified using the 
483 uniquely differentially expressed proteins between ET and ES from 
Additional file 8: Table S16 (Fig. 6, left panel of venn diagram). Targets and 
pathways designated as “USC only” correspond to the those identified 
using the 142 uniquely differentially expressed between ET and ES from 
Additional file 8: Table S17 (Fig. 6, right panel of venn diagram). Targets 
and pathways designated as “Overlap” correspond to those identified 
when using the HGSOC and USC (as specified) LogFC values of the 313 
proteins in Additional file 8: Tables S14 and S15, respectively, as input.
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