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Background
The most frequent complication of diabetes and the 
major cause of blindness in the working-age popula-
tion is diabetic retinopathy (DR), which has serious 
socioeconomic and quality-of-life effects [1, 2]. In the 
non-proliferative stage, DR begins with abnormal micro-
vascular changes, characterized by increased vascular 
permeability, microaneurysms, and capillary closures. 
With the progression of the disease, neovascularization 
becomes evident, indicating the development of the pro-
liferative stage. Proliferative diabetic retinopathy (PDR) 
is characterized by retinal neovascularization due to 
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Abstract
Background To comprehend the complexities of pathophysiological mechanisms and molecular events that 
contribute to proliferative diabetic retinopathy (PDR) and evaluate the diagnostic value of aqueous humor (AH) in 
monitoring the onset of PDR.

Methods A cohort containing 16 PDR and 10 cataract patients and another validation cohort containing 8 PDR and 
4 cataract patients were studied. AH was collected and subjected to proteomics analyses. Bioinformatics analysis and 
a machine learning-based pipeline called inference of biomolecular combinations with minimal bias were used to 
explore the functional relevance, hub proteins, and biomarkers.

Results Deep profiling of AH proteomes revealed several insights. First, the combination of SIAE, SEMA7A, GNS, and 
IGKV3D-15 and the combination of ATP6AP1, SPARCL1, and SERPINA7 could serve as surrogate protein biomarkers for 
monitoring PDR progression. Second, ALB, FN1, ACTB, SERPINA1, C3, and VTN acted as hub proteins in the profiling of 
AH proteomes. SERPINA1 was the protein with the highest correlation coefficient not only for BCVA but also for the 
duration of diabetes. Third, “Complement and coagulation cascades” was an important pathway for PDR development.

Conclusions AH proteomics provides stable and accurate biomarkers for early warning and diagnosis of PDR. This 
study provides a deep understanding of the molecular mechanisms of PDR and a rich resource for optimizing PDR 
management.
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retinal ischemia. The formation of fibrovascular mem-
branes (FVMs) and vitreous bleeding is caused by the 
overgrowth of the neovascular tufts toward the vitreous. 
In the severe stage of PDR, the FVMs can lead to trac-
tional retinal detachment, resulting in devastating vision 
impairment.

In the pathogenesis of DR, hyperglycemia induces the 
production of superoxide in the mitochondria results in 
oxidative stress. This leads to multiple clinical hallmarks 
of DR, including pericyte apoptosis, basement membrane 
thickening, and mitochondrial dysfunction, resulting in a 
breakdown of blood retinal barrier (BRB) [3]. Then, the 
retina thickens and a leukocytosis increase occurs. As a 
result, white blood cells adhere to the endothelial cells 
lining blood vessels, which contributes to capillary plug-
ging and vascular leakage [4]. As per the microvascular 
pathology, hypoperfusion due to pericyte loss damages 
the endothelium and leads to neovascularization, which 
compromises the BRB’s integrity. The process of neovas-
cularization entails the formation of delicate and per-
meable blood vessels, which make vitreous hemorrhage 
more likely. Repeated hemorrhages cause fibrovascular 
scarring and gliosis, which when contracted, cause sight-
threatening endpoints such as PDR and diabetic macular 
edema [3]. 

Classic treatments for PDR include intravitreal anti-
vascular endothelial growth factor (VEGF) agents, laser 
photocoagulation, and vitreoretinal surgery [5]. Despite 
proper treatment received by many patients, it cannot 
prevent the advancement of the disease. Finding effective 
therapies in the early stages is difficult due to the intri-
cacy of the pathophysiological mechanisms and molecu-
lar events associated with PDR.

The role of biomarkers in assessing health and planning 
medical interventions is vital. It is a powerful technol-
ogy for discovering biomarkers using mass spectrometry 
(MS) based proteomics, but its use requires sophisticated 
bioinformatics to identify robust patterns [6]. With the 
advent of machine learning, biomarkers can now be dis-
covered from proteomics data that outperform existing 
best-in-class assays [7]. Currently, a liquid biopsy can be 
used on the eye compartments, particularly the vitreous 
and aqueous, to study and phenotype intraocular dis-
eases more directly [8, 9]. Aqueous humor (AH) protein 
concentration may be as clinically helpful as vitreous one 
in a variety of posterior segment diseases [10–13]. 

To fulfill these requirements and begin developing a 
precision medicine approach to PDR, AH proteomics 
has been applied to identify the differentially expressed 
proteins (DEPs). A strict bioinformatic analysis has been 
performed to obtain functional and pathway enrichment 
and hub proteins, and the inference of biomolecular 
combinations with minimal bias (iBM) [14] was utilized 
to screen ideal biomarker combinations to predict PDR. 

To validate the above results, an independent set of sam-
ples was subjected to parallel reaction monitoring (PRM) 
experiments to obtain quantitative information on the 
targeted proteins and the corresponding model valida-
tion. Taken together, our findings contributed to a better 
understanding of PDR and provided reliable biomarkers 
for early prediction, as well as nominated therapeutic tar-
gets for further treatment of the disease.

Methods
Subjects
Written informed consent was obtained from all enrolled 
patients in the study. The study was performed in compli-
ance with tenets of the Declaration of Helsinki for bio-
medical research and was approved by the Ethics Review 
Committee of Peking Union Medical College Hospital 
(FW-HXKT2018103102421S2). The enrollment criteria 
of the PDR group were as follows: (1) clinical diagnosis 
of PDR [15]; (2) absence of other ocular diseases, preg-
nancy, or severe systemic conditions (except diabetes 
mellitus); and (3) absence of ocular treatment, such as 
photodynamic therapy, surgery, or intravitreal injection. 
In the control group, each patient should be diagnosed 
with senile cataract and scheduled for phacoemulsifica-
tion cataract surgery for the insertion of an intraocular 
lens. They should have no history of other ocular dis-
eases, prior intraocular treatment, or severe systemic 
conditions. All patients underwent pre-treatment ocular 
examinations, testing intraocular pressure (IOP), axial 
length, corneal endothelial cell counts, best-corrected 
visual acuity, B-ultrasonography, and biomicroscopy of 
anterior and posterior segments.

Sample collection and preparation
The collection of AH was performed before treat-
ment in both groups, regardless of whether it was 
pharmacological or surgical. AH was collected during 
microscope-aided surgery using a sterile 1-mL insulin 
injection syringe with a needle. The samples were col-
lected in a 1.5-mL microcentrifuge tube and centrifuged 
at 13,000 rpm for 10 min at 4 °C, then transfer to a new 
1.5-mL microcentrifuge tube and stored at -80  °C until 
subsequent analyses.

AH samples were sonicated three times on ice, using 
a high-intensity ultrasonic processor (Scientz, Ningbo, 
China), in lysis buffer (2  M Thiourea [Sigma-Aldrich, 
USA] + 7  M Urea [Amresco 0568-1Kg, USA] + 0.1% 
3-[(3-Cholamidopropyl) dimethylammonio]-1-propane-
sulfonate [CHAPS] + protease inhibitors).

The remaining debris was removed by centrifugation 
at 12,000 g and 4  °C for 10 min. Furthermore, 10 µL of 
supernatant was collected and utilized by the Brad-
ford Protein Assay Kit (Thermo 23,236, USA) for pro-
tein quantification. Proteins were then trypsin digested 
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using the modified filter-aided sample preparation 
(FASP) technique [16, 17]. Briefly, lysate sample reduc-
tion was accomplished by incubating in 25  mM dithio-
thretitol (DTT) (Bio-Rad, USA) for 30  min at 60  °C, 
followed by 10 min of 50 mM iodoacetamide alkylation 
in the dark. After loading the samples onto a 10 kDa cut-
off ultrafiltration membrane (Sartorius, Germany), they 
were incubated overnight at 37 °C with trypsin at a 1:50 
enzyme-to-protein ratio. Following three 50 mM trieth-
ylammonium bicarbonate buffer (TEAB) (Sigma T7408, 
USA) rinses, the samples were treated with 10  min of 
spinning at 12,000  g. Peptide desalting was performed 
according to Ziptip C18 pipette tips in the manufactur-
er’s instructions.

After the C18 solid phase extraction column was acti-
vated and balanced with acetonitrile (CAN; Thermo 
A955-4, USA) and 2% ACN 0.1% formic acid (FA; 
Thermo A117-50, USA), the sample was loaded, followed 
by 10 times of pipetting, 2% ACN 0.1% FA desalination, 
and elution in 50% ACN 0.1% FA. The eluent was then 
collected into a rotary vacuum drier and refrigerated at 
-80 °C until use.

To build a data-independent acquisition (DIA) Spectral 
Library, dried peptides were subjected to resuspension in 
0.1% FA and then collected and divided into samples with 
equal lysate quantities. The rest of the samples were used 
with the Biognosys iRT kit, including the preparation of a 
10 × iRT buffer and the subsequent addition of it to each 
sample at 9:1.

High-pH reversed-phase fractionation
Additional high-pH reversed-phase chromatographic 
separation of digest samples was performed. The reverse 
chromatography column (RIGOL, Beijing, China) was 
utilized for the separation of mixed peptides in a 30  µg 
digest sample. After the dissolution of peptides in mobile 
phase A (100 µL; 2% (v/v) ACN, 98% (v/v) ddH2O, pH 
10), the mixture was spun down for 20 min at 14,000 g.

Then the mobile phase B (98% (v/v) acetonitrile, 2% 
(v/v) ddH2O, pH 10) was injected into the supernatants 
at 1 mL/min to achieve stepwise elution in the column. 
Mobile phase B step gradients were used to acquire indi-
vidual 1.5-minute eluant fractions.

MS acquisition
For MS analysis, we used an internally prepared analyti-
cal column (150  μm×150  mm, 1.9  μm) to evaluate each 
sample with a volume of 1 µg on an EASY-nLC1000 con-
nected to an Orbitrap Fusion™ Tribrid™ MS instrument 
(Thermo Scientific). A binary solvent system, which was 
prepared by 0.1% FA in H2O (A) and 0.1% FA in ACN (B), 
was adopted, and the following linear gradient settings 
were used: 3–8% B/4 min, 8–22% B/65 min, 22–35% B/12 
min, 35–90% B/4 min, 90% B/5 min.

Then the direct introduction of eluents into the MS 
instrument was performed using an EASY-Spray ion 
source, with the spray voltage and capillary temperature 
set at 2.3 kV and 320 °C, respectively. For data-dependent 
acquisition (DDA)-MS runs, the whole MS scanning 
ranged from 300 to 1400 m/z. The MS had a resolution of 
60,000, with under 3-s top-speed mode for 15,000 resolu-
tion MS/MS scans. HCD had an isolation window and a 
normalized collision energy of 1.6 m/z and 32%, respec-
tively. For DIA analyses, MS1 scans (automatic gain 
control (AGC) target 4e5 or 50 ms injection time) were 
performed from 300 to 1300  m/z, with DIA segmenta-
tion resolution of 30,000 (AGC target 5e5; for injection 
time). The collision energy was 32%, and the spectra were 
collected in profile mode.

Identification and quantification of proteins
DIA data analyses adopted Biognosys’ Spectronaut pul-
sar programme and the ID picker algorithm [18]. The 
default software settings were employed for targeted 
data analyses, which included dynamic iRT for reten-
tion time prediction types with window-based correc-
tion factors. The enzyme specificity was configured to 
target the C-terminal of arginine and lysine residues, per-
mitting a maximum of two missed cleavages during the 
database search. Peptide identification was performed 
with an allowed initial precursor mass deviation up to 10 
ppm and an allowed fragment mass deviation 0.02  Da. 
The search criteria comprised carbamidomethylation of 
cysteine as a fixed modification, along with oxidation of 
methionine and acetylation at the protein N-terminus 
as variable modifications. The peptide-level false dis-
covery rate (FDR) was set to 1% at both the protein and 
peptide precursor levels. Local mass calibration was uti-
lized, along with limitless scrambled decoy generation. 
We also employed an MS2-level interference connection 
for fragment elimination based on interference signals 
while retaining ≥ 3 fragments for measurement. When 
conducting spectral library-based studies, RAW images 
were converted to the Spectronaut file format and cali-
brated according to the global spectral library’s retention 
time dimension. After that, the files were used for spec-
trum analysis without any further retention time-based 
recalibration.

Then, Proteome Discoverer 2.3 was used with default 
settings (Trypsin/P (Promega, V5111, USA), two 
missed cleavages). The fixed modification and the vari-
able modifications in the search criteria were consistent 
with DIA data analyses. The mass tolerances for precur-
sor and fragment ions were also set at 10 ppm and 0.02 
Da, respectively [19]. DDA data searches used UniProt 
human (uniprot_human_73940_20190731_iRT.fasta) 
and Biognosys iRT peptides fasta (uploaded to the public 
repository) databases as references.
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Proteomic analyses
Statistical analysis of the quantitative data
After minimizing biases between experiments through 
median normalization, protein expression differences 
were then evaluated using a Student’s t-test. Statistically 
significant DEPs were defined using p adjust < 0.05 and 
fold-change (FC) cut-offs of |log2(FC)| > 0.58. Data nor-
malization and identification of DEPs were performed in 
the ‘Wu Kong’ platform (URL: https://www.omicsolu-
tion.com/wkomics/main/) [20]. 

The enrichment analysis
To provide an intuitive and comprehensive visualization 
and direct comparison of DEPs data, heatmap was per-
formed. The heatmap clustering analysis parameters were 
as follows: the scale direction is set to genes, gene clus-
tering is performed using the complete method, distance 
calculation method is Euclidean, the callback function 
is set to pheatmap, and rows with completely identical 
expression values are removed.

Gene Ontology (GO) analysis has been used exten-
sively to identify the characteristic biological attributes of 
genes, gene products, and sequences, including the bio-
logical process (BP), cell components (CC), and molecu-
lar function (MF) [21]. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis provides a comprehensive set 
of bio-interpretation of genomic sequences and protein 
interaction network information [22]. 

In this study, GO terms and KEGG pathway enrich-
ment analyses were automatically completed and visu-
alized using the clusterProfiler V3.14.0 [23], pathview 
V1.36.0 [24], and the Goplot V1.0.2 package [25] in the 
R software statistical analysis platform (significance was 
p < 0.05 and a q-value < 0.05).

PPI network construction and hub proteins identification
The protein-protein interaction (PPI) network of the 
DEPs was established using the Search Tool for the 
Retrieval of Interacting Genes (STRING) [26]. Cytoscape 
was used to build the visual network of molecular inter-
actions with a combined score > 0.15 [27]. The molecu-
lar complex detection (MCODE) plugin was applied 
to detect closely correlated modules from the PPI net-
work [28]. The most significant protein module of this 
PPI network was visualized and displayed through the 
MCODE plug-in. The filtering criteria were as follows: 
MCODE score > 5, node score cutoff = 0.2, degree cut-
off = 2, k-score = 2, and max depth = 100. In addition, the 
degree, edge percolated component (EPC), between-
ness, and maximum neighborhood component (MNC) 
algorithms were useful methods for selecting hub genes 
or proteins from PPI network [29]. Scores of the degree, 
EPC, betweenness, and MNC of all nodes of the PPI net-
work were calculated via the CytoHubba plugin. The top 

10 nodes with the highest degree, EPC, betweenness, and 
MNC scores were selected. Finally, to increase the reli-
ability of hub proteins, their overlapping proteins were 
considered to be hub proteins related to PDR.

Machine learning-based inference of optimal biomolecular 
combinations
Identification of optimal biomolecular combinations 
using iBM that included mutual DEPs selection (MDS), 
candidate combination generation (CCG), and final com-
bination prioritization (FCP) were carried out as previ-
ously described [14]. First, the true negative (TN), true 
positive (TP), false positive (FP), false negative (FN), 
sensitivity (Sn), and specificity (Sp) values were calcu-
lated. Then, 5-fold cross-validation was performed. The 
receiver operating characteristic (ROC) curve was illus-
trated and the area under curve (AUC) value was calcu-
lated based on Sn and 1-Sp scores. Third, the root mean 
squared error (RMSE) was calculated to estimate the pre-
diction bias of a model.

CCG was adopted to select different sets of combina-
tions with ≤ 5 proteins. Candidate combinations were 
randomly generated for the proteomic data. For each 
candidate combination, we randomly generated a train-
ing data set and a testing data set with a ratio of 4:1. The 
testing data set was only used to test the performance but 
not for training. The least absolute shrinkage and selec-
tion operator (LASSO, L1 regularization) penalty and the 
ridge regression (L2 regularization) penalty in penalized 
logistic regression (PLR) [30–32], were iteratively used 
to optimize the weight values of the 5 proteins. To sim-
plify the combination, proteins with a weight of 0 in the 
model training results were deleted. All combinations 
with a total AUC equal to 1 were reserved for the optimal 
biomolecular combinations pool, respectively. The algo-
rithm was implemented in Python 3.7 with Scikit-learn 
0.22.1.

Validation study by PRM analysis
All the hub proteins determined above and the proteins 
of the top 25 combinations with the smallest root mean 
squared error (RMSE) values and AUC value of 1 were 
validated by PRM in independent samples.

First, the proteins were extracted, digested and mixed 
samples were prepared, and the full spectrum was 
scanned by the “label-free” method using the EASY-
nLC1200 connected to the Orbitrap Q-Exactive HF 
mass spectrometer (Thermo, Scientific, USA). Sec-
ond, the Proteome Discoverer 2.2 software was used 
to search the library. The search results were imported 
into Skyline(version 20.1.0.155)  software [33] to obtain 
the target protein peptide information. Then, the PRM 
method can be established, and the obtained data were 
imported into Skyline software for quantification. The 

https://www.omicsolution.com/wkomics/main/
https://www.omicsolution.com/wkomics/main/
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parameters of PRM were set as follows: the primary reso-
lution was 12,000 (at 300–1400 m/z) with an automatic 
gain control (AGC) target value of 3e6, a maximum injec-
tion time of 80 ms, and a Normalized Collision Energy 
(NCE) of 27%; the secondary resolution was 15,000 with 
an AGC target value of 2e4, a maximum injection time of 
19 ms. The mass tolerances for precursor and fragment 
ions were also set at 10 ppm and 0.02 Da, respectively.

The ROC curve analyses of the validated combinations 
were examined for PDR, and the AUC of each ROC curve 
was calculated.

Exploration for BCVA and early PDR-related proteins
To explore whether the hub proteins and the biomolecu-
lar combinations were associated with the best corrected 
visual acuity (BCVA) and the early occurrence of PDR, 
we used Spearman’s correlation analysis to evaluate the 
relations between the alteration of these proteins and the 
clinical parameters. A p-value of less than 0.05 was con-
sidered statistically significant.

Results
Study design and identification of DEPs
Figure  1  A shows the workflow of our study. Table  1 
shows patients’ clinical features: 16 PDR patients and 
10 cataract patients with corresponding mean ages of 
57.5 ± 5.9 and 66.1 ± 12.6 years (p = 0.066). The two groups 
were statistically similar regarding gender, eye ratio, 
axial length, hypertension, or duration of hypertension; 

however, the difference in BCVA was statistically signifi-
cant. All patients in the PDR group had diabetes, while all 
patients in the cataract group had no history of diabetes.

Large-scale LC-MS/MS analysis was performed on 
all gel bands, and a total of 874 unique proteins were 
retrieved (Table S1). After filtering by a 0.5 missing 
ratio in each group and filling by the k-Nearest Neigh-
bor method (k = 5), 541 proteins common to all cases 
were further studied (Table S2), identifying 217 statisti-
cally significant DEPs; 128 were upregulated and 89 were 
downregulated (statistically significant DEPs). The DEPs 
are shown in the volcano plots and the heatmaps (Table 
S3; Fig. 1B and C).

Characterization of DEPs and hub proteins in PDR patients
The annotations and functional enrichment analyses 
of GO biological processes and KEGG pathways were 
performed for DEPs. 744 significant GO terms and 30 
KEGG pathways related to all 217 DEPs were discovered 
(Table S4 and S5). In addition, the number of DEPs based 
on GO function and KEGG pathways annotations were 
calculated.

Enrichment analysis of DEPs was performed using 
Fisher’s exact test (p adjust < 0.05) to determine the over-
all functional enrichment characteristics of all DEPs and 
to find the most significantly enriched GO terms and 
KEGG pathways. The most significant enrichment of 
the BP term, MF term, and CC term was “complement 
activation” (p adjust < 0.001, 32 proteins), “endopepti-
dase inhibitor activity” (p adjust < 0.001, 31 proteins), 
and “blood microparticle” (p adjust < 0.001, 53 pro-
teins), respectively (Fig.  2A, B, and C). “Complement 
and coagulation cascades” exhibited the most significant 
change in KEGG enrichment followed by “Lysosome” (p 
adjust < 0.001, Fig. 2D).

To better understand the relationship between DEPs, 
we utilized the STRING database for PPI analysis. The 
PPI can be classified as known interaction (curated data-
bases and experimental determination from literatures), 
predicted interaction (gene-neighborhood, gene fusion, 
and gene co-occurrence), or others (text mining, co-
expression, and protein homology). For detailed informa-
tion, refer to Table S6. Among the 217 DEPs, 185 (85.3%) 
proteins were found to interact with other proteins 
(Fig. 4). The degree, EPC, betweenness, and MNC scores 
of DEPs were calculated using the CytoHubba plugin. 
We then selected the ten proteins with the highest scores 
in each algorithm and took the intersection of the four 
groups to improve the reliability of hub proteins. Finally, 
a total of six proteins (ALB, FN1, ACTB, SERPINA1, C3, 
and VTN) were considered to be hub proteins (Table 2; 
Fig.  2E). However, it should be noted that ACTB had a 
relatively low MCODE score compared to other hub pro-
teins (Table 2; Fig. 2E).

Table 1 Baseline characteristics of subjects included in the 
analysis*

Variables PDR 
group 
(n = 16)

Cataract 
group 
(n = 10)

p†

Age (years) 57.5 ± 5.9 66.1 ± 12.6 0.066t

Male gender (%) 7 (43.8) 4 (40.0) 1.000F

Right Eye (%) 11 (68.8) 5 (50.0) 0.425F

BCVA (LogMAR) 1.6 ± 1.0 0.2 ± 0.3 <0.001U

Axial length (mm) 22.7 ± 0.9 22.8 ± 1.0 0.891t

IOP (mmHg) 14.5 ± 2.9 15.4 ± 4.9 0.368U

Diabetes (%) 16 (100) 0 (0)
Duration of diabetes (years) 14.8 ± 6.0 0
Duration of PDR (Months) 6.5 ± 14.0 0
Staging of PDR IV 3 (18.8) 0

V 4 (25.0) 0
VI 9 (56.3) 0

Hypertension (%) 9 (56.3) 7 (43.8) 0.420P

Duration of hypertension 
(years)

1.0 ± 4.0 0.0 ± 2.0 0.365U

*Quantitative data and qualitative data are expressed as the mean ± SD or 
median ± IQR and number of people (%), respectively; †p values refer to 
independent Student’s t test, Mann‒Whitney U test, Pearson Chi-Square test 
and Fisher’s exact test used for exploring the differences in characteristics 
between two groups; t refers to independent Student’s t test; U refers to Mann‒
Whitney U test; P refers to Pearson Chi-Square test; F refers to Fisher’s exact test
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Machine learning-based optimal biomolecular 
combinations in PDR
Although 217 DEPs were identified, different molecules 
were altered to varying extents in PDR. The identification 

of optimal biomolecular combinations will not only be 
helpful for the accurate classification of different types of 
patients, but also provide useful information for uncov-
ering the potential pathogenesis of PDR. Here, we uti-
lized a pipeline named iBM, which consisted of three 
steps, including MDS, CCG to randomly select 26,000 
combinations (including duplicates), and FCP to obtain 
the protein combination with a maximal accuracy and 
a minimal bias through the 5-fold cross-validation. The 
accuracy of a candidate model was evaluated by calcu-
lating the total AUC value, and we also computed the 
total RMSE to measure the prediction bias. In the step 
of FCP, a widely-used machine learning algorithm, PLR, 

Table 2 The betweenness, MNC, degree, EPC, and MCODE 
scores of hub proteins
Protein Betweenness MNC Degree EPC MCODE
ALB 2013.7 143 143 28.7 41.9
FN1 1287.1 128 128 28.2 40.2
ACTB 1913.2 121 121 24.8 27.4
SERPINA1 620.1 110 110 28.4 41.9
C3 482.3 102 102 26.9 41.9
VTN 480.3 99 99 25.6 41.9

Fig. 1 Study design and identification of differentially expressed proteins. A: Flow chart of the study. B: Valcano plot of differentially expressed proteins 
of two groups. C: Heatmap of quantification for the differentially expressed proteins. AH, aqueous humor; PDR, proliferative diabetic retinopathy; DEPs, 
differentially expressed proteins; LC-MS/MS, liquid chromatography-tandem mass spectrometry; PRM, parallel reaction monitoring
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was used for model training and parameter optimization 
(Fig. 3A). The combinations were determined for the pro-
teomic DIA data (Table S7).

From the results, there were 22,423 protein combina-
tions with a total AUC value of 1, although many combi-
nations were repeated. With total RMSE values ranging 
from 0.198 to 6.665, the combination could perfectly dis-
tinguish PDR from cataract, with an AUC value of 1.

Hub proteins and biomarkers validation by PRM
To further validate the hub proteins and the top 25 com-
binatorial biomarkers with the smallest RMSE values and 
AUC value of 1, we collected another 12 AH samples, 
including 4 samples from cataract patients and 8 samples 
from PDR patients. For the 25 combinatorial biomarkers, 
after removing of duplicate combinations, 15 combinato-
rial biomarkers remained (Table S8). In total, 43 proteins 
were selected for quantification by PRM, including ALB, 
FN1, ACTB, SERPINA1, C3, VTN, CUTA, ACTB, AGA, 
CTSZ, SPP1, CPVL, GM2A, SEZ6, ASAH1, SEMA3A, 

IGKV3D-20, SIAE, SEMA7A, GNS, IGKV3D-15, BTD, 
SCG3, IMPG1, OMD, PON1, TGFB2, IL6ST, HEXB, 
IGKV4-1, NPC2, RS1, PTPRZ1, CPE, TIMP2, IGLV1-51, 
SPOCK1, COCH, B4GAT1, JCHAIN, APLP2, FCGBP, 
and MAN2A2 hCG_32578.

It was revealed that hub proteins exhibited a simi-
lar up- or downregulation both in the DIA and PRM 
approaches (Fig. 3B and C; Table 3). Among the 15 bio-
marker combinations, 2 biomarker combinations can 
be completely verified by PRM results (Fig. 3D, E, F, and 
G; Table  3). The first biomarker combination consisted 
of SIAE, SEMA7A, GNS, and IGKV3D-15, with a total 
AUC and RMSE of 1 and 0.25 based on DIA data, respec-
tively (Fig. 3H). The second biomarker combination con-
sisted of ATP6AP1, SPARCL1, and SERPINA7, with a 
total AUC and RMSE of 1 and 0.29 based on DIA data, 
respectively (Fig.  3J). Based on the PRM data, the total 
AUC values for the two biomarker combinations were 
0.938 and 0.875, respectively (Fig.  3I  and  K). Although 
individual molecules can achieve perfect accuracy on the 

Fig. 2 Characterization of differentially expressed proteins and hub proteins in proliferative diabetic retinopathy patients. A, B, and C: Gene Ontology 
(GO) enrichment analysis of differentially expressed proteins (A: molecular function. B: biological processes. C: cell composition). D: Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis of differentially expressed proteins. Proteins involved in the KEGG pathways are indicated by colored 
connecting lines. Symbols of differentially expressed proteins are presented on the left side of the graph. Symbols in red represent upregulated proteins, 
and blue represents downregulated proteins. The size refers to the representation of genes from the input list within those pathways. E: Protein-protein 
interaction network of differentially expressed proteins. The color and protein size were based on the molecular complex detection score; the higher 
the score, the darker the color and the larger the size. The 6 proteins in the center were the hub proteins we selected based on degree, edge percolated 
component, betweenness, and maximum neighborhood component scores
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Fig. 3 Machine learning-based optimal biomolecular combinations in proliferative diabetic retinopathy and comparison of two groups of quantifica-
tion for the proteins based on data-independent acquisition (DIA) data and parallel reaction monitoring (PRM) data. P values comparing two groups in 
each graph were calculated using p adjust of Student’s t-test. A: The workflow of iBM, including MDS, CCG and FCP to prioritize candidate combinations 
with a maximal accuracy and a minimal bias from the 5-fold cross-validation. B and C: The quantification of hub proteins based on DIA data and PRM 
data, respectively. D and E: The quantification of proteins in the first biomarker combination based on DIA data and PRM data, respectively. F and G: The 
quantification of proteins in the second biomarker combination based on DIA data and PRM data, respectively. H and I: Receiver operating characteristic 
(ROC) curves of the first biomarker combination (SIAE, SEMA7A, GNS, and IGKV3D-15) predicting PDR based on data-independent acquisition (DIA) data 
and PRM data, respectively. J and K: ROC curves of the second biomarker combination (ATP6AP1, SPARCL1, and SERPINA7) based on DIA data and PRM 
data, respectively
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current data, the combination of multiple molecules was 
undoubtedly important to reduce the prediction bias. 
The quantification of all the proteins by PRM is shown in 
Table S9 and Table S10.

Exploration for BCVA and early PDR-related proteins
Among the included patients, the BCVA of each individ-
ual varied greatly, and visual acuity was one of the most 
important factors affecting the quality of life. Addition-
ally, the duration of diabetes also varied widely among 
PDR patients, implying differences in the rate at which 
their diabetic complications developed. Thus, Spearman’s 
correlation analysis was used to evaluate the degree of 
influence of the above proteins on these clinical param-
eters. As shown in Fig. 4A, SERPINA1, ALB, SERPINA7, 
C3, VTN, IGKV3-15, SIAE, SPARCL1, and GNS showed 
a significant correlation with BCVA (p < 0.001, p < 0.001, 
p = 0.001, p = 0.002, p = 0.005, p = 0.005, p = 0.011, p = 0.013, 
and p = 0.036, respectively). All the hub proteins (ALB, 
FN1, ACTB, SERPINA1, C3, and VTN) and the two bio-
marker combinations proteins (SIAE, SEMA7A, GNS, 
IGKV3D-15, ATP6AP1, SPARCL1, and SERPINA7) 
showed a significant correlation with the duration of 
diabetes (Fig. 4B, p = 0.001, p = 0.019, p = 0.006, p < 0.001, 
p = 0.001, p = 0.002, p  <  0.001, p  <  0.001, p  <  0.001, 
p = 0.003, p = 0.001, p < 0.001, and p < 0.001, respectively). 
Interestingly, SERPINA1 had the highest correlation 
coefficient not only for BCVA (r = -0.643) but also for the 
duration of diabetes (r = 0.679). It can be regarded as a 
protective factor for vision and may also be able to delay 
the onset of PDR from diabetes.

Characterization of the hub proteins and biomarker 
combinations
As the previous enrichment was performed on DEPs, 
the annotations and functional enrichment analyses of 

GO biological processes and KEGG pathways were also 
performed for the hub proteins and biomarker combina-
tions. The most significant enrichment of the BP term, 
MF term, and CC term was “post-translational protein 
modification” (p adjust = 0.001, 5 proteins), “peptidase 
regulator activity” (p adjust < 0.001, 4 proteins), and 
“endoplasmic reticulum lumen” (p adjust < 0.001, 6 pro-
teins), respectively (Fig. 4C). Interestingly, “Complement 
and coagulation cascades” also exhibited the most sig-
nificant change in KEGG enrichment (p adjust = 0.007, 
Fig. 4D and S1).

Discussion
Patients with PDR often experience unsatisfactory recov-
ery of vision or even continued deterioration despite 
undergoing laser photocoagulation, repeated anti-VEGF 
therapy, and timely surgery. The mechanism of PDR 
remains unclear, making it crucial to gain a better under-
standing of the underlying processes driving PDR. To 
address this, we conducted a proteomic study to profile 
AH proteomic alterations in PDR and cataract patients, 
identifying a total of 217 DEPs between the two groups. 
Utilizing Fisher’s exact test, we found the most significant 
enrichment in the BP term, MF term, and CC term of 
GO analysis to be “complement activation”, “endopepti-
dase inhibitor activity”, and “blood microparticle”, respec-
tively. “Complement and coagulation cascades” exhibited 
the most significant change in the enrichment of KEGG. 
Based on PPI analysis and four algorithms (degree, EPC, 
MCC, and MNC algorithms), the ten proteins of DEPs 
with the highest scores in each algorithm were selected, 
and the intersection of the results of the four groups was 
performed to determine six proteins (ALB, FN1, ACTB, 
SERPINA1, C3, and VTN) as hub proteins. The PRM val-
idation of these hub proteins in another independent set 

Table 3 Comparison of targeted protein expression according to data-independent acquisition and parallel reaction monitoring 
methods
Protein DIA_PDR vs. Cataract Log2 FC DIA p adjust† PRM_PDR vs. Cataract Log2 FC PRM p adjust† Consistency of

DIA and PRM
ALB 0.846 <0.001 0.871 0.097 Yes
FN1 1.625 <0.001 2.256 0.027 Yes
ACTB 1.269 <0.001 1.330 0.027 Yes
SERPINA1 0.855 0.001 1.041 0.048 Yes
C3 0.845 <0.001 0.773 0.045 Yes
VTN 0.865 0.016 0.356 0.430 Yes
SIAE -0.824 <0.001 -0.787 0.045 Yes
SEMA7A -1.710 <0.001 0.959 0.100 No
GNS -1.515 <0.001 -1.156 0.049 Yes
IGKV3D-15 0.628 <0.001 0.252 0.611 Yes
ATP6AP1 -1.035 <0.001 -1.003 0.242 Yes
SPARCL1 -1.365 <0.001 -0.288 0.405 Yes
SERPINA7 0.844 <0.001 0.959 0.100 Yes
†p values refer to independent Student’s t test
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of validation samples had similar protein expressions in 
the validation samples.

Furthermore, after utilizing an effective machine learn-
ing method based on DIA data and PRM data of the 
independent set of validation, we prioritized two optimal 
biomolecular combinations, each containing 4 and 3 pro-
teins, respectively. These combinations showed accurate 
discrimination between PDR and cataract samples. The 
total AUC of each combination, based on DIA data, was 
1. Based on PRM data, the total AUC of each combina-
tion was 0.938 and 0.875, respectively. These two combi-
nations have the potential to be ideal diagnostic markers 
due to their high AUC values and lower RMSE than bio-
markers of individual proteins. Correlation analysis 
revealed strong associations between the hub and bio-
marker proteins with BCVA and the duration of diabe-
tes. Notably, SERPINA1 displayed the highest correlation 
coefficient not only for BCVA but also for the duration 
of diabetes. It can be considered a protective factor for 

vision and may also have the potential to delay the onset 
of PDR in patients with diabetes.

In this study, the enriched processes/pathways identi-
fied in PDR were largely in line with the previous pro-
teomic profiling. Several independent studies on DR 
have also shown a GO enrichment of complement acti-
vation and KEGG pathway of complement and coagula-
tion cascades. It has been suggested in some studies that 
the complement pathway plays a role in DR through the 
deposition of C3d and MAC complex in the choriocapil-
laries of DR eyes and the reduced level of glycosylphos-
phatidylinositol-anchored complement inhibitors, such 
as CD55 and CD59 in the walls of retinal vessels of 
DR eyes [34, 35]. Li et al [36] and Schori et al [37] per-
formed a proteomic analysis on the vitreous humor of 
PDR patients. Both studies determined that the pathway 
of the complement and coagulation system was of great 
significance to PDR. There was also a proteomic study 
that grouped in a similar way as we did that also revealed 
an important role for the pathway of complement and 

Fig. 4 Exploration for best corrected visual acuity and early PDR related proteins and characterization of the hub and biomarker proteins. A and B: Cor-
relation analysis of best corrected visual acuity and duration of diabetes with hub and biomarker proteins. C: Gene Ontology (GO) enrichment analysis 
of the hub and biomarker proteins. D: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the hub and biomarker proteins. Proteins 
involved in the KEGG pathways are indicated by colored connecting lines. Symbols of differentially expressed proteins are presented on the left side of 
the graph. Symbols in red represent upregulated proteins, and blue represents downregulated proteins
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coagulation cascades, although it lacked validation 
experiments. However, despite the detection of several 
complement proteins such as C3, CFI, CFB, C4A, C4B, 
C2, C4BPA, CFD, and CFH in PDR subjects in stud-
ies [38–41], their expression levels were highly variable 
among different studies and did not fully explain their 
exact involvement in DR pathology.

The hub proteins identified in this study may have an 
important role in the pathogenesis of PDR. ALB serves as 
a carrier protein for a variety of endogenous compounds, 
including hormones, fatty acids, and metabolites, as 
well as exogenous medicines. It also regulates colloid 
osmotic pressure and exhibits esterase-like activity with 
broad substrate specificity. However, Spranger et al. [42] 
reported that vitreous levels of ALB were 2.2-fold ele-
vated in patients with PDR compared to controls, which 
is consistent with the results of the current study, both 
for the DIA data and the PRM data. The glycoprotein 
FN1 is found in the extracellular matrix and on the cell 
surface in soluble dimeric, dimeric, or multimeric forms. 
It plays a role in various cell adhesion and migratory 
activities, including metastasis, wound healing, blood 
clotting, and embryogenesis. VTN also stimulates cell 
adhesion and migration, inhibits the terminal cytolytic 
complement pathway’s ability to damage membranes, 
and binds to several serpin serine protease inhibitors. 
Additionally, it promotes the degradation of the extra-
cellular matrix and participate in a wide range of other 
biological processes, including the regulation of the coag-
ulation pathway, wound healing, and tissue remodeling. 
Casaroli Marano et al. [43] confirmed increased concen-
trations of intravitreous FN and ATN in PDR compared 
to normal samples, suggesting that FN and VTN play a 
key role in the structural arrangement of newly formed 
capillaries in PDR, and that receptor expression could be 
involved in events of endothelial cell adhesion and prolif-
eration. ATN affects cell motility, structure, integrity, and 
intercellular signaling and is a crucial component of the 
contractile system. Increased ATN was detected in fibro-
vascular membranes with PDR by Cao et al. [44], suggest-
ing it may play a positive role in the pericytes dropping 
out from microvessels. SERPINA1 is a serine protease 
inhibitor belonging to the serpin superfamily, and its tar-
gets include elastase, plasmin, thrombin, trypsin, chymo-
trypsin, and plasminogen activator. However, the role of 
SERPINA1 in the development of PDR has been poorly 
reported. By correlation analysis in the current study, we 
found that SERPINA1 had the highest correlation coef-
ficient not only for BCVA but also for the duration of 
diabetes. This study may be the first to suggest its poten-
tial important role in the development of PDR. Follow-
up studies can consider it as an important molecule for 
biological experiments or drug targets to explore its role 
in PDR. Complement component C3 plays a central role 

in the activation of the complement system. The GO and 
KEGG analyses in the current study revealed that the 
most significant enrichment of all DEPs was complement 
activation and complement and coagulation cascades, 
respectively, which has been corroborated in several pre-
vious studies [34–41]. Although ACTB had a relatively 
low MCODE score, externally validated data showed 
the potential value it may have in PDR. Few studies 
have reported its role in PDR. Thus, we plan to continue 
exploring it in future biology researches.

In recent years, machine learning-assisted proteomics 
or metabolomics biomarker screening methods have 
been applicated in DR. Sun et al. [45] used ultrahigh-
performance liquid Q-Exactive mass spectrometry and 
the least absolute shrinkage and selection operator regu-
larization logistic regression (LASSO-LR) based machine 
learning model to screen the plasma metabolome of 21 
PDR and 53 non-PDR patients. They identified biomark-
ers consisting of four metabolites with an area under the 
ROC curve of 0.82. However, the predictive strength of 
the model in this study was still low, as no internal or 
external validation was performed, and RMSE was also 
not calculated to measure the prediction bias. In the 
current study, we randomly selected 26,000 combina-
tions and performed 5-fold cross-validation to identify 
combinations with maximal accuracy and minimal bias. 
We evaluated the accuracy of each candidate model by 
calculating the total AUC value and also computed the 
total RMSE to measure the prediction bias. While AUC 
assesses discriminatory power, RMSE evaluates predic-
tion accuracy. By considering both metrics together, 
we gain a comprehensive understanding of biomarker 
performance, allowing for more informed decisions 
regarding their criticality and relevance. We utilized the 
widely-used machine learning algorithm, PLR, for model 
training and parameter optimization. Additionally, to 
validate the protein expression of the ideal combina-
tions and the stability of the model, PRM was conducted 
to detect the expression of the individual proteins in 
another independent sample set. As a result, we priori-
tized two optimal biomolecular combinations, each con-
taining 4 and 3 proteins, respectively. Both combinations 
accurately distinguished the samples of PDR from cata-
ract. Based on DIA data, each combination had a total 
AUC of was 1. Based on PRM data, the total AUC of each 
combination was 0.938 and 0.875, respectively. Thus, 
these two combinations hold potential to serve as ideal 
diagnostic markers.

There are several limitations in our study. First, for 
medical research ethical reasons, AH samples from 
healthy individuals could not be collected, so cataract 
patients were included in the control group. Another 
possible drawback of this work is that the sample size 
in this study was relatively small. Third, two optimal 
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biomolecular combinations were computationally priori-
tized by iBM and PRM validation, in which total RMSE 
values were calculated to estimate and reduce the pre-
diction bias. However, overfitting may not be entirely 
avoided for the finally determined models. Furthermore, 
it has been demonstrated that results based on pro-
teomics varied greatly between different research studies 
[46–48]. There are several variables that could signifi-
cantly affect the outcomes, including cohorts from differ-
ent nations or locations, variations in age, sex, body mass 
index (BMI), and physical conditions, as well as various 
sample preparation techniques and data analysis plat-
forms [49]. Therefore, even though PRM was carried out 
to verify the results, we believe that enrolling more sam-
ples, perhaps from various centers, would be more ben-
eficial to further verify the results. Finally, more research 
is required to determine the detailed functions of the 
hub proteins and whether they could be used as clinically 
effective therapeutic targets.

In summary, our findings provided a highly valuable 
proteomic data resource for the research community to 
better understand PDR. We identified several proteins 
specifically altered in PDR patients, shedding light on the 
pathogenesis of PDR, and providing potential biomarkers 
for diagnosis of the disease and target molecules worth 
investigating.
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