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Abstract
Background Hypertension is an important public health priority with a high prevalence in Africa. It is also an 
independent risk factor for kidney outcomes. We aimed to identify potential proteins and pathways involved in 
hypertension-associated albuminuria by assessing urinary proteomic profiles in black South African participants with 
combined hypertension and albuminuria compared to those who have neither condition.

Methods The study included 24 South African cases with both hypertension and albuminuria and 49 control 
participants who had neither condition. Protein was extracted from urine samples and analysed using ultra-high-
performance liquid chromatography coupled with mass spectrometry. Data were generated using data-independent 
acquisition (DIA) and processed using Spectronaut™ 15. Statistical and functional data annotation were performed on 
Perseus and Cytoscape to identify and annotate differentially abundant proteins. Machine learning was applied to the 
dataset using the OmicLearn platform.

Results Overall, a mean of 1,225 and 915 proteins were quantified in the control and case groups, respectively. 
Three hundred and thirty-two differentially abundant proteins were constructed into a network. Pathways associated 
with these differentially abundant proteins included the immune system (q-value [false discovery rate] = 1.4 × 10− 45), 
innate immune system (q = 1.1 × 10− 32), extracellular matrix (ECM) organisation (q = 0.03) and activation of matrix 
metalloproteinases (q = 0.04). Proteins with high disease scores (76–100% confidence) for both hypertension and 
chronic kidney disease included angiotensinogen (AGT), albumin (ALB), apolipoprotein L1 (APOL1), and uromodulin 
(UMOD). A machine learning approach was able to identify a set of 20 proteins, differentiating between cases and 
controls.

Conclusions The urinary proteomic data combined with the machine learning approach was able to classify disease 
status and identify proteins and pathways associated with hypertension-associated albuminuria.
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Introduction
Globally, the World Health Organization estimates that 
more than a billion people have hypertension, a risk 
factor for adverse cardiovascular and cerebrovascular 
events, and kidney disease [1]. Hypertension is a major 
cause of premature death worldwide, with a dispropor-
tionate burden in low- and middle-income countries, 
largely due to a rising prevalence of risk factors in recent 
decades [1].

As an upper middle-income country, South Africa has 
a high prevalence of hypertension, and hypertensive kid-
ney disease is the most common cause of kidney failure 
documented by the South African Renal Registry [2]. 
Hypertension and kidney disease are inextricably linked, 
with common pathophysiological denominators that 
begin with foetal programming in-utero [3, 4]. There is 
strong epidemiological evidence linking low birth weight, 
as a marker of adverse intrauterine circumstances, to 
adult hypertension and kidney disease [4, 5]. Poten-
tial mechanisms include a congenital deficit in nephron 
number which may arise from changes in DNA meth-
ylation, accelerated apoptosis in the developing kid-
ney, changes in renal renin–angiotensin system activity, 
and an increase in foetal glucocorticoid exposure [4]. A 
decrease in nephron number is associated with compen-
satory glomerular hypertrophy and an increased suscep-
tibility to the progression of kidney disease [4].

Angiotensin, an endocrine hormone peptide, is a 
vital part of the renin-angiotensin-aldosterone system, 
an inter-related endocrine system that plays a signifi-
cant role in volume and blood pressure control [6]. In 
response to a drop in blood pressure, or sympathetic 
nerve activity in the kidney, renin is released and cleaves 
off two amino acids enzymatically to form angiotensin 
I (ATI), which is cleaved by the angiotensin converting 
enzyme (ACE) to form angiotensin II (ATII) [6]. ATII 
is the main effector molecule of this system, increasing 
blood pressure, enhancing renal tubular reabsorption of 
sodium and water, and stimulating aldosterone release 
from the adrenal gland [7]. In addition to being an effec-
tive vasoconstrictor, ATII has also been shown to activate 
proliferative, pro-inflammatory and pro-fibrotic path-
ways and stimulates the production of ET-1 resulting in 
an increase in oxidative stress [7–9]. These combined 
effects of ATII contribute to the development of kidney 
disease [10–12].

With sustained elevations of blood pressure, the affer-
ent arterioles in the kidney undergo structural changes 
and hypertrophy, and intraglomerular pressure results in 
glomerular hypertrophy, hyperfiltration, and albuminuria 
[13–15]. Sustained glomerular hyperfiltration can result 

in glomerular scarring and irreversible kidney injury 
[13–17].

Kidney disease is diagnosed using estimated glomeru-
lar filtration rate (eGFR) and albuminuria, as each inde-
pendently confer an increased risk of cardiovascular and 
all-cause mortality [18]. Chronic kidney disease  (CKD) 
is defined as eGFR <60 mL/min/1.73 m2; and/ or albu-
minuria, defined as an albumin:creatinine ratio ≥3.0 mg/
mmol [18]. Albuminuria may precede the onset of 
reduced eGFR, which makes it appealing as a potential 
for early detection and treatment strategies for kidney 
disease, but this is not a consistent, replicable finding 
[19, 20]. The search for more sensitive markers of early 
kidney disease has extended to exploration of urinary 
proteomics with significant progress in the proteomic 
analysis of biological fluids, in this case, urine.

The past decade has seen omics studies contributing to 
the diagnosis, therapeutic intervention and prognosis of 
kidney disease [21–23]. Samples derived from urine are 
non-invasive and easy to collect compared to other body 
fluids, and can be used to identify genomic, metabolo-
mic, transcriptomic, and proteomic biomarkers that are 
strongly associated with pathophysiologic mechanisms of 
disease [24]. Proteomic strategies such as mass spectrom-
etry combined with liquid chromatography and capillary 
electrophoresis are used to identify urine biomarkers 
involved in early detection of kidney disease and poten-
tial disease pathways that provide insight into the patho-
genic mechanisms of disease [25–27]. One such example 
is a classifier based on 273 urinary peptides (CKD273) 
which reliably allows for early detection of kidney disease 
and is more sensitive than albuminuria in predicting a 
decline in eGFR [27].

To date, there is one study from South Africa that has 
investigated the urinary proteome in young adults with 
hypertension [28]. This study found that combining 20 
peptides into a single classifier resulted in the separation 
of normotensive and hypertensive groups with an area 
under the curve of 0.85 (P < 0.001) [28]. There are no pub-
lished studies from South Africa investigating the urinary 
proteome in the setting of hypertension and albuminuria 
– the latter being an early indicator of kidney injury. In 
this exploratory study, we hypothesise that urinary pro-
teomic analysis will identify urinary markers of kidney 
disease in hypertensive individuals with albuminuria and 
well preserved eGFR.

Methods
Study participants
This case-control pilot study is a sub-study of the Afri-
can Research Kidney Disease (ARK) study, a well 
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characterised population-based cohort study of 2021 
adults (20–80 years) of self-identified black ethnic-
ity from Agincourt in the rural Mpumalanga Province, 
South Africa [29]. Demographic, health, and family his-
tory information were obtained for all participants, with 
collection of urine and blood samples. Participants did 
not disclose food or beverage consumption prior to urine 
collection. From the cohort, ninety participants with 
stored urine samples were selected for proteomic analysis 
(Fig. 1).

The inclusion criteria of this sub-study were par-
ticipants (cases) with albuminuria (urine albu-
min-to-creatinine ratio [UACR] ≥3  mg/mmol) and 
hypertension (systolic blood pressure [SBP] ≥140 mm Hg 
and/or diastolic blood pressure [DBP] ≥90 mm Hg, JNC7 
criteria). The control group included participants with 
UACR <3 mg/mmol, SBP <140 mm Hg, and DBP <90 mm 
Hg. Individuals with other potential causes or conse-
quences of kidney disease, including diabetes mellitus 
and HIV infection were excluded as cases and controls. 

Diet was not considered in this study. The control group 
was matched by age and sex.

Urine collection and measurement of eGFR and UACR
Approximately 20–30 ml urine was collected from ARK 
study participants. Urine samples were processed and 
stored at −80 °C prior to shipping to the Council for Sci-
entific and Industrial Research laboratory for proteomic 
testing [30]. Serum and urine creatinine was measured 
using an isotope dilution mass spectrometry traceable 
Jaffe method [30]. The 2009 Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) creatinine equation 
without adjustment for African American ethnicity was 
used to calculate eGFR (ml/min/1.73 m2) [31]. Immuno-
turbidimetry was used to measure urine albumin concen-
tration [30]. The UACR was calculated (mg/mmol) based 
on this measurement [30].

Fig. 1 Flow diagram for this case-control study. ARK, African Research Kidney Disease; DBP, diastolic blood pressure; DM, diabetes mellitus; HIV; human 
immunodeficiency virus; POC, point of care; SBP, systolic blood pressure; UACR, urine albumin-to-creatinine ratio
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Urinary protein extraction by precipitation
An in-house urinary proteome sample preparation 
method was used. For each urine sample, protein pre-
cipitation was achieved by adding 1,600 µL ice-cold 
acetone to 400 µL crude urine, stored at –32 °C for 1 h. 
The samples were centrifuged at 12,000 g at 4 °C for 1 h. 
Thereafter, the supernatant was discarded and the pel-
let was allowed to air dry. The precipitated protein pel-
let was resuspended in 100 µL 2% sodium dodecyl sulfate 
solution and sonicated for 5  min (Elmi, Riga, Latvia). 
Dithiothreitol was added to the solution (final 10 mM), 
and placed on a 70 °C heating block for 15 min, and then 
on a 40  °C heating block for 15  min. The tubes were 
cooled to room temperature (RT) and iodoacetamide 
was added for alkylation (final 30 mM) and kept in the 
dark at RT for 30  min. The protein sample was mixed 
with an equal volume HILIC binding buffer (30% acetoni-
trile [MeCN]/200mM Ammonium acetate [NH4Ac]) and 
kept at RT before it was added to a KingFisher™ deep well 
plate.

Automated on-bead digestion using MagReSyn® HILIC
Protein samples were digested on-bead using multimode 
magnetic microparticles (MagReSyn® HILIC, ReSyn Bio-
sciences) in a KingFisher Duo™ system (Thermo Fisher 
Scientific), as previously described [32, 33], with minor 
modifications. Briefly, magnetic hydrophilic affinity mic-
roparticles (20 µl, 200 µg) were equilibrated in 200 µl 100 
mM NH4Ac pH 4.5, 15% MeCN. The microparticles were 
transferred to a well containing the protein-binding buf-
fer solution and mixed for 30  min at RT. The captured 
proteins were washed twice in 200  µl 95% MeCN and 
transferred to 200  µl 25  mM ammonium bicarbonate 
containing 1 µg sequencing grade modified trypsin (Pro-
mega, Madison, USA) and mixed for 4 h at 37 °C. Finally, 
beads were washed in 1% trifluoracetic acid to elute any 
remaining bound peptides. The resulting peptides (pool 
of digest and eluate) were vacuum dried, resuspended in 
2% MeCN, 0.2% FA and quantified using the Pierce™ Pep-
tide Quantification (Thermo Fisher Scientific) assay as 
per the manufacturer’s instructions.

A project specific system suitability-quality control 
(PQC) sample was prepared by pooling an equal vol-
ume of 16 urinary peptide samples. Additionally, a 
complex proteome digest was used as a general system 
suitability assessment. These PQC samples were injected 
at least once with each batch and analysed and processed 
together with the study samples.

Low pH reverse phase liquid chromatography with mass 
spectrometry (LCMS/MS) data acquisition
Individual participant peptide samples (500 ng, single 
shot) were analysed using a Dionex UltiMate™ 3000 
UHPLC in nanoflow configuration. Samples were inline 

desalted on an Acclaim PepMap C18 trap column (75 μm 
× 2  cm; 2  min at 5  µl/min using 2% MeCN/0.2% FA). 
Trapped peptides were gradient eluted and separated 
on a nanoEase M/Z Peptide CSH C18 Column (130 Å, 
1.7 μm, 75 μm X 250 mm) (Waters) at a flow-rate of 300 
nl/min with a gradient of 6–35% over 30 min (A: 0.1% FA; 
B: 80% MeCN/0.1% FA).

Data was acquired using DIA - or Sequential Window 
Acquisition of all Theoretical Mass Spectra (SWATH) 
using a TripleTOF® 6600 mass spectrometer (SCIEX, 
Massachusetts, USA) [34]. Eluted peptides were deliv-
ered into the mass spectrometer via a Nanospray® III ion 
source equipped with a 20 μm Sharp Singularity emitter 
(Fossil Ion Technology, Madrid, Spain). Source settings 
were: Curtain gas − 20, Gas 1 –16, Gas 2 − 0, temperature 
– 0 (off) and ion spray voltage – 2,600 V.

Data was acquired using 64 MS/MS scans of over-
lapping sequential precursor isolation windows 
(variable m/z isolation width, 1  m/z overlap, high sen-
sitivity mode), with a precursor MS scan for each cycle. 
The accumulation time was 100 ms for the MS1 scan 
(from 400 to 900  m/z) and 15 ms for each product ion 
scan (100 to 1,800 m/z) for a 1.06 sec cycle time.

DIA (SWATH) library generation and data extraction
A spectral library was built (from all patient DIA files) 
in Spectronaut™ 15 software using default settings with 
minor adjustments as follows: segmented regression was 
used to determine the normalised retention time (iRT) in 
each run; iRTs were calculated as median for all runs; the 
digestion rule was set as “Trypsin” and modified peptides 
were allowed; fragment ions between 300 and 1,800 m/z 
and ions with greater than 3 amino acids were consid-
ered; peptides with a minimum 3 and maximum 6 (most 
intense) fragment ions were accepted. This study specific 
spectral library was concatenated with an in-house gen-
erated urinary proteome spectral library (using Spectro-
naut™ 15’s “Search Archives” feature).

Raw SWATH (.wiff) data files were converted into 
Spectronaut™ HTRMS format and analysed using Spec-
tronaut™ 15. The default settings that were used for 
targeted analysis were: dynamic iRT prediction with cor-
rection factor for window 1; mass calibration was set to 
local; decoy method set as scrambled; the FDR, based on 
the mProphet approach [35], set at 1% on the precursor 
peptide and protein group levels; protein inference set to 
“default” which is based on the ID picker algorithm [36] 
and global cross-run normalisation on median. The con-
catenated urinary proteome spectral library (peptides – 
20,616, protein groups – 2,604) was used as a reference 
for targeted data extraction.

Following acquisition, data was curated and filtered for 
sample preparation and/or LCMS related failures.
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Statistical and functional data annotation
For the table of descriptive data, t-tests and a Chi-squared 
analysis using STATA were used to compute associations 
between the case and control groups, as appropriate.

Protein abundances were imported into SRplot and 
log2 transformed. Principal component analysis (PCA) 
based on protein abundances was performed to assess 
stratification within the cohort. A non-parametric t-test 
was performed to assess the number of proteins that dif-
fered between the case and control groups. Statistically 
significant differentially abundant proteins between the 
cases and controls were calculated by a two-sided t-test, 
with a cut-off minimum of 2-fold difference and P values 
adjusted for multiple testing by FDR at 1%.

The differentially abundant proteins were constructed 
into networks and annotated using Cytoscape and 
STRING functional enrichment [37]. Enrichment was 
considered statistically significant when corrected for 
multiple testing by FDR with adjusted q-values <0.05. 
Additional networks were imported on Cytoscape using 
public databases for hypertension and CKD with a high 
confidence score of 0.8 (i.e., 80% confidence) and maxi-
mum 200 proteins.

Machine learning
OmicLearn (v1.4) was used for data analysis, model exe-
cution, and creation of plots and charts [38]. Machine 
learning was performed in Python (3.10.12). Spectro-
naut feature tables were imported via the Pandas pack-
age (1.5.3) and manipulated using the Numpy package 
(1.24.2). The machine learning pipeline was employed 
using the scikit-learn package (1.2.2). The Plotly (5.9.0) 
library was used to generate plots and charts. No nor-
malisation on the data was performed. To impute miss-
ing values, a Zero-imputation strategy was used. Features 
were selected using a ExtraTrees (n_trees = 100) strategy 
with a maximum number of 20 features. During train-
ing, normalisation and feature selection was individu-
ally performed using the data of each split. A repeated 
(RepeatedStratifiedKFold, n_repeats = 10), stratified 
cross-validation (n_splits = 5) approach to classify the 
groups was used. This resulted in total 50 iterations 
for training the model, each time with 20 features. The 
XGBoost-Classifier (version: 1.7.4, random_state = 23, 
learning_rate = 0.3, min_split_loss = 0, max_depth = 6, 
min_child_weight = 1) was used for classification.

Results
Of the initial 90 participants selected for proteomic 
analyses, 9 were removed due to poor peptide/pro-
tein recoveries and 8 were removed due to poor liquid 
chromatography separation possibly due to incomplete 
removal of sample specific contamination during sample 
preparation. Baseline characteristics of the overall ARK 
study and the 24 case and 49 control participants whose 
data passed quality control are displayed in Table 1.

The age and sex distribution of participants was simi-
lar in the case and control groups. The case group had a 
higher mean body mass index compared to controls, and 
as expected, blood pressure and UACR differed between 
the groups. In addition, apolipoprotein L1 (APOL1) allele 
distribution was similar between cases and controls.

Project specific system suitability-quality control
The study specific and commercial system suitability quality 
controls are shown in (Supplementary Fig. 1A–F). The pro-
tein co-efficient of variation (CV) was 11.6% for the HeLa 
digest system suitability assessment and 18.0% for the urine 
peptide pool over the seven days of analysis (Supplementary 
Fig. 1A and B). Protein, peptide and precursor counts were 
stable throughout the data acquisition process (Supplemen-
tary Fig. 1C and D). The correlation plots indicate the sys-
tem was stable with minimal drift over the course of data 
acquisition (Supplementary Fig. 1E and F).

Identification of proteins by LCMS analysis
On average, 915 (± 264) proteins were quantified in the 
case group and 1,225 (± 227) proteins were quantified 

Table 1 Baseline characteristics of participants in the ARK study 
and this case-control study
Variable Overall 

ARK study
(N = 2,021)

Cases
(n = 24)

Controls
(n = 49)

P 
valuea

Age (years), mean (SD) 38 (14) 38 (13) 42 (14) 0.255
Sex - Male, n (%) 851 (42) 16 (67) 31 (63) 0.776
BMI Kg/m2, mean (SD) 27 (6) 31 (7) 26 (7) 0.005
eGFR (ml/min/1.73m2),b 
mean (SD)

112 (18) 101 (23) 116 (14) 0.044

UACR (mg/mmol), median 
(IQR)

0.4 (0.2–1.2) 9.4 
(4.5–
18.7)

0.4 
(0.2–0.7)

<0.001c

Systolic blood pressure 
mm Hg, mean (SD)

128 (17) 162 (20) 123 (9) <0.001

Diastolic blood pressure 
mm Hg, mean (SD)

78 (11) 98 (14) 74 (7) <0.001

Hypercholesterolaemia,d 
n (%)

465 (23) 9 (38) 13 (27) 0.337

APOL1low-risk (zero or 
one risk allele), n (%)

1,776 (89) 19 (79) 37 (76)e 0.965

APOL1high-risk (two risk 
alleles), n (%)

226 (11) 5 (21) 10 (20)e 0.965

aComparison between cases and controls. bMeasured using the Chronic 
Kidney Disease Epidemiology (CKD-EPI) equation. cT-test performed on log-
transformed data. dNon-fasting total cholesterol >5.0mmol/L. eUnable to 
interpret APOL1 status in two controls

APOL1, Apolipoprotein L1; BMI, body mass index; eGFR, estimated glomerular 
filtration rate; IR, interquartile range; SD, standard deviation; UACR, urine 
albumin-to-creatinine ratio
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in the control group (Fig. 2, Supplementary Fig. 2). The 
number of quantified proteins significantly differed 
between the case and control groups (P < 0.001).

Principal Component (PC) analysis
PC analysis using protein abundances highlighted dif-
ferential clustering of the two groups with some overlap 
(Fig. 3).

Identification of proteins with significantly different 
abundances between cases and controls
Differentially abundant proteins between the cases and 
controls are shown in Fig.  4. Majority of the proteins 
deemed statistically different in abundances between 
cases and controls, were found to have lower abun-
dance in the cases. The full list of differential protein 
abundances is shown in Supplementary Table 1.

Machine learning model
The performance of the machine learning algorithm was 
evaluated by receiver operating characteristics analysis with 
an area under the curve of 0.98 and confusion matrix analy-
sis where predicted and actual classification closely matched 
(Supplementary Fig. 3). The top 20 features identified from 
the classifier are shown in Figs. 4 and 5. When comparing 
the top 20 features to the list of 332 differentially abundant 
proteins identified (using a student t-test), 16 were found 
to overlap and four were unique to the XgBoost algorithm 
(Supplementary Table 2).

Proteins were graphed by fold change (difference) on 
the x-axis and significance (–log10P) on the y-axis using 
an FDR of 0.01 and a fold-change of 2. Statistical analysis 
was performed in Perseus. Orange dots indicate proteins 
with higher abundances in the cases. Blue dots indicate 
proteins with lower abundances in the cases. The top 20 

Fig. 3 PC (1 and 2) analysis based on protein abundance features. PC analysis using log-transformed protein abundance values indicates clustering of 
cases and controls. Red and blue circles represent cases and controls, respectively. PC, principal component

 

Fig. 2 Summary of quantified proteins. The number of proteins quanti-
fied post SWATH LCMS analysis averaged across individual samples and 
grouped per condition. LCMS, liquid chromatography with mass spec-
trometry. ****Denotes P < 0.001 performed using a non-parametric t-test
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features of the machine learning algorithm are annotated 
in red.

FDR, false discovery rate.

Functional annotation of proteins with significantly 
different abundances between cases and controls
Three hundred and thirty-two proteins with signifi-
cantly different abundances between cases and controls 
were constructed into a network and annotated using 
Cytoscape. To gain more insight on the biological sig-
nificance of these proteins, STRING enrichment was 
performed. The network was split into sub clusters based 
on relevant pathways related to CKD. We identified 112 
proteins associated with the immune system (q-value 
[FDR] = 1.4 × 10− 45), and 89 proteins associated with the 
innate immune system (q = 1.1 × 10− 32) (Supplementary 
Figs.  4 and 5). Additionally, 17 and six proteins were 
associated with extracellular matrix (ECM) organisation 
(q = 0.03) and activation of matrix metalloproteinases 
(q = 0.04), respectively (Supplementary Fig. 6A and B).

Using Cytoscape public databases, 14 common pro-
teins were identified between this pilot case-control study 
and other studies on CKD and hypertension, as imported 
from public databases (Fig. 6). The size of the circle rep-
resents the disease score, where a score of 0 indicates that 

Fig. 5 Top 20 features identified from the classifier using the XGBoost algorithm. Gene names for each protein are shown

 

Fig. 4 Differential protein abundances between cases and controls illus-
trated in a volcano plot
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the protein is not related to the disease and a score of 5 
indicates that the protein is related to the disease. Pro-
teins angiotensinogen (AGT), albumin (ALB), APOL1, 
and uromodulin (UMOD) were associated with CKD 
and hypertension with high disease scores of 5.0 (100% 
confidence), 4.0 (80%), 3.9 (78%), and 3.8 (76%), respec-
tively. The proteins matrix metalloproteinase 9 (MMP9) 
and TIMP Metallopeptidase Inhibitor 1 (TIMP1) were 
associated with pathways involved in degradation of the 
ECM, interleukin (IL)-4 and IL-13 signalling, and activa-
tion of matrix metalloproteinases.

The gene names for each protein in the network are 
shown. Red indicates proteins with higher abundance 
in cases while blue represents proteins with lower 
abundance.

Size of the circle represents the disease score (0 [not 
related to disease] – 5 [related to disease]). The closer to 
5, the higher the confidence that the protein is associ-
ated with CKD and hypertension. AGT = 5.0; ALB = 4.0; 
APOL1 = 3.9; UMOD = 3.8; APOB = 3.2; APOA1 = 3.1; 

MMP9 = 2.9; FN1 = 2.9; PECAM1 = 2.7; LCN2 = 2.7; 
MPO = 2.4; PLG = 2.2; TIMP1 = 2.2; SLC12A1 = 2.2.

Edges represent protein-to-protein interactions that 
were selected by default in Cytoscape. Pathways are anno-
tated on the network using a split donut ring. Orange 
indicates proteins associated with degradation of the 
extracellular matrix; pink indicates proteins associated 
with IL-4 and IL-13 signalling; green indicates proteins 
associated with activation of matrix metalloproteinases.

CKD, chronic kidney disease; IL, interleukin.

Discussion
This case-control pilot study aimed to identify potential 
proteins and pathways involved in hypertension-associ-
ated albuminuria by assessing urinary proteomic profiles 
in black South African participants with both hyperten-
sion and albuminuria compared to those who have nei-
ther condition.

Peptide and protein CVs showed that the methods 
were reproducible and that the system and workflow 

Fig. 6 Common proteins between this case-control pilot study and other studies on CKD and hypertension, as imported from public databases

 



Page 9 of 12Govender et al. Clinical Proteomics           (2024) 21:15 

contributed low technical variability. The instrumental 
drift observed throughout the data acquisition period 
was minimal, as shown in the commercial HeLa digest 
system suitability data that were acquired from a fresh 
sample on each day. A larger drift was observed in the 
study-specific peptide pool system suitability data; how-
ever, this can be attributed to autosampler-associated 
degradation as the sample was kept in the autosampler 
throughout the data acquisition process. This suggests 
that most of the variation observed in the study can be 
attributed to biological variation. On average, more pro-
teins (1,225) were quantified in the control group than in 
the case group (915). Possible explanations include that 
a minor difference in the missed cleavage rate (∼3%) was 
observed between the two groups and several high abun-
dance proteins, such as ALB, APOL1, apolipoprotein A1 
(APOA1), and apolipoprotein B (APOB) are significantly 
higher in abundance in the cases ‘masking’ identification 
of lower abundance proteins, resulting in fewer quantifi-
cations overall.

The majority of differentially abundant proteins were 
associated with pathways involving the immune system, 
innate immune system, extracellular matrix organisation 
and activation of matrix metalloproteinases. In the set-
ting of sustained hypertension, high blood pressure can 
cause permanent damage to the nephrons through arte-
rial injury and glomerular ischaemia [39]. Damage from 
renal ischaemia can lead to the production of various 
inflammatory cytokines that lead to immune cell infil-
tration and tubular atrophy [39]. The latter is supported 
by Mattson (2014), [40] who showed an infiltration of 
inflammatory mononuclear cells in the arterioles and 
small arteries in kidney tissue from patients with hyper-
tension. Enrichment analysis has shown that pathways 
related to inflammation and immune response are associ-
ated with the progression of kidney disease [41].

We identified six proteins associated with the activa-
tion of matrix metalloproteinase (MMPs) pathways. Of 
these, five had a lower abundance in participants with 
hypertension-associated albuminuria. It has been sug-
gested that decreased activity of matrix metalloproteases 
may cause an accumulation of proteins in the extracel-
lular matrix leading to fibrosis, which is one of the fea-
tures of hypertension-associated kidney disease [42–44]. 
Most of the proteins (71%; n = 12/17) associated with the 
ECM organisation pathway were also reduced in par-
ticipants with hypertension-associated albuminuria. It 
has been suggested that the reduced abundance of ECM 
organisation proteins may reflect reduced ECM turn-
over (decreased degradation), subsequently causing an 
increased deposit in ECM, resulting in fibrosis [45]. Cur-
rently, kidney biopsy is the only validated approach to 
evaluate fibrosis. The identification of ECM organisation 

proteins may provide a non-invasive approach to detect 
early modifications in the ECM that lead to renal fibrosis.

Fourteen common proteins were identified between 
this pilot study and public databases on CKD and hyper-
tension. Proteins including AGT, ALB, APOL1, and 
UMOD had the highest disease scores (76–100% confi-
dence) for CKD and hypertension. The PLG protein has 
been shown to regulate macrophage migration in inflam-
mation through activation of the MMP9 protein, which 
regulates the ability of the cells to migrate across the 
ECM [46]. Therefore, targeting the PLG/MMP9 path-
ways may lead to regulation of inflammatory responses in 
CKD.

In this pilot study, UMOD had a lower abundance 
in cases with hypertension-associated albuminuria. 
Similarly, Nqebelele et al. 2019 found reduced levels of 
UMOD in black African individuals with hypertensive-
attributed CKD [47]. Navise et al. (2023) also found 
lower levels of UMOD in black African individuals with 
CKD [48]. In addition to its role in ECM remodelling 
and fibrosis, UMOD has been involved in regulating ion 
transport in the kidney [49]. Reduced levels of UMOD 
have been postulated to be a result of decreased secre-
tion from damaged tubules [50]. Results from a mouse 
model with altered UMOD expression have shown that 
the induction of pro-inflammatory signalling is one of 
the first events that occur in the kidneys [41]. The ani-
mal study also showed that the initiation of inflammatory 
signals precedes fibrosis and kidney damage, and possibly 
plays a vital role in disease onset [41].

It is important to note that hypercholesterolaemia was 
present in 38% of the cases in this study. Several studies 
have linked apolipoproteins (APOA1, APOB and APOL1) 
with CKD [51–53] and hypertension [54]. Moreover, a 
Mendelian-randomization study identified a causal associa-
tion between lipids (including low-density lipoprotein and 
triglycerides) and kidney function in individuals of African 
ancestry [55]. It has been postulated that the association 
between apolipoproteins and kidney disease may be medi-
ated by the impact of these lipoprotein particles on the kid-
ney. Apolipoproteins and their associated lipids may have 
toxic effects on glomerular cells leading to glomeruloscle-
rosis, which is scarring of the glomerulus [56]. As a result, 
Kidney Disease: Improving Global Outcomes (KDIGO) 
developed guidelines for lipid management in patients with 
CKD [57].

Machine learning enabled us to train a classifier that on 
average correctly identified cases with an 88% true posi-
tive rate. Additionally, it identified controls with a 97% true 
negative rate. This analysis revealed that alpha-1-antitrypsin 
(P01009) and afamin (P43652) were the two most impor-
tant features of the classifier. Studies have shown that alpha-
1-antitrypsin and afamin are potential biomarkers for the 
diagnosis of early diabetic kidney disease (DKD) and can 
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predict the decline in renal function [58, 59]. Interestingly, 
in this pilot study, we have identified DKD markers in nor-
moglycemia participants who have hypertension and albu-
minuria, which suggests the generalisability of the findings.

This is the first study to characterise the urinary proteome 
in South African individuals with hypertension-associated 
albuminuria. This case-control study identified common 
proteins with previous studies on CKD and hypertension 
from other ethnicities, and proteins associated with DKD, 
indicating generalisability of the findings to other popula-
tions and diseases. This study contributes to the under-
standing of pathways involved in hypertension-associated 
albuminuria and suggest opportunities for translation into 
the clinical setting.

The results from this study must be interpreted in the 
context of its limitations, which included a relatively small 
sample size, consisting of only 73 individuals. All partici-
pants are from a single centre, therefore, results may not 
be generalisable. The machine learning models applied in 
the current study show preliminary data and will require 
validation in a larger dataset with blinded data to assess 
overfitting.

Further research is essential to validate these outcomes 
in larger cohorts. In addition, the investigation of other 
diseases such as DKD and acute kidney injury would help 
to further explore generalisability of findings.

Conclusions
In this pilot study, pathways associated with hypertension-
associated albuminuria included the immune system, 
innate immune system, ECM organisation and activation 
of matrix metalloproteinases. These pathways contribute 
insights into the pathophysiology (e.g., immune cell infil-
tration, tubular atrophy, and ECM remodelling) of hyper-
tension-related albuminuria. Additionally, proteins such 
as AGT, ALB, APOL1 and UMOD had the highest disease 
scores (76–100% confidence) for hypertension and CKD. 
The urinary proteomic data combined with the machine 
learning approach classified disease status and identified 
proteins and pathways linked to hypertension-associated 
albuminuria.
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