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Abstract 

Background Immunotherapy is applied to breast cancer to resolve the limitations of survival gain in existing 
treatment modalities. With immunotherapy, a tumor can be classified into immune-inflamed, excluded and desert 
based on the distribution of immune cells. We assessed the clinicopathological features, each subtype’s prognostic 
value and differentially expressed proteins between immune subtypes.

Methods Immune subtyping and proteomic analysis were performed on 56 breast cancer cases with neoadjuvant 
chemotherapy. The immune subtyping was based on the level of tumor-infiltrating lymphocytes (TILs) and Klintrup 
criteria. If the level of TILs was ≥ 10%, it was classified as immune-inflamed type without consideration of the Klintrup 
criteria. In cases of 1–9% TIL, Klintrup criteria 1–3 were classified as the immune-excluded subtype and Klintrup criteria 
not available (NA) was classified as NA. Cases of 1% TILs and Klintrup 0 were classified as the immune-desert subtype. 
Mass spectrometry was used to identify differentially expressed proteins in formalin-fixed paraffin-embedded biopsy 
tissues.

Results Of the 56 cases, 31 (55%) were immune-inflamed, 21 (38%) were immune-excluded, 2 (4%) were immune-
desert and 2 (4%) were NA. Welch’s t-test revealed two differentially expressed proteins between immune-inflamed 
and immune-excluded/desert subtypes. Coronin-1A was upregulated in immune-inflamed tumors (adjusted 
p = 0.008) and α-1-antitrypsin was upregulated in immune-excluded/desert tumors (adjusted p = 0.008). Titin 
was upregulated in pathologic complete response (pCR) than non-pCR among immune-inflamed tumors (adjusted 
p = 0.036).

Conclusions Coronin-1A and α-1-antitrypsin were upregulated in immune-inflamed and immune-excluded/
desert subtypes, respectively. Titin’s elevated expression in pCR within the immune-inflamed subtype may indicate 
a favorable prognosis. Further studies involving large representative cohorts are necessary to validate these findings.
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Background
Breast cancer accounts for a quarter of female cancers 
and has four intrinsic subtypes (luminal A, luminal B, 
HER2 positive and triple-negative) based on the status of 
the hormone receptor (HR) and human epithelial growth 
factor receptor 2 (HER2) [1, 2]. Metastatic triple-negative 
breast cancer (TNBC), which lacks a targetable antigen, 
has a median overall survival of only 13.3  months [3]. 
Immunotherapy has given hope for metastatic TNBC 
overexpressing programmed death-ligand 1 (PD-L1). 
Recently, the application of immunotherapy has also 
been extended to early and advanced breast cancer [4].

Immunotherapy employs the ability of endogenous T 
cells to recognize and kill tumor cells. To enhance the 
effectiveness of immunotherapy, T cells within tumor 
microenvironment (TME) should be recognized. Based 
on the spatial distribution of CD8 + T cells in TME, 
tumors can be classified into three immune subtypes, 
namely, immune-inflamed, immune-excluded and 
immune-desert subtypes. Immune-inflamed tumors 
are also called hot tumors, and have dense CD8 + T-cell 
infiltration, high level of tumor-infiltrating lymphocytes 
(TILs), high PD-L1 expression and high tumor mutation 
burden (TMB) [5]. Immune-excluded tumors have 
CD8 + T cells clustered at the tumor boundary but fail to 
infiltrate the tumor because of the immune-suppressed 
TME despite a high TMB. Immune-desert tumors have 
no aggregation of CD8 + T cells and are genomically 
stable and very proliferative. Immune-excluded and 
immune-desert tumors are also called cold tumors or 
non-inflamed tumors and have low PD-L1 expression, 
indicating that immunotherapy is limited and another 
treatment modality is needed [6].

We investigated the differences in clinicopathological 
features, prognosis and differentially expressed protein 
between immune subtypes in breast cancer. To the best 
of our knowledge, no study has defined immune subtypes 
by specific pathologic criteria; thus, we determined to 
define immune subtypes according to the level of TILs 
and inflammatory cell infiltrates (Klintrup criteria). 
Additionally, the tertiary lymphoid structure (TLS), 
which was known to be related to a better overall survival 
rate in breast cancer, was assessed [7]. All intrinsic types 
of breast cancer were included, allowing comparison 
between intrinsic subtypes. The study was conducted 
with patients who received neoadjuvant chemotherapy 
(NAC), allowing for independent evaluation of 
chemotherapeutic effects besides prognostic evaluation.

Materials and methods
Patients and clinical data
A total of 56 patients with breast cancer who received 
NAC and surgery at Asan Medical Center between 2014 

and 2018 were examined. All patients were diagnosed 
with breast cancer by pre-NAC needle biopsy of the 
lesion and formalin-fixed paraffin-embedded (FFPE) 
samples were collected. Two FFPE samples were 
collected from one patient. Surgical therapy was either 
a breast-conserving operation or mastectomy and the 
surgical specimen was examined for residual tumor. 
Clinical features and follow-up data were collected from 
the medical records. The study protocol was approved by 
the Institutional Review Board of Asan Medical Center 
(2019–1480).

Pathology data
All pathologic features including intrinsic subtypes 
and histologic types were evaluated in the pre-NAC 
needle biopsy. All hematoxylin and eosin (H&E) slides 
were scanned on a PANNORAMIC 250 Flash III 
(3DHISTECH, Budapest, Hungary) with PANNORAMIC 
Scanner Software (3DHISTECH, Budapest, Hungary). 
Intrinsic subtypes were defined using immunostains 
or silver in  situ hybridization tests of HR and HER2 as 
HR + HER2 − , HR + HER2 + , HR − HER2 + and TNBC 
[8]. The level of TILs was computed using the percentage 
area occupied by lymphoplasmacytic infiltration in the 
intra-tumoral stromal area. TLS, an ectopic lymph node-
like structure in the peritumoral area was scored as 0, 
none; 1, minimal; 2, moderate and 3, marked. According 
to the Klintrup criteria, peritumoral inflammatory cell 
infiltration was graded as 0, none; 1, mild and patchy 
inflammatory cells; 2, prominent band-like inflammatory 
reaction and 3, florid cup-like inflammatory infiltrate [9]. 
As for the TLS and Klintrup criteria, if the specimen did 
not include the peritumoral area, it was classed as not 
available (NA). Immune subtypes were classified as desert 
(few inflammatory cell infiltration in the invasive tumor 
margin), excluded (inflammatory cell infiltration in only 
the invasive tumor margin and few at the intra-tumoral 
area) and inflamed (inflammatory cell infiltration intra-
tumoral area through the invasive tumor margin) (Fig. 1). 
Specifically, if the level of TILs was ≥ 10%, it was classified 
as immune-inflamed without consideration of the 
Klintrup criteria. In cases of 1–9% TILs, Klintrup criteria 
1–3 were classified as immune-excluded and Klintrup 
NA was classified as NA. Cases of 1% TILs and Klintrup 
0 were classified as immune-desert (Table  1). Stroma 
(%) was characterized by the remaining area occupied 
by the invasive and in  situ tumor in the intra-tumoral 
area and classified as low (< 50%) and high (≥ 50%). If 
no residual invasive tumor cell was discovered in the 
resected breast specimen following NAC, it was classified 
as pCR. According to the M.D. Anderson Cancer Center, 
residual cancer burden (RCB) class was computed from 
the primary tumor bed and lymph node status after NAC 
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as 0 (pCR), I (minimal), II (moderate) and III (extensive) 
[10]. Relapse includes tumor recurrence and metastasis 
after surgical treatment.

The cancer genome atlas (TCGA) data
R version 4.1.0 (R Core Team, 2021) and UCSC Xena 
were employed to retrieve RSEM normalized RNA-
sequencing data from 1097 breast invasive carcinoma 
(BRCA) samples from TCGA. A correlation test with 
CD8A, which is a representative marker of T-cell 

and CORO1A, HLA-A, H2AFY and SERPINA1, was 
conducted using Pearson correlation.

Sample preparation and mass spectrometry
Only the tumor area, except for normal area, by 
microscopic examination in pre-NAC FFPE samples 
was used for mass spectrometry. However, a portion of 
the normal area could be included because resection 
of the tumor area from the original sample was not 
conducted by microdissection. For protein extraction, 57 
FFPE samples with the tumor area were deparaffinized 
using 100% heptane. The samples were incubated in an 
extraction buffer at 100 ℃ for 20 min, followed by 80 ℃ 
for 4  h. For the extracted protein quantification, the 
Bradford approach was employed. The prementioned 
procedure was conducted using QProteome FFPE Tissue 
Kit (Qiagen, Hilden, Germany). Protein was digested 
to a peptide using S-TrapTM (ProtiFi, Long Island, NY, 
USA). The resulting peptide mixture was dried and 
reconstituted using SolA (0.1% formic acid). Digested 
tryptic peptides were separated using a Dionex UltiMate 
3000 RSLCnano system (Thermo Fisher Scientific) to 

Fig. 1 Representative images of immune subtypes

Table 1 Immune subtyping using TILs (%) and the Klintrup 
criteria

TILs tumor-infiltrating lymphocytes

TILs (%) Klintrup criteria Immune subtypes

1 0 Desert

1–9 1–3 Excluded

1–9 NA NA

 ≥ 10 any Inflamed
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separate on an Acclaim™ Pepmap 100 C18 column 
(500 mm × 75 μm i.d., 3 μm, 100 Å) equipped with a C18 
Pepmap trap column (20 mm × 100 μm i.d., 5 μm, 100 Å; 
Thermo Scientific, USA) over 200 min with 300 nL/min 
flow rate. Peptide separation was performed using a 
0–48% gradient in a Sol B (100% acetonitrile, 0.1% formic 
acid and 5% DMSO) for 150 min at 50 °C. A Q Exactive™ 
Plus Hybrid Quadrupole-Orbitrap™ mass spectrometer 
with a nano-ESI source was used to acquire spectra data 
with a data-dependent mode with a full scan and 20 of 
data-dependent MS/MS scans. The full scan MS spectra 
was obtained from a 350 to 1800 m/z with a maximum 
injection time of 50  ms and a resolution of 70,000 at 
m/z 400 was used. The selected ions were fragmented 
by higher-energy collisional dissociation (HCD) using 
the following parameters: 1.7 Da precursor ion isolation 
window, 27% normalized collision energy with a 
maximum injection time of 100  ms and a resolution of 
17,500 at m/z 400.

Mass spectrum processing
The MS/MS spectra from LC–MS analysis were 
processed with the SequestHT algorithm embedded 
in Proteome Discoverer (version 2.4, Thermo Fisher 
Scientific) using the SwissProt human protein sequence 
database (March 2021). In details, precursor mass 
tolerance was set to ± 10  ppm and MS/MS tolerance 
was set at 0.02  Da. The search parameters were set as 
default including cysteine carbamidomethylation as 
a fixed modification and N-terminal acetylation and 
methionine oxidation as variable modifications with two 
miscleavages. The 1% of false discovery rates were set 
on peptide identification using “Percolator” module. For 
relative quantitation analysis, label-free quantitation was 
performed using the peak intensity for the unique and 
razor peptides of each protein. Abundance information 
of each protein was extracted for further statistical 
analysis. The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium 
via the PRIDE partner repository with the dataset 
identifier PXD043902.

Statistical analysis of proteome data
All statistical analysis was conducted in R version 4.1.0 
(R Core Team, 2021). In raw data, 57 samples with 5014 
proteins were discovered. Among them, the case with 
two samples was later replaced with one sample with 
more available data. Two cases with NA for immune 
subtyping due to the tumor boundary absence and 
TILs < 10% were removed. The protein with NA data 
from any samples was removed because imputation was 
not conducted in this investigation  due to insufficient 
sample size. Therefore, 54 samples with 341 proteins 

were collected. To examine more proteins for further 
analysis, the two cases with the most NA proteins were 
eliminated. Thus, 855 proteins were collected. Using 
the R package preprocessCore, the original protein 
abundance value was Log2-transformed and quantile 
normalized. Gene Ontology (GO) enrichment analysis 
was performed using ToppGene after normalization. The 
source of substantially enriched pathways was collected 
from ToppGene databases. In immune-inflamed vs. 
immune-excluded and immune-desert subtypes, pCR vs. 
non-pCR in the total cohort and pCR vs. non-PCR in the 
immune-inflamed subtype, Welch’s t-test was performed 
to compare means between the two groups. A volcano 
plot was employed to visualize the fold change and 
p-value. For proteins with adjusted p < 0.05, heatmap and 
violin plots were generated.

Statistical analysis of clinical and pathology data
All statistical analyses were performed using IBM 
SPSS Statistics for Windows version 20.0 (IBM Corp., 
Armonk, NY, USA). The χ2 test was employed to 
compute correlations between immune subtypes and 
clinicopathologic features. Log-rank tests and Kaplan–
Meier (KM) survival curves were employed to evaluate 
differences between the immune subtypes. Overall 
survival (OS) and relapse-free survival (RFS) were 
evaluated using the length of time (months) from the date 
of surgical treatment to the date of death and relapse. 
Univariate regression analysis using the Cox proportional 
hazards model was employed to estimate the immune 
subtype’s hazard ratios and other clinicopathological 
features. p < 0.05 was considered statistically substantial.

Results
Clinicopathologic features and immune subtypes of breast 
cancer
All patients were female, with age ranging from 
32 to 66 (median, 46) years. The most common 
intrinsic subtype was TNBC (n = 24, 43%), followed 
by HR + HER2 − (n = 20, 36%). The histologic type 
consisted of invasive breast carcinoma of no special 
type (n = 53, 95%) and invasive lobular carcinoma (n = 3, 
5%). Two cases had bilateral breast tumors at the time of 
diagnosis. The bilateral tumors of each case had similar 
histologic and intrinsic subtypes and the evaluation of 
the clinicopathologic features of these cases was based 
on the sample employed for the proteomic analysis. The 
follow-up period ranged from 4.6 to 84.0 (median, 54.6) 
months. Relapse occurred in 18 (32%) cases and the most 
common relapse site was the bone (n = 9), followed by the 
lung (n = 6).

When classified according to the immune subtype, 
there were 2 (4%) cases of desert types, 21 (38%) of 
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excluded types and 31 (55%) of inflamed types. Two 
cases with no peritumoral area and < 10% TILs were 
removed from the analysis because discriminating 
these cases as desert or excluded type was impossible. 
Two cases of bilateral tumors have similar immune 
subtypes. Immune-desert and immune-excluded 
subtypes were grouped for further evaluation 
because of the very few immune-desert cases. 
When the correlation between clinicopathologic 
features and immune subtype was examined, only 
age was substantially related to the immune subtypes 
(p = 0.039); the old age group (≥ 50) was more 
common in immune-inflamed than immune-excluded/
desert subtypes. The pCR rate was higher in immune-
inflamed (42%) than immune-excluded/desert (17%) 
subtypes, but that was not statistically different 
(p = 0.055) (Table 2).

Prognostic value of immune subtypes in breast cancer
The KM survival analysis with a log-rank test was 
employed to examine the prognostic value of immune 
subtypes in breast cancer. No statistically significant 
difference was found between the three immune 
subtypes in OS (p = 0.666) and RFS (p = 0.795). Moreover, 
no statistically significant difference in OS (p = 0.440) and 
RFS (p = 0.776) was detected between immune-excluded/
desert and immune-inflamed subtypes. Among intrinsic 
subtypes of breast cancer, TNBC had a poor prognosis 
[11]. For the exact evaluation of the prognostic value 
of immune subtypes without the effect of the intrinsic 
subtype, the equivalent test was performed on TNBC 
cases. However, no statistically significant change 
between immune subtypes was discovered (Additional 
file  1: Fig. S1). No statistically significant prognostic 
parameter for OS was noted when the univariate Cox 
model was employed to estimate the prognostic value of 
immune subtypes and other clinicopathological factors 
such as age, intrinsic subtypes, pCR rate, RCB class, TILs, 
Klintrup criteria, TLS score and stromal per cent. As for 
the RFS, pCR (vs. non-pCR, p = 0.045) and RCB class 
0 (vs. III, p = 0.038) were good prognostic parameters 
(Table 3).

Analysis of proteomic data
Among 5014 proteins discovered initially in 57 samples, 
two cases with most NA data (F53 and F54) and two 
cases with NA immune subtype (F06 and F50) were 
eliminated. One case containing two samples (F39 and 
F45) was performed further with a sample (F39), which 
had more available data. Finally, for proteomic analysis, 
855 proteins with 52 cases were employed (Additional 
file  2: Fig. S2). Additional file  3: Table shows the gene-
enrichment analysis of raw data (5014 proteins) and 

confirmed data (855 proteins), with an adjusted p < 0.05. 
Inferring what kinds of proteins were readily extracted 
after the formalin fixation procedure of breast cancer 

Table 2 Correlation between the clinicopathologic features and 
immune subtypes in patients with breast cancer

HR hormone receptors, HER2 human epithelial growth factor receptor 2, IBC-NST 
invasive breast carcinoma of no special type, ILC invasive lobular carcinoma, 
pCR pathologic complete response, RCB residual cancer burden, TILs tumor-
infiltrating lymphocytes, TLS tertiary lymphoid structure *p < 0.05

Factors Immune subtypes p-value

Inflamed (%) Excluded/
desert (%)

Age 0.039*

 < 50 21 (68) 21 (91)

 ≥ 50 10 (32) 2 (9)

Subtypes 0.066

 HR + HER2− 7 (23) 11 (48)

 HR + HER2 + 4 (13) 2 (9)

 HR-HER2 + 2 (7) 4 (17)

 TNBC 18 (58) 6 (26)

Histologic types 0.386

 IBC-NST 30 (97) 21 (91)

 ILC 1 (3) 2 (9)

Non-pCR/pCR 0.055

 Non-pCR 18 (58) 19 (83)

 pCR 13 (42) 4 (17)

RCB class 0.223

 0 3 (10) 2 (9)

 I 11 (36) 14 (61)

 II 4 (13) 3 (13)

 III 13 (42) 4 (17)

Non-relapse/Relapse 0.887

 Non-relapse 21 (68) 16 (70)

 Relapse 10 (32) 7 (30)

TILs (%)  < 0.001*

 < 10 0 23 (100)

 10–19 12 (39) 0

  ≥ 20 19 (61) 0

TLS score 0.45

 0 15 (52) 16 (70)

 1 6 (21) 4 (17)

 2 3 (10) 2 (9)

 3 5 (17) 1 (4)

Klintrup criteria  < 0.001*

 0 0 2 (9)

 1 3 (10) 14 (61)

 2 16 (55) 4 (17)

 3 10 (35) 3 (13)

Stroma (%) 0.594

 Low (< 50) 13 (42) 8 (35)

 High (≥ 50) 18 (58) 15 (65)
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using factors listed in the Additional file  3: Table was 
possible.

Proteomic differential expressions between immune 
subtypes
Welch’s t-test was conducted to investigate a change in 
proteomic expression between immune-inflamed and 
immune-excluded/desert subtypes. Figure  2a shows a 
volcano plot representing the fold change (immune-
excluded/desert / immune-inflamed) in expression and 
p-value. Among 855 proteins that had no NA data for 
all samples, two proteins showed statistically significant 
differential expression. Coronin-1A (CORO1A) and 
serpin family A member 1 (SERPINA1, α-1-antitrypsin) 
were upregulated in the immune-inflamed (adjusted 
p = 0.008) and immune-excluded/desert (adjusted 
p = 0.008), subtypes, respectively. Heatmap (cutree = 2) 
(Fig. 2b) and violin plots (Fig. 2c) show two proteins with 
a similar pattern. Coronin-1A in immune-inflamed and 
α-1-antitrypsin in immune-excluded/desert groups were 
both upregulated.

Correlation of protein expression with the TIL level
In this study, immune subtype’s designation was largely 
dependent on the criteria of 10% of TILs. We used 

Spearman’s correlation to investigate the correlation 
between protein expression and TIL level (as continuous 
variables). Four proteins with adjusted p < 0.05 were 
discovered. Coronin-1A and HLA-A (HLA-A) positively 
correlated with TILs. mH2A1 (H2AFY) and α-1-
antitrypsin negatively correlated with TILs (Fig.  3). 
Coronin-1A and α-1-antitrypsin were discovered in the 
positively and negatively correlated groups, respectively. 
We conducted a Pearson correlation using RNA-seq 
from 1,097 TCGA BRCA samples in 4 proteins with 
CD8A (T-cell marker) to confirm this finding. As 
expected, CORO1A (r = 0.729, p < 0.001) and HLA-A 
(r = 0.485, p < 0.001) positively correlated with CD8A and 
H2AFY (r =  − 0.104, p < 0.001) negatively correlated with 
CD8A. In contrast to our finding, SERPINA1 positively 
correlated with CD8A (r = 0.114, p < 0.001).

Proteomic differential expressions between NAC responses
Furthermore, Welch’s t-test was conducted to identify 
the difference between pCR and non-pCR in the entire 
cohort. The volcano plot showing fold change (non-pCR/
pCR) in the expression showed no statistically difference 
between the two groups (Fig. 4a). The immune-inflamed 
subtypes, which contained high TILs, were discovered to 
have a high pCR rate after NAC for breast cancer. In our 

Table 3 Univariate analysis comparing OS and RFS in breast cancer

OS overall survival, RFS relapse-free survival, CI confidence interval, p p-value, pCR pathologic complete response, RCB residual cancer burden, TILs tumor-infiltrating 
lymphocytes, TLS tertial lymphoid structure *p < 0.05

Factors OS p RFS p
Hazard Ratio (95% CI) Hazard Ratio (95% CI)

Age (≥ 50 vs. < 50) 1.990 (0.495–7.999) 0.332 1.475 (0.523–4.161) 0.463

Intrinsic subtypes

 HR + HER2- (ref.) 1 1

 HR + HER2 + 3.572 (0.223–57.127) 0.368 0.593 (0.071–4.942) 0.629

 HR− HER2 + 0.000  − 0.542 (0.065–4.519) 0.572

 TNBC 7.422 (0.911–60.480) 0.061 1.712 (0.620–4.727) 0.299

pCR vs. non-pCR 0.026 (0.000–8.589) 0.217 0.221 (0.050–0.964) 0.045*

RCB class

 0 0.000  − 0.166 (0.030–0.909) 0.038*

 I 0.000  − 0.000  − 

 II 1.009 (0.209–4.859) 0.991 0.838 (0.270–2.604) 0.760

 III (ref.) 1 1

Immune subtypes

 Excluded/Desert (ref.) 1 1

 Inflamed 1.716 (0.428–6.882) 0.446 1.150 (0.437–3.027) 0.777

TILs (≥ 10% vs. < 10%) 1.872 (0.467–7.505) 0.376 1.110 (0.437–2.819) 0.826

TILs (%) 1.019 (0.988–1.051) 0.242 1.006 (0.978–1.034) 0.690

Klintrup criteria (2,3 vs. 0,1) 2.393 (0.496–11.543) 0.277 1.175 (0.434–3.182) 0.752

TLS score (2,3 vs. 0,1) 3.360 (0.900–12.544) 0.071 2.494 (0.920–6.761) 0.073

Stroma (≥ 50% vs. < 50%) 0.495 (0.133–1.845) 0.295 0.742 (0.293–1.881) 0.530
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study, 58% of the immune-inflamed subtype contained 
non-PCR after NAC. Welch’s test between pCR and 
non-pCR was conducted to investigate the inhibitory 
factors of NAC in non-pCR cases with immune-inflamed 

phenotypes. In non-pCR, no protein was statistically 
substantially upregulated. Titin was the only protein 
upregulated in pCR (adjusted p = 0.036) (Fig.  4b). For 
titin, the heatmap (Fig. 4c) and violin plots (Fig. 4d) in the 

Fig. 2 Differential proteomics expressions between immune subtypes. a The volcano plot shows the fold change between the immune-inflamed 
and immune-excluded/desert subtypes. b Heatmap for α-1-antitrypsin and coronin-1A (cutree = 2). c Violin plots for coronin-1A and α-1-antitrypsin 
in the immune-inflamed and immune-excluded/desert subtypes

Fig. 3 Correlation between protein expression and the TIL level. a Positively correlated proteins. b Negatively correlated proteins
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immune-inflamed subtype also showed upregulation in 
the pCR group.

Discussion
To overcome the limitations in the survival gain 
of pre-existing therapies to conquer breast cancer, 
immunotherapy which inhibits the immunosuppressive 
effect of tumor cells was implemented [12]. To improve 
the treatment effects of immunotherapy and discover 
a new target, molecular studies are necessary. Proteins 
were thought to reflect functional tumoral biology more 
directly than genes or transcripts. In addition, a study 
showed a copy number of protein, and mRNA was not 
completely correlated. Therefore, proteomic studies 
are necessary for the accurate evaluation of tumor 
biology [13]. Proteomic analysis was conducted in breast 
cancer for different goals, such as identifying candidate 
immunotherapeutic targets and proteomic patterns 
related to NAC responses [14, 15]. Our study performed 
a proteomic analysis of breast cancer including all 

intrinsic subtypes with NAC to offer the opportunity for 
new treatment development.

In previous studies, the immune-inflamed subtype 
was discovered to have a better response to immune 
checkpoint inhibitors than immune-excluded or immune-
desert subtypes [16, 17]. We assessed the relationship 
between immune subtypes and other clinicopathological 
factors. The immune-inflamed subtype had a higher pCR 
rate than immune-excluded/desert subtypes; however, it 
was not statistically significant (p = 0.055). Other factors 
such as intrinsic subtypes, histologic subtypes, RCB class, 
relapse rate, TLS score and percentage of stroma did not 
show a statistically significant difference. Only old age 
was statistically significantly more common in immune-
inflamed than in immune-excluded/desert subtypes 
because of different TNBC prevalence in each age group. 
TNBC in old age was 6 (50%) cases, on the other hand, 
TNBC in the young age was 18 (41%) cases. In this study, 
TNBC mostly consisted of immune-inflamed subtypes 
(n = 18, 75%), which was consistent with the results of a 
previous study [18].

Fig. 4 Proteomic differential expressions between NAC responses. a The volcano plot shows the fold change between pCR and non-pCR 
in the entire cohort. b Volcano plot shows the fold change between pCR and non-pCR in the immune-inflamed subtype. c Heatmap for titin 
(cutree = 3). d Violin plots for titin in the immune-inflamed subtype
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In evaluating the prognostic value of immune subtypes, 
OS and RFS showed no significant difference in the 
three-tier (inflamed, excluded and desert) or two-tier 
(inflamed and excluded/desert) classification using KM 
survival curves. The percentage of TNBC in all breast 
cancers was approximately 10%; however, in the present 
study, TNBC accounted for nearly half of the cohort 
(n = 24, 43%) [19]. Similarly, no statistical significance 
in OS and RFS was found in the TNBC cohort alone. 
In the univariate Cox hazards model for OS and RFS, 
immune subtypes and other factors such as age, intrinsic 
subtypes, TILs, Klintrup criteria, TLS score and stromal 
percentage were not statistically significant prognostic 
OS parameters. Only pCR (vs. non-pCR) and RCB class 
0 (vs. III) were demonstrated as good prognostic factors. 
Although some studies have shown that the presence of 
TLS in breast cancer and high TILs level in TNBC were 
good prognostic factors, the presence of TLS and high 
TIL levels were not significant prognostic factors in our 
study [7, 20].

In this study, three proteins indicated differential 
expressions in the proteomic analysis. Coronin-1A, 
encoded by CORO1A, was upregulated in immune-
inflamed than in immune-excluded/desert subtypes. The 
upregulation of coronin-1A might be associated with 
a good response to immunotherapy. Similarly, a recent 
study showed that CORO1A in ductal breast tumors 
was overexpressed in immune-inflamed subtypes in the 
Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) and TCGA data by whole 
transcriptome analysis [21]. Another study demonstrated 
that CORO1A was overexpressed in TNBC and a good 
prognostic factor in TCGA RNA-seq data [22]. CORO1A 
upregulation in immune-inflamed subtypes might be 
associated with the fact that CORO1A was dominantly 
expressed in leukocytes and engaged in the use of 
macrophage, T-cell receptor signaling and lymphocyte 
trafficking [23]. However, the precise relationship 
between CORO1A and tumor biology will be revealed in 
further studies.

α-1-antitrypsin, an extracellular matrix protein, 
encoded by SERPINA1, was upregulated in immune-
excluded/desert than in immune-inflamed subtypes. 
The upregulation of α-1-antitrypsin might be associated 
with an unfavorable response to immunotherapy. A study 
indicated that α-1-antitrypsin overexpression improves 
the migration of breast cancer cells using migration 
assay and high α-1-antitrypsin immunohistochemical 
expression has unfavorable prognostic value in 
patients with colorectal carcinoma [24]. Conversely, 
other investigations have found that high SERPINA1 
expression had a good prognosis in breast cancer 
based on TCGA gene expression data [25, 26]. A high 

SEPINA1 expression has a good prognostic value based 
on TCGA gene expression data in estrogen receptor 
(ER) + HER2 + breast cancer, not in ER- or ER + HER2- 
breast cancer, according to Chan et el. [27]. Furthermore, 
when SEPINA1 expression was divided into high and low 
by mean in this study, the KM survival analysis revealed 
no OS difference between the high and low SERPINA1 
expression groups (p = 0.785), which was possible given 
the variable distributions of intrinsic types of breast 
cancer. The evaluation of prognostic value was limited 
because only one of six patients with ER + HER2 + breast 
cancer died in this cohort. Since there were conflicting 
points about α-1-antitrypsin’s influence on cancer cell 
biology and prognostic value, the application of α-1-
antitrypsin as a therapeutic target is limited.

Titin, encoded by TTN, was upregulated in pCR than 
in non-pCR in the immune-inflamed subtype. Titin 
could be related to a favorable prognosis. However, Lips 
et al. revealed that TTN was one of the most frequently 
observed alterations in TNBC and the mutation rate of 
TTN was similar between the chemotherapy response 
group and the non-response group by next-generation 
sequencing [28]. Kim et  al. showed that TTN was 
frequently mutated but have no significant prognostic 
value in breast cancer [29]. The use of TTN as a good 
predictable factor for chemotherapy in breast cancer 
should be considered after revealing the role and clinical 
significance of TTN mutation in breast cancer in further 
studies.

By the Spearman correlation, coronin-1A and HLA-A 
were positively correlated with TILs and mH2A1 and α-1-
antitrypsin were negatively correlated with TILs. CD8A, 
a marker of T-cell, was employed as a surrogate TIL 
marker for correlation analysis with four proteins from 
TCGA data because TILs consist of lymphoplasmacytic 
cells. The findings regarding CORO1A, HLA-A and 
H2AFY were similar to ours, but SERPINA1 revealed 
a contrasting finding. This could be attributed to the 
different expression values of molecules between the 
proteomic analysis and the transcriptomic analysis. The 
proteomic expression level could be different from the 
mRNA level because the protein level is affected by post-
transcriptional and post-translational regulations and 
protein half-lives [30]. As coronin-1A was enriched in 
immune-inflamed than immune-excluded/desert in our 
study and CORO1A was positively correlated with CD8A 
in TCGA data, coronin-1A might be used as a predictive 
response factor for immunotherapy.

This study had some limitations. Firstly, since the case 
selection was not consecutive but purposely included 
an equal number of cases for pCR and non-pCR, the 
distribution of the intrinsic subtypes of breast cancer 
was different from the known natural distribution. 
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If the case selection was conducted consecutively, 
a representative study would have been possible. 
Secondly, 5,014 proteins were initially detected from 
mass spectrometry; however, several proteins have 
NA data. Therefore, 855 proteins were employed for 
further differential study. Numerous NA data might be 
due to the use of FFPE samples for proteomic analysis 
because formalin can induce a cross-link of proteins 
that interrupts protein extraction [31]. However, the 
use of FFPE samples employed routinely for tissue 
preservation in the proteomic analysis is crucial. Some 
studies of breast cancer have dealt with FFPE samples 
effectively using more than 2000 proteins for analysis 
[15, 32]. The various fixation times in this study might 
result in a low rate of protein identification because of 
the effect of the probability of fixation time on protein 
extraction caused by the degree of cross-link [33]. For 
a more exact and efficient proteomic analysis, fresh 
tissue or fixation time control should be used. Lastly, 
we investigated only pre-NAC tissue for proteomic 
analysis. If post-NAC or corresponding normal tissues 
were employed, protein changes during chemotherapy 
or specifically expressed proteins in the tumor could be 
discovered [15, 34].

Conclusions
We investigated clinicopathologic features, prognostic 
values and type of protein expressed in each immune 
subtype of breast cancer using FFPE samples. We 
identified that coronin-1A was upregulated in the 
immune-inflamed subtype, α-1-antitrypsin was 
upregulated in the immune-excluded/desert subtype and 
titin was upregulated in pCR in the immune-inflamed 
subtype by proteomic analysis. Further studies involving 
a large, representative cohort must be conducted to 
confirm these findings.
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