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Abstract 

Background Colorectal Cancer (CRC) is a prevalent form of cancer, and the effectiveness of the main postoperative 
chemotherapy treatment, FOLFOX, varies among patients. In this study, we aimed to identify potential biomarkers 
for predicting the prognosis of CRC patients treated with FOLFOX through plasma proteomic characterization.

Methods Using a fully integrated sample preparation technology SISPROT-based proteomics workflow, we achieved 
deep proteome coverage and trained a machine learning model from a discovery cohort of 90 CRC patients to dif-
ferentiate FOLFOX-sensitive and FOLFOX-resistant patients. The model was then validated by targeted proteomics 
on an independent test cohort of 26 patients.

Results We achieved deep proteome coverage of 831 protein groups in total and 536 protein groups in average 
for non-depleted plasma from CRC patients by using a Orbitrap Exploris 240 with moderate sensitivity. Our results 
revealed distinct molecular changes in FOLFOX-sensitive and FOLFOX-resistant patients. We confidently identi-
fied known prognostic biomarkers for colorectal cancer, such as S100A4, LGALS1, and FABP5. The classifier based 
on the biomarker panel demonstrated a promised AUC value of 0.908 with 93% accuracy. Additionally, we established 
a protein panel to predict FOLFOX effectiveness, and several proteins within the panel were validated using targeted 
proteomic methods.

Conclusions Our study sheds light on the pathways affected in CRC patients treated with FOLFOX chemotherapy 
and identifies potential biomarkers that could be valuable for prognosis prediction. Our findings showed the potential 
of mass spectrometry-based proteomics and machine learning as an unbiased and systematic approach for discover-
ing biomarkers in CRC.
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Introduction
Colorectal cancer (CRC) continues to be a significant 
global health burden, ranking as the third most preva-
lent cancer type even in 2022 [1]. Postoperative chemo-
therapy for Stage II/III CRC patients typically involves 
the FOLFOX regimen, which is a chemotherapy com-
bination of folinic acid, 5-fluorouracil and oxaliplatin 
[2]. Despite its standard use, only a small percentage of 
stage II and III CRC patients achieve successful outcomes 
[3]. The lack of specific guidelines to identify patients 
who will benefit from FOLFOX treatment leads to a 
large proportion of CRC patients undergoing potentially 
unnecessary chemotherapy. Therefore, the development 
of a reliable method for predicting the efficacy of FOL-
FOX perioperative chemotherapy in colorectal cancer 
becomes paramount. Accurate prognostic biomarkers 
play a vital role in cancer diagnosis, with examples such 
as carbohydrate antigen 125 (CA125) and carcinoem-
bryonic antigen (CEA) linked to poor prognosis and an 
increased risk of cancer metastasis [4, 5]. Carbohydrate 
antigen 19–9 (CA19-9) has also been considered for pre-
dicting postoperative prognosis in stage III colon cancer 
[6]. However, current detection methods such as preop-
erative imaging, tumor grading, and mutation burden 
have proven inadequate in predicting the response to 
FOLFOX chemotherapy effectively. To address this chal-
lenge, researchers have explored complementary assays, 
including lymphocyte counts [7] and neutropenia [8], but 
these may only provide averaged measurements or lack 
the sensitivity and specificity needed for the complex bio-
logical changes in FOLFOX-treated patients. Thus, there 
is a pressing need for more sensitive and specific diag-
nostic approaches to guide personalized treatment plans 
and optimize cancer therapy for CRC patients receiving 
FOLFOX treatment.

The plasma proteome of CRC patients with distinct 
responses to FOLFOX treatment is likely to be different 
due to the shedding of circulating tumor fragments in the 
blood [9]. Among the promising non-invasive plasma-
based approaches, measuring circulating tumor DNA 
and circulating tumor cells (CTCs) has shown potential 
in predicting the response to adjuvant chemotherapy in 
stage II CRC patients [8, 10]. However, both methods 
suffer from low detection rates and the requirement for 
relatively large blood samples. Therefore, a more accu-
rate prediction approach requiring less blood volume 
is urgently needed. Mass spectrometry-based shotgun 
plasma proteomics has emerged as a systematic approach 
enabling the identification of dynamic protein changes 
in the progression of diseases on a proteome scale [11, 
12]. Persistent innovations in sample preparation, instru-
mentation, and data analysis have contributed to CRC 
plasma biomarker discovery [13, 14]. Notably, Niu et al. 

utilized the data-independent acquisition (DIA) method 
to quantify plasma proteins, exploring their diagnostic 
and prognostic potential [15]. Our group has developed 
the simple and integrated spintip-based technology (SIS-
PROT) for proteomics sample preparation [16]. Our 
recent SISPROT workflow allows the streamlined quanti-
fication of several hundreds of proteins from a small vol-
ume of plasma within 3 h in a multiplex manner [17]. To 
further enhance plasma proteome coverage, we extended 
the pipeline with the DIA strategy termed SISPROT-DIA 
[18]. DIA was adopted for its robustness against contami-
nation, offering promise for clinical proteome studies 
[19]. Additionally, machine learning has shown potential 
for biomarker discovery and risk stratification of patients 
[20, 21].

In this study, we employed the SISPROT-DIA work-
flow for deep proteome profiling of plasma samples, 
combining it with machine learning and targeted paral-
lel reaction monitoring (PRM) validation. Our goal is to 
explore the possibility of using plasma protein panels to 
predict the outcome of FOLFOX treatment in stage II/
III CRC patients. The findings from this study hold the 
potential to provide valuable insights into personalized 
treatment strategies for CRC patients receiving FOLFOX 
chemotherapy.

Methods
Human plasma sample collection
Blood samples were prospectively collected from CRC 
patients undergoing FOLFOX treatment at The People’s 
Hospital of Shenzhen. Ethical approval was obtained 
from the relevant institutional review board, and writ-
ten informed consent was obtained from all participants. 
To prevent coagulation, venous blood was drawn using 
(Ethylenediaminetetraacetic Acid) EDTA collecting ves-
sels. Subsequently, the blood samples were centrifuged at 
4 °C and 1500 ×g for 30 min to separate the plasma from 
cellular components. The extracted plasma samples were 
promptly stored at − 80 °C to maintain sample integrity 
until further analysis. Throughout the research process, 
strict adherence to ethical guidelines and data protection 
measures ensured patient privacy and confidentiality.

Proteome sample preparation
For plasma proteome profiling, 1  μL of each plasma 
sample was diluted and prepared using the SISPROT kit 
(BayOmics, China) following the manufacturer’s proto-
col [16]. The SISPROT tip was activated and equilibrated, 
and then the plasma samples were loaded onto the ion-
exchange layer of the SISPROT tip. Afterward, the sam-
ples underwent the processes of reduction, alkylation, 
digestion, and desalting. The resulting peptides were 
reconstituted in 0.1% formic acid in water mixed with 
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0.1 × indexed retention time (iRT) reagent (Biognosys, 
Switzerland), where the iRT peptides served as internal 
standards to accurately align retention times. The pre-
pared plasma samples were then injected into the LC–
MS/MS system, enabling high-precision and sensitive 
analysis of the plasma proteome.

Liquid chromatography‑tandem mass spectrometry (LC–
MS/MS) data acquisition
LC–MS/MS data acquisition was performed using a 
data-independent acquisition (DIA) method on an 
Orbitrap Exploris 240 mass spectrometer, coupled with 
an Ultimate 3000 liquid chromatography system (Ther-
moFisher, USA). Peptide samples were separated using a 
self-packed analytical column (100 μm × 20 cm, 1.9 μm 
C18) at a flow rate of 500  nL/min. The mobile phase A 
and mobile phase B were 0.1% formic acid in water and 
in acetonitrile, respectively. A 65-min gradient was 
employed as follows: 0–2  min, 4–10% B; 2–52  min, 
10–28% B; 52–62 min, 28–45% B; 62–64 min, 45–99% B, 
and the final 1 min held at 99% B.

The mass spectrometry (MS) instrument settings were 
as follows: the mass range of MS1 was 400–1200  m/z, 
operating at a resolution of 6000. The automatic gain 
control (AGC) was set to 300%, and the auto maximum 
injection time mode was enabled. For the DIA setting, 
the mass range of 400–1200 m/z was divided into 32 con-
tinuous windows for MS2 scans, each acquired at a reso-
lution of 30,000. The maximum injection time for MS2 
scans was set to 54 ms, with an AGC target of 1E6. The 
Stepped normalized collision energy for MS2 scans was 
distributed to 28, 32, and 36, respectively.

Data analysis and statistics
Raw data obtained from the LC–MS/MS analysis were 
processed using Spectronaut software (v16.0, Biognosys, 
Switzerland) with the library-free directDIA mode. The 
MS raw files were searched against the reviewed human 
UniProt FASTA database (20,601entries) with Biognosys 
(BGS) factory settings. Proteins exhibited more than a 
30% missing value rate across all samples were removed. 
The missing values was imputed with the median value 
of the respective samples. Following this, we normal-
ized the data using the median protein intensities across 
each sample to correct technical variations. To ensure 
reliable comparisons, the original expression intensi-
ties of proteins were normalized using the median value 
of each sample. Statistical analysis involved the use of 
MetaboAnalyst web server (https:// www. metab oanal 
yst. ca/ home. xhtml), which encompassed the imputation 
of missing values and subsequent data normalization. 
PLS-DA and heatmap clustering for pattern recognition, 
and differential analysis with volcano plot analysis to 

identify statistically significant protein alterations. With 
the significant changed features, we carried out pathway 
analysis employing Metascape analysis and the KEGG 
enrichment by R packages org.Hs.eg.db and clusterPro-
filer. To identify essential plasma proteome features and 
establish a robust protein panel for predicting treatment 
efficacy, we employed a machine learning method called 
Random Forest. The model establishment and evalua-
tion were carried out using the R packages caret, lattice 
and randomForest. The R packages pROC [22] were uti-
lized for model establishment and evaluation. To assess 
the predictive power of the model, an outer resampling 
method with cross-validation (threefold cross-validation 
repeated 5 times) was implemented, with receiver oper-
ating characteristic (ROC) analysis used for performance 
evaluation. Data were visualized by R package ggplot2.

Biomarker combination validation by PRM quantification
Validation of the identified biomarker combination 
was performed on a new cohort of plasma samples col-
lected and prepared using the same methodology as 
described for the discovery cohort. The validation data 
were acquired using parallel reaction monitoring (PRM), 
a targeted quantification method employing Orbitrap MS 
technology. The Orbitrap Exploris 240 mass spectrom-
eter with the same LC settings as the previous proteome 
profiling study was used. During PRM MS data acquisi-
tion, the full scan resolution was set at 120,000 with a 
scan range of 400–1200  m/z and a maximum injection 
time of 100  ms. For targeted MS2, an isolation window 
of m/z 0.7 was applied at a resolution of 45,000, coupled 
with a maximum injection time of 150 ms and an AGC 
target of 1E5. Subsequent data analysis, including peak 
filtration and area calculation, was conducted using Sky-
line software (v21.2).

Results
Study design and quality evaluation of the plasma 
proteome analysis
In this study, we present a streamlined workflow to inves-
tigate the impact of FOLFOX treatment on the plasma 
proteome of colorectal cancer (CRC) patients. In the dis-
covery phase, we collected plasma samples from 90 CRC 
patients (Fig. 1). These patients were categorized into two 
groups, the sensitive group (SENS) consisting of 60 indi-
viduals who showed stable recovery and no relapse after 
surgery and the no-impact group (NONE) comprising 
30 patients whose tumors metastasized. Table 1 provides 
the basic clinical characteristics of the patients, including 
age at diagnosis, gender, height, and weight for calculat-
ing the body mass index (BMI). We employed appropri-
ate statistical methods to analyze normally distributed 
values. Additionally, we collected the information of 

https://www.metaboanalyst.ca/home.xhtml
https://www.metaboanalyst.ca/home.xhtml
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traditional clinical tumor markers, namely CEA, CA19-9, 
and CA125, which are commonly associated with colo-
rectal cancer (Table 1). The CA125 levels in all patients 
ranged from 1.6 to 89.68, with a median value of 13.54. 
NONE group exhibited a higher concentration range 
of CA125, CEA and CA19-9 as expected, while no sig-
nificant difference was observed between the two groups 
(Table  1). This suggests the need for complementary 
markers to increase prediction accuracy.

We employed MS-based proteomics for plasma pro-
teome profiling and subsequent screening of diagnos-
tic markers (Fig.  1). To achieve this, we processed the 
plasma samples from the discovery cohort using a highly 
reproducible 3-h proteomics sample preparation method 
known as SISPROT [16]. The resulting MS-ready pep-
tides were then subjected to LC–MS analysis using data-
independent acquisition mode, allowing us to achieve 
deep quantitative plasma proteome profiling (Fig.  1). 
The expression matrix of the proteome obtained from 
the LC–MS analysis was further subjected to functional 
analysis and utilized to train machine learning mod-
els. This approach enabled us to generate protein panels 
that could be used for prognostic prediction, potentially 

identifying key markers associated with treatment 
response and patient outcomes. To validate the potential 
biomarkers identified through the discovery phase, we 
utilized the parallel reaction monitoring (PRM) method 
of targeted proteomics. This validation step allowed us to 
confirm the presence and abundance of specific proteins 
of interest, providing additional evidence for the reliabil-
ity and relevance of our findings (Fig. 1).

To ensure reliable biomarker screening, rigorous qual-
ity controls were implemented for LC–MS/MS detection 
over an extended data acquisition period. Indexed reten-
tion time (iRT) perturbation demonstrated the stability 
of our LC system, with minimal deviations observed at 
adjusted retention times 40 and 100 (Fig.  2A). Consist-
ent results were confirmed through manual peak com-
parison, total ion chromatogram, and base peak overlay 
analyses. MS analysis exhibited related consistency in 
the original response of total intensity in each group, 
subsequently normalized by the median (Fig.  2B). Our 
single-run shotgun proteomic workflow identified 831 
protein groups in total from 1 μL plasma samples of 
90 CRC patients, covering a broad dynamic range of 8 
orders of magnitude (Fig.  2C). After data filtering and 

Fig. 1 The cohort design and the SISPROT-DIA workflow

Table 1 Baseline characteristics of CRC-FOLFOX plasma proteome profiling cohort

Characteristics Total SENS NONE P‑value

Number of samples (n) 90 60 30 –

Age (years, mean ± SD) 57 ± 22 56 ± 20 56 ± 21 0.14

Gender (male, %) 57(63%) 38(63%) 19(63%) –

BMI (kg/m2, mean ± SD) 23.34 ± 2.48 23.34 ± 2.5 23.62 ± 1.5 0.300

CA125 (U/mL) 13.54 (10.01–17.92) 13.10 (10.08–17.84) 13.72 (9.77–21.36) 0.494

CEA (ng/mL) 3.11 (2.14–5.09) 2.61 (1.88–3.93) 3.74 (2.80–16.45) 0.499

CA19-9 (U/mL) 11.19 (7.76–17.81) 10.62 (7.68–13.74) 12.83 (7.62–26.15) 0.500
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normalization, 536 protein groups were quantified on 
average per sample, showcasing the high quality of our 
data set (Fig. 2D).

Plasma proteome profiling of CRC patients undergoing 
FOLFOX chemotherapy
The aim of this study was to investigate the impact of 
FOLFOX chemotherapy on the plasma proteome of 
colorectal cancer (CRC) patients and identify poten-
tial biomarkers associated with treatment response and 

patient outcomes. We utilized MS-based proteomics to 
comprehensively analyze protein expression profiles in 
CRC patients undergoing FOLFOX treatment. Partial 
least square-discriminant analysis (PLS-DA), a super-
vised clustering method, demonstrated a clear separation 
between the sensitive (SENS) and no-impact (NONE) 
groups based on their plasma protein expression pro-
files (Fig. 3A), consistent with sample types. The major-
ity of the variance (PC1) accounted for 28.8% of the data, 
indicating strong discriminatory power. Volcano plots 

Fig. 2 Technical aspect of plasma proteomic profiling of CRC patients. A Internal standard retention time LC stability. Each color represents 
a peptide with its retention time index number. B Original response boxplots of MS intensities across all 90 samples. The Red line dots represent 
the mean value of each sample. C Dynamic range of plasma proteome profiling. D Protein identification across all 90 samples
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revealed 257 significant proteins with FDR-corrected 
p-values < 0.01 and 115 dysregulated proteins with at least 
a twofold change (log2FC = 1) (Fig. 3B). Among these, 95 
proteins were up-regulated, and 20 were down-regulated 

in the comparison between the SENS and NONE groups. 
The list of these proteins can be found in Additional 
file 3: Table S2.

Fig. 3 Characterization of the plasma proteome of CRC patients with FOLFOX chemotherapy. A Scores plot for Partial least square-discriminant 
analysis (PLS-DA). The scores plot showed separation between the two groups based on their expression. SENS group showed in red and NONE 
group in blue circles. B Volcano plot representing the difference in plasma expression levels of 115 proteins between the two groups. Red and blue 
dots indicate proteins with increased and decreased expression levels, respectively. p < 0.01, fold change [SENS/NONE] > 2 (log2FC > 1). C Bar 
chart showing significant canonical pathways (B–H p-value < 0.05) enriched by Gene Ontology Biological Processes (GOBP). D Dots plot showing 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. E Molecular Complex Detection (MCODE) networks. Each color represents 
a cluster of protein–protein interaction
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Gene ontology (GO) enrichment analysis on the 257 
significant proteins highlighted the immune system pro-
cess (Fig. 3C), as the most significantly enriched biologi-
cal process, including complement-related proteins such 
as complement component C1r (C1R), complement 
factor D (CFD), complement factor B (CFB), comple-
ment factor I (CFI), complement C1s subcomponent 
(C1S), and complement component C6 (C6). Addition-
ally, the response to stimulus, involving proteins known 
to be involved in cancer development such as immuno-
globulin heavy variable chain, serotransferrin, and CD44 
antigen [23], was the second most enriched process. 
Notably, a significant enrichment in metabolic processes 
was observed, particularly pyruvate metabolic pro-
cesses, which have been associated with CRC initiation 
and cancer progression. Additionally, several enzymes 
were identified in this category. Notably, a significant 
enrichment in metabolic processes was observed when 
inspecting the child’s terms of the gene ontology bio-
logical process (GOBP). For instance, proteins involved 
in pyruvate metabolic processes, including fructose-bis-
phosphate aldolase A (ALDOA), alpha-enolase (ENO1), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
l-lactate dehydrogenase A (LDHA), l-lactate dehydroge-
nase B (LDHB), phosphoglycerate mutase 1 (PGAM1), 
phosphoglycerate kinase 1 (PGK1), pyruvate kinase PKM 
(PKM), and triosephosphate isomerase (TPI1), were 
found to be dysregulated. This metabolic process, also 
known as glycolytic process [24], has been reported to 
have a strong relationship with CRC initiation and can-
cer progression [24]. Kyoto encyclopedia of genes and 
genomes (KEGG) enrichment analysis (Fig. 3D) revealed 
pathways impacted by the significant proteins, including 
systemic lupus erythematosus and neutrophil extracellu-
lar trap formation, both have been reported to promote 
colon cancer metastasis [25]. The molecular complex 
detection (MCODE) networks [26] showed protein–pro-
tein interactions gathered into 11 networks (Fig. 3E). The 
most complex network, MCODE1, represents platelet 
activation, signaling, aggregation, and degranulation. The 
second network is related to the initial triggering of com-
plement activation and cascade. Another significant net-
work, MCODE3, is composed of apolipoproteins and is 
associated with lipid-related processes.

To explore patterns of protein expression across the 
patient cohorts, we performed hierarchical clustering of 
804 quantified proteins filtered out from 831 proteins, 
in which proteins exhibited more than a 30% missing 
value rate across all samples were removed, visualized 
as a heatmap in Fig. 4A. Interestingly, this unsupervised 
analysis identified two significant clusters (circled and 
labeled), demonstrating distinct expression profiles in 
part of the NONE group and SENS group, respectively. 

We further examined the correlations between these 
clustered proteins and patient group classification by pat-
tern search. Cluster 1 exhibited a diverse range of both 
positive and negative correlations with group classifi-
cation. For instance, proteins like type I cytoskeletal 10 
(KRT10) and type II cytoskeletal 2 epidermal (KRT2) 
displayed positive correlations, while fatty acid-binding 
protein (FABP5), cornifin-B (SPRR1B), and desmoglein-1 
(DSG1) exhibited negative correlations with patient 
group classification. Similarly, cluster 2 revealed a vari-
ety of expression patterns within the proteins, indicating 
considerable heterogeneity within these groups. These 
findings underscore the complexity of the CRC-FOLFOX 
plasma proteome and emphasize the need for a com-
prehensive analysis of protein markers to distinguish 
patients with distinct clinical outcomes.

Furthermore, we observed significant differences in 
the expression levels of specific up- and down-regulated 
proteins between the SENS and NONE groups, spanning 
a wide range of intensities. These highly dysregulated 
proteins were found to be involved in various biological 
processes. For example, galectin-1 (LGALS1) was down-
regulated in the NONE group (Fig. 4C) and is known to 
play a role in regulating apoptosis, cell proliferation, and 
cell differentiation in carbohydrate metabolism. Previous 
studies have associated LGALS1 downregulation with 
poor prognosis in CRC [25]. On the other hand, apolipo-
protein C-III and apolipoprotein A-II were significantly 
upregulated in the study (Fig.  4C), and are involved in 
maintaining blood function, potentially contributing 
to chemotherapy resistance. We further examined the 
correlation patterns of these highly regulated proteins. 
LGALS1 and complement C1q subcomponent subunit 
A (C1QA), both up-regulated proteins, exhibited a high 
correlation in the NONE group (R = 0.95) but a weaker 
correlation in the SENS group (R = 0.27) (Fig. 4D). Addi-
tionally, another up-regulated protein, protein disulfide-
isomerase (P4HB), demonstrated a strong correlation 
with LGALS1 in both groups, with Pearson correlation 
coefficients of 0.91 and 0.83, respectively. In the case of 
downregulated proteins, apolipoprotein C-III (APOC3) 
and desmoglein-1 (DSG1) displayed a positive correla-
tion in the NONE group (R = 0.38) but a negative correla-
tion in the SENS group (R = -0.21). Both apolipoprotein 
A-II (APOA2) and apolipoprotein C-II (APOC2) were 
downregulated in both groups and exhibited similar cor-
relations (Fig.  4D). These correlation patterns suggest 
that no single protein consistently changes in response 
to FOLFOX treatment in CRC patients. However, due 
to the lack of healthy individuals’ samples and limited 
follow-up data, we were unable to directly assess the 
survival impact of these corresponding genes. To gain 
insights into the potential survival impact, we examined 
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Fig. 4 A Comparison Group SENS and group NONE with Benjamin-Hochberg FDR corrected t-test p value (< 0.05) passing proteins. The 
horizontal axis is all 90 samples analyzed in the study and vertical axis listed all quantified 804 proteins. Dendrogram for samples is shown on top 
of the heatmap, and the NONE group in green squares and the SENS group in red squares. The dark blue to dark red color gradient denotes lower 
to higher expression. B Protein correlation of two selected cluster from heatmap significant enrichment. Co-regulated proteins labeled the same 
color. Red and blue colored proteins present positive and negative correlated with group separation, respectively.C Boxplot of highly regulated 
protein expression, C1QA and LGALS1 for up-regulated; APOC3 and DSG1 for down-regulated. SENS group colored in red, and NONE group colored 
in blue. D Scatter plot between up regulated proteins C1QA and LGALS1, and Down regulated proteins APOC3 and DSG1, respectively. Dots are 
values of protein expression with a shadow of 95% confident interval
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the disease-free survival (DFS) curve of these genes on 
gene expression profiling interactive analysis (GEPIA). 
The results, shown in Additional file 1: Fig. S1, indicated 
that low expression of C1QA and LGALS1 was associ-
ated with better patient survival, whereas high expression 
of P4HB was related to longer survival. It is important 
to note that individual gene expression patterns may not 
precisely align with the plasma protein expression pro-
files observed in our study. This discrepancy could be 
attributed to differences between tissue leakage proteins 
in plasma and solid tumors themselves. Additionally, pro-
teins may be subject to multiple regulations in response 
to FOLFOX treatment, and individual gene expression 
alone may not solely impact DFS. Further investigations 
and validations are warranted to understand the potential 
survival impact and clinical significance of these proteins 
in CRC patients undergoing FOLFOX chemotherapy 
(Additional files 2, 4).

Prognostic prediction of FOLFOX‑treated CRC patients 
by machine learning
In our study, we employed a hypothesis-free machine 
learning method called Random Forest to explore the 

possibility of predicting the curative effect of FOLFOX 
treatment on Stage II/III CRC patients. For this analysis, 
we utilized the 115 dysregulated proteins as signatures. 
The samples were randomly divided into two sets, with 
40 SENS group and 20 NONE group samples used as 
the training set, and the remaining samples as the vali-
dation set. We generated multiple models with varying 
numbers of features (1 to 115) based on fivefold cross-
validation (Fig.  5A). The generated models exhibited 
excellent performance, as evaluated using the receiver 
operating characteristic (ROC) curve. After thorough 
evaluation, we selected the model consisting of 25 pref-
erential variables, which achieved an area under the ROC 
curve (AUC) of 0.908, with a 95% confidence interval of 
0.742–0.997. This selected model demonstrated high 
accuracy, correctly classifying most of the patients into 
their respective groups. Only 4 SENS group and 2 NONE 
group patients were misclassified, resulting in over 93% 
accuracy (Fig. 5B). The top 20 protein signatures of this 
selected model are shown in Fig.  5C. Among these sig-
natures, protein S100 calcium-binding protein A4 
(S100A4) emerged as the most important variable, and it 
has been previously reported as a prognostic biomarker 

Fig. 5 Machine Learning model. A ROC curve based on fivefold cross validation repeated 3 times. Each string represents a model 
with corresponding variables. B Classifier of predicted class probabilities for each sample. C Significant Features selected by Mean Decrease Gini 
index after 5-cross validation. 15 selected proteins are shown
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for colorectal cancer [27]. Another important signature, 
LGALS1, is known to undergo significant changes dur-
ing colorectal cancer development and metastasis, and it 
has been implicated in various normal and pathological 
processes [25, 28]. Fatty acid-binding protein 5 (FABP5), 
a fatty acid-binding protein, was also identified as a cru-
cial signature in the model and has been recognized as a 
novel target for its regulatory role in lipid metabolism in 
colorectal cancer [29]. Furthermore, a panel of 9 proteins 
was selected based on their high Gini index (higher than 
1.3). This panel included highly up-regulated proteins 
such as LGALS1, S100A4, large ribosomal subunit pro-
tein uL11 (RPL12), and heat shock protein HSP 90-beta 
(HSP90AB1), highly down-regulated proteins like FABP5 
and type I cytoskeletal 16 (KRT16), and slightly down-
regulated proteins APOA2, APOC3, and junction pla-
koglobin (JUP). This combination of biomarker panels 
holds significant potential as a powerful prediction model 
for assessing the curative effect of FOLFOX treatment in 
CRC patients. Overall, our machine learning approach 
using the plasma proteome data has demonstrated prom-
ising results for predicting treatment outcomes in CRC 
patients undergoing FOLFOX chemotherapy. However, 
further validation studies with larger patient cohorts are 
essential to establish the clinical utility and robustness of 
this prediction model.

Parallel reaction monitoring (PRM) validation
Parallel reaction monitoring (PRM) is a targeted mass 
spectrometry-based method that allows for precise and 
sensitive quantification of specific peptides or proteins 
in complex biological samples. In our study on predict-
ing the curative effect of FOLFOX treatment on CRC 
patients, PRM validation is a crucial step in confirming 
the significance and reliability of the identified protein 
panel. To validate the findings from the discovery cohort, 
we collected a new cohort of 26 CRC patients, includ-
ing 13 patients in the SENS group and 13 in the NONE 
group. We selected targeted peptides for the panel of 9 
proteins identified in the discovery cohort. An example 
of the APOC3 peptide transition peak and quantification 
analysis is illustrated in Fig. 6A, B. By comparing the pro-
tein abundance in the two groups across these 9 proteins 
(Fig. 6C), we observed significant changes in 6 proteins. 
Notably, a panel of 5 proteins, namely S100A4, RL12, 
KRT16, HSP90AB1 and APOC3, exhibited expression 
changes consistent with the results obtained from the 
machine learning analysis, with 3 of these proteins show-
ing statistical significance. The PRM validation results 
strengthen the robustness of our identified protein panel 
as potential biomarkers for predicting the curative effect 
of FOLFOX treatment in CRC patients. The concord-
ance between the machine learning analysis and the PRM 

validation provides additional evidence for the reliability 
and accuracy of our prediction model. In conclusion, the 
use of PRM validation in our study further supports the 
potential clinical utility of the identified protein panel as 
a powerful tool for assessing treatment outcomes in CRC 
patients undergoing FOLFOX chemotherapy. However, 
further validation in larger patient cohorts and additional 
functional studies will be essential to fully establish the 
clinical value of these protein markers.

Discussion
In this study, we utilized a plasma proteomics approach 
using the SISPROT-DIA workflow and LC–MS/MS tech-
nology to investigate post-diagnosis II/III stage CRC 
patients treated with FOLFOX chemotherapy. Profiling 
the plasma proteome allowed us to explore disease pro-
gression and identify potential diagnostic methods for 
new biomarkers to evaluate long-term treatment and 
predict treatment efficacy. By analyzing protein regula-
tion in the SENS and NONE groups, we developed a 
protein panel that effectively classified and predicted the 
outcomes of FOLFOX treatment. While some proteins in 
the panel were validated, further validation using addi-
tional methods, such as isotopic labeling peptides for 
absolute quantification or ELISA with a larger cohort of 
patients, is needed to enhance the robustness and reli-
ability of the panel. Considering the longitudinal changes 
in the protein panel as patients undergo long-term FOL-
FOX chemotherapy is essential. Monitoring the dynamic 
changes in the panel over time could provide valuable 
insights into treatment effectiveness and guide potential 
treatment adjustments. Collecting samples at different 
time points during treatment would offer a more com-
prehensive understanding of treatment responses. More-
over, to improve the clinical relevance of our findings, 
collecting more clinical information beyond traditional 
tumor markers (CEA, CA19-9, and CA125) is important. 
For example, incorporating the neutrophil-albumin ratio 
(NAR) as a prognostic signature for CRC patients after 
surgery could provide additional valuable data. Including 
more detailed clinical information and patient classifica-
tion would contribute to a more comprehensive analysis. 
For instance, location of CRC tumor could induce bias 
in plasma proteome [30]. Integration of genomics and 
metabolomics data with proteomics through multi-omics 
approaches [31, 32] could provide more accurate insights. 
The use of advanced artificial intelligence and machine 
learning algorithms with these multidimensional data-
sets could enhance biomarker discovery and predictive 
modeling. Increasing the sample size, applying appropri-
ate statistical analyses, and validating findings through 
multiple independent approaches are crucial to ensuring 
robust and reliable conclusions. Despite its limitations, 
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our MS-based proteomics workflow demonstrates its 
feasibility for biomarker discovery. Our study emphasizes 
the essential role of proteomics in identifying poten-
tial biomarkers for predicting the response to FOLFOX 
treatment in CRC patients. The integration of sophisti-
cated LC–MS/MS and machine learning methodologies 
has the potential for developing a robust protein panel. 
Our ultimate goal is to translate these proteomic insights 
into a practical and reliable predictive tool. Such a tool 
could significantly empower oncologists to accurately 
prognosticate the efficacy of FOLFOX treatment on an 
individualized basis, thereby enhancing treatment deci-
sion-making and optimizing therapeutic outcomes for 
CRC patients.
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