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Abstract 

Background  Descending thoracic aortic aneurysms and dissections can go undetected until severe and cata‑
strophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection.

Methods  This study generated a plasma proteomic dataset from 75 patients with descending type B dissection 
(Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were 
compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases. Quantitatively 
similar proteins were clustered based on linkage distance from hierarchical clustering and ML models were trained 
with uncorrelated protein lists across various linkage distances with hyperparameter optimization using fivefold 
cross validation. Permutation importance (PI) was used for ranking the most important predictor proteins of ML clas‑
sification between disease states and the proteins among the top 10 PI protein groups were submitted for pathway 
analysis.

Results  Of the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin 
(HPX), were significantly different at an adjusted p < 0.01 between Type B and DTAA cases. The highest performing 
model on the training set (Support Vector Classifier) and its corresponding linkage distance (0.5) were used for evalu‑
ation of the test set, yielding a precision-recall area under the curve of 0.7 to classify between Type B from DTAA cases. 
The five proteins with the highest PI scores were immunoglobulin heavy variable 6–1 (IGHV6-1), lecithin-cholesterol 
acyltransferase (LCAT), coagulation factor 12 (F12), HPX, and immunoglobulin heavy variable 4–4 (IGHV4-4). All pro‑
teins from the top 10 most important groups generated the following significantly enriched pathways in the plasma 
of Type B versus DTAA patients: complement activation, humoral immune response, and blood coagulation.

Conclusions  We conclude that ML may be useful in differentiating the plasma proteome of highly similar disease 
states that would otherwise not be distinguishable using statistics, and, in such cases, ML may enable prioritizing 
important proteins for model prediction.
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Introduction
Thoracic aortic aneurysms arise due to dysregulated 
growth and remodeling of the aorta in the segment span-
ning from the aortic root to the diaphragm [1], which 
predispose the vessel wall to dissection and rupture. Aor-
tic dissections occur when there is a loss of integrity, also 
described as a tear, in the intimal layer of the blood ves-
sel. This tearing results in the formation of a ‘false lumen’ 
in the medial layer of the vessel, allowing aberrant blood 
flow patterns, risk of aneurysm formation/rupture, risk 
of thrombosis, and reduced perfusion of downstream 
tissues, all of which are associated with substantial mor-
bidity and mortality [2]. The incidence of thoracic aor-
tic aneurysms and thoracic aortic aneurysm dissections 
(TAAD) has risen over the past several decades, with 
an approximate doubling of new events between 1982 
[3] and 2006 [4] (from 5.9 to 10.1 events per 100000 
individuals, respectively). Increased incidence may be 
attributed to a combination of improved diagnosis as 
well as increased prevalence of risk-factors such as ath-
erosclerosis, hypertension, and an aging population [4]. 
TAADs are further categorized by anatomical region into 
ascending aneurysms and Stanford type A dissections 
or descending (DTAA) and Stanford type B dissections 
(Type B). Descending TAAD, also termed Type B dissec-
tion can be driven by both syndromic (e.g., hereditary 
genetic conditions such as familial TAAD, Ehlers-Dan-
los and Marfan syndromes) and non-syndromic/spo-
radic (as yet undescribed genetic causes, atherosclerosis, 
and hypertension) [1]. Syndromic causes of descend-
ing TAAD are rare, and a majority of descending TAAD 
events occur absent any a priori indicators of patient risk. 
While imaging is a highly effective means of detecting 
and diagnosing TAAD, the low prevalence of TAAD in 
the general population renders the cost–benefit ratio of 
such a screening approach prohibitive.

Circulating biomarkers capable of detecting the pres-
ence of descending thoracic aneurysm and risk for type 
B dissection would provide a valuable and cost-effective 
tool to screen for risk and flag individuals from the gen-
eral population for more detailed follow up and diagno-
sis. To date, there are a large proportion of TAAD studies 
focused on ascending disease, but differences in etiology 
and other aspects of descending disease warrant focused 
attention on mechanisms and biomarkers for disease 
cases in this specific region. Since many times Type B 
dissections occur absent of predisposing aneurysm for-
mation [5], determining whether there are distinguish-
ing biomarkers for these unique type B cases will be an 
important consideration. Dissection-specific biomark-
ers could also assist in evaluating the progression of 
descending aneurysms (DTAA) and predicting likelihood 
for imminent dissection risk.

A number of studies have explored possible biomark-
ers for thoracic aortic aneurysms and dissections and are 
the subject of a recent and thorough review [6]. A smaller 
handful of studies focused specifically on descend-
ing thoracic aortic disease [7]. Among markers studied 
thus far, many have shown preliminary promise includ-
ing d-dimer, matrix metalloproteinases, certain collagen 
chains, smooth muscle cell proteins, and various inflam-
matory markers such including the somewhat general 
inflammatory marker CRP. These studies have all focused 
on biomarkers to distinguish aneurysm and/or dissec-
tion from normal and/or cases of acute coronary dis-
tress not caused by aneurysm or dissection. Biomarkers 
that can distinguish aneurysm from dissection may also 
be of clinical interest, as these molecules could aid in 
therapeutic decisions regarding timing of surgical inter-
vention as aneurysmal tissue progresses toward increas-
ing likelihood for dissection and degeneration. Our 
recent proteomic analysis of aneurysmal versus dissected 
descending thoracic aortic tissue found numerous pro-
teins that were differentially expressed between the two 
groups [8], however it is unclear whether any of these tis-
sue-derived proteins would be altered in the circulation 
and indicative of the two disease states.

Machine learning (ML) is a promising tool for auto-
mated classification of groups from proteomics data [9]. 
ML can take any collection of input data and estimate a 
mathematical function that predicts a categorical out-
come, such as the presence or absence of a disease, or a 
continuous measure like age. Unlike statistical models, 
which allow for a quantitative measure of confidence 
for a relationship, ML can find patterns in unwieldy data 
with nonlinear interactions [10]. ML is also helpful when 
there are more input variables than number of subjects 
[10]. Thirdly, ML model interpretation methods can be 
used to reveal which proteins are relevant for differenti-
ating between two similar diseases [11]. The application 
of ML to healthcare has enabled discovery of biomarkers 
associated with cancer, COVID-19 disease severity [12–
15], and subtypes of diseases [16]. ML model interpreta-
tion or feature selection methods can be used to reveal 
which proteins are relevant for model prediction, and 
prior work suggests that clustering of similar proteins as 
a feature selection technique before applying ML meth-
ods enables accurate disease classification [11]. These 
successes in the application of ML have led us to explore 
whether ML models given inputs of plasma proteins 
could distinguish between aneurysm and dissection.

The goal of the current work was to leverage ML to dis-
tinguish the plasma proteomes from two similar diseases 
not otherwise distinguishable using a standard statistical 
approach and provide preliminary insight into mass spec-
trometry detectable, circulating proteomic signatures 
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capable of separating them. Toward this goal, we profiled 
the plasma proteomes of individuals with DTAA and 
Type B and applied ML strategies to identify protein fea-
tures best able to discriminate between them.

Methods
Sample collection and study design
Patients with descending thoracic aortic disease were 
selected retrospectively from a biorepository of aortic 
disease patients hosted by Dr. Milewicz and team at the 
University of Texas, Houston. All patients with a well-
preserved plasma sample and an isolated diagnosis of 
DTAA or Type B dissection were selected for proteomic 
analysis. Blood samples were collected prior to surgery 
and held in the patient’s room or nurse’s station until 
transported by the research nurse to our laboratory (in 
the same day). On receipt, each sample was logged into 
the computerized biorepository database and labeled 
with a unique bar-coded identity number and processed 
into plasma within two hours. The collection tubes were 
gently inverted 8–10 times and then centrifuged at 1650 
RCF for 25 min at 22  °C. The plasma layer of each tube 
was transferred to labeled 2 ml cryovial tubes (0.5 mL per 
tube) and frozen at −80 °C until further use. One aliquot 
per patient was shipped on dry ice to the proteomics 
research team at Cedars-Sinai Medical Center for plasma 
proteomic sample preparation and analysis. All patients 
included in this study provided informed consent and 
their recruitment and participation was approved by the 
institutional review boards of UT Houston.

Sample preparation for liquid chromatography mass 
spectrometry
Proteins from 5uL of plasma were processed for protein 
denaturation, reduction, alkylation, and tryptic digestion 
using the manufacturer protocols for the Protifi (Farm-
ingdale, NY) S-Trap protein sample preparation work-
flow. Resulting peptides were quantified by BCA assay 
and 2uL of peptide suspension from each sample was 
pooled to make a master mix used for quality control 
monitoring purposes and for generation of peptide assay 
libraries for peptide and protein identification from indi-
vidual DIA-MS samples (see below).

Mass spectrometry acquisition
Individual plasma samples
Mass spectrometry data were acquired on an Orbitrap 
Exploris 480 (ThermoFisher, Bremen, Germany) instru-
ment with LC separation on an Ultimate 3000 HPLC sys-
tem using a trap-elute set up on a 150 mm long, 0.3 mm 
inner diameter reversed phase column (Phenomenex, 
Luna Polar C18 3 um). A binary analytical gradient using 
0.1% formic acid in water (mobile phase A) and 0.1% 

formic acid in acetonitrile (mobile phase B) was delivered 
as follows at 9.5 uL/min: start at 1% B and hold for 2 min, 
ramp to 4%B in 30 s, ramp to 12% B over 20 min, ramp 
to 27% B in 24 min, ramp to 45% B over 16 min (60 min 
total). A separate cleaning equilibration method ran at 
98% B for 8 min and equilibrated at 2% B for 2 min.

The peptides eluted from the analytical column into 
a Newomics M3 8-nozzle emitter and electrosprayed 
at 3  kV into a 300  °C ion transfer tube temperature. 
The mass spectrometer was operated in data independ-
ent acquisition (DIA) mode acquiring an MS1 scan for 
100 ms on all ions between 400 and 1100 m/z and then 
completing a series of 25 ms MS/MS fragment scans on 
50 equally spaced 12 m/z width precursor isolation win-
dows. Orbitrap resolution and normalized AGC target 
were 60,000 and 200% for MS1 and 15,000 and 400% 
for MS2. Collision energy for HCD fragmentation was 
set to 30%. The acquisition sequence included repeated 
sampling of pooled digest to monitor MS QC as well as 
evenly spaced samples of pooled plasma from across the 
3 × 96-well digestion plates to monitor digestion QC.

Gas phase fractionation based library generation
A sample pool was used to generate a spectral library 
specific to this sample type and analytical platform. Gas 
phase fractionation limits the scope of the mass spec-
trometer to a narrow m/z range thus exhaustively frag-
menting the corresponding peptide ions and maximizing 
the probability of their identification and incorporation 
in the generated library. Multiple injections probing dif-
ferent narrow m/z ranges are compiled to cover the 
entire range of interest (400–1000  m/z). Two comple-
mentary approaches were used to generate this library: 
data dependent acquisition (DDA) of peptides within 
120 m/z wide mass ranges (400–520 m/z, 520 to 640 m/z 
… 880–1000  m/z) in duplicate; and data independent 
acquisition (DIA) using 1  m/z wide isolation windows 
covering 40 m/z at a time (400–440 m/z, 440–480 m/z … 
960–1000 m/z). Other than the mass ranges and isolation 
window widths the method settings were matched to the 
data acquisition method.

Proteomic dataset generation
Library construction
Gas phase fractionated DIA and DDA runs were ana-
lyzed using the FragPipe platform [17]. For DIA mode, 
DIA-Umpire was first used to extract pseudospectra 
[18]. DIA pseudospectra and DDA spectra were searched 
separately using the FragPipe workflow to perform spec-
tral matching, PSM probability scoring and then spectral 
library generation against a Uniprot Human FASTA pre-
dicted protein sequence database. Search settings were 
as follows: mass errors were set to ± 8 ppm for precursor 
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and fragment masses in DDA and ± 1  m/z for the same 
masses in the DIA datasets. Carbamidomethylation of 
cysteine was set as static and methionine oxidation, phos-
phorylations of serine, threonine, and tyrosine, N-termi-
nal acetylation, pyroQ, pyroC, and pyroE, were selected 
as variable modifications. Peptides identified at 1% FDR 
were compiled into a spectral library with EasyPQP. 
Spectral libraries from the DDA and DIA runs were 
merged at the level of the final library tsv document. We 
assumed that a DIA-based peptide identification would 
provide the best representation of the fragments and 
their relative intensities for identification within a subse-
quent DIA run. Thus, only the unique peptides from the 
DDA library not seen in the DIA runs were appended to 
the DIA library. The final library contained 8,819 precur-
sors and 407 proteins.

Individual subject peptide and protein quantification
Individual DIA runs were processed using DIA-NN 
[12] by searching against the sample-specific libraries 
(described above) using double pass mode and match 
between runs. Retention time-based normalization set-
ting was used and maxLFQ calculated protein intensi-
ties, provided in the main DIA-NN output matrices, were 
used for further analysis.

Data cleaning
Peptides and proteins with at least one missing or zero 
value were removed from further analysis, reducing the 
number of peptides from 8,243 to 1,549 and proteins 
from 357 to 238 quantified across all samples. Forty pro-
teins with multiple Uniprot identifiers in their group 
were removed, resulting in 198 proteins measured across 
all samples. Only patients with complete demographic 
and sample collection data (i.e., age, sex, race) were car-
ried forward for analysis and four patients were removed 
who had duplicate rows between both peptide and pro-
tein datasets, resulting in 137 patients. Peptide and pro-
tein quantities were log2 transformed across each sample 
and corrected for batch effects using pyComBat [19].

Statistical analysis
Data cleaning, analysis, and model training were per-
formed in Python version 3.7.11 (SciKit-Learn [20], 
SciPy [21], seaborn [22], Matplotlib [23], Plotly [24], and 
Statsmodels [25]). Volcano plots were used to visualize 
the presence of any differentially expressed proteins and 
peptides between diseases. Log2 fold changes (FC) were 
calculated by subtracting the log2 mean quantity for each 
protein in the control group from the log2 mean quan-
tity in the disease group. P-values were determined using 
independent two-sample t-tests with Benjamini-Hoch-
berg (BH) multiple hypothesis testing correction. Age 

was compared between groups using a Wilcoxon Rank 
Sum Test due to non-normal distribution (Shapiro-Wilks 
p < 0.05). Fisher’s Exact Test was used to compare cat-
egorical variables (sex and ethnicity) between groups. BH 
adjusted p < 0.01 were considered statistically significant. 
To avoid test data leak into train data when performing 
feature selection [26], t-tests were performed only on 
the 80% train set to select significantly different peptides 
between groups, and then the prediction was made on 
the 20% test data filtered for these features.

Machine learning and feature importance
To account for the presence of correlated proteins within 
our dataset, we grouped quantitatively similar proteins 
using hierarchical clustering analysis before performing 
model interpretation to generate a list of uncorrelated 
protein groups ranked by their level of importance when 
classifying between disease states. Using only the 80% 
train set to avoid biasing the feature selection method 
with test data [26], we calculated the Spearman correla-
tion coefficients between each protein pair, converted 
the correlation matrix to a condensed distance matrix, 
and applied Ward’s linkage to cluster proteins based on 
distance. In the dendrogram, the number of vertical lines 
intersecting a horizontal line drawn at a linkage distance 
threshold represents the number of clusters at that dis-
tance. To identify the linkage distance threshold cor-
responding to optimal model performance, we trained 
different ML models with a single, representative protein 
from each cluster at various distance thresholds. The six 
supervised ML classification algorithms used were Gra-
dient Boosting Decision Trees (GB) [27], Support Vec-
tor Classification (SVC) [28], Random Forest (RF) [29], 
Extra-Trees (ET) [30], Logistic Regression (LR) [31], and 
K-nearest neighbors (KNN) [32]. Data was split into 80% 
training and 20% final test sets. To avoid overfitting, the 
80% training split was used to tune model hyperparam-
eters via a random search with fivefold cross validation 
optimized on F1-score, and the 20% test set was held-
out until final evaluation using the best model from the 
random hyperparameter search. This was repeated with 
up to 200 random sets of hyperparameters, i.e., up to 
1,000 models were trained for each ML method. The best 
hyperparameters were then used to refit each model with 
the entire 80% training set before assessing final perfor-
mance with the 20% test set. The model output was strat-
ified during data splitting to represent the proportion of 
classes in the whole dataset. Due to imbalanced classes, 
metrics that focus on the minority class, including pre-
cision, recall, F1-score, were chosen to represent gener-
alization performance of the test set. The model with the 
highest F1-score on the training set and the number of 
features at the corresponding linkage distance were used 
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for evaluation of the test set. F1-score, precision-recall 
area under  curve (PR AUC) and accuracy scores using 
this best model were reported for the test set.

Permutation importance (PI), or a decrease in accuracy 
score when a single feature’s value is randomly shuffled, 
was calculated on the test set using the number of fea-
tures determined at the optimal linkage distance. Each 
feature’s value was randomly shuffled 10 times and a 
decrease in accuracy score was calculated each time. The 
mean of the 10 scores was calculated for each protein and 
the mean decrease in accuracy scores were ordered from 
high to low. Proteins with the largest mean decrease in 
accuracy score were most important to the model’s pre-
dictions, and the top 10 proteins were visualized in a box 
and whisker plot.

Biological pathway analysis
All proteins among the top 10 PI protein groups at 
the  selected linkage distance were submitted for path-
way analysis. GO Biological Process term enrichment 
analysis was performed using the ClueGO (version 2.5.9) 
[33] application within Cytoscape (version 3.9.1) [34]. 
GO database release date was 5/25/2022. The default 
parameters were used, except: GO term fusion was 
turned on, the threshold for statistical significance was 
set to < 0.0001, and the GO tree interval was set to 3–8. 
Enriched terms were then manually filtered to keep only 
non-redundant terms that connected all the proteins to 
the network.

Results
Figure  1A depicts the study workflow. Plasma samples 
were obtained from 137 individuals, of which 75 were 
diagnosed with isolated Type B and 62 were diagnosed 
with isolated DTAA. Plasma proteomes were generated 
using DIA-MS and searched against a custom library of 
sample-specific peptides generated from pooled study 
plasma samples. Six ML classification algorithms were 
then trained on the protein quantities from DIA-NN to 
predict Type B or DTAA disease and feature importance 
allowed for ranking of most important protein predictors 
of disease.

After filtering for the highest quality and most consist-
ent protein identifications, a total of 198 proteins and 
1,549 peptides were quantified across all 137 samples 
included in this study. Volcano plots of the negative log10 
of the B-H adjusted p-value for all 198 proteins (left) and 
1,549 peptides (right) between DTAA and Type B as a 
function of the log2FC of the mean quantities between 
each group are plotted in Fig. 1B. A positive fold change 
indicates the mean protein quantity was higher in Type 
B relative to DTAA. There were no peptides and only 
one protein (hemopexin, HPX; p = 0.008) that were 

significantly different between groups. One protein addi-
tionally had a log2 FC greater than one, immunoglobulin 
heavy variable-64 (IGHV3-64). Quality control samples 
were included throughout the data acquisition to account 
for both digestion and mass spectrometry performance 
(Figure S1).

Patient demographics were compared between groups. 
Age was significantly higher in the DTAA group while 
there were no significant differences in sex or ethnicity 
between Type B and DTAA (Table  1). Median age was 
57  years in Type B and 66  years in DTAA (p = 0.002). 
Sixty-one percent of patients with Type B and 58% of 
those with DTAA were male. The most prevalent eth-
nicity in each group was Caucasian, followed by African 
American/Black and Hispanic/Latino.

When ML models are trained from correlated features, 
they may learn to rely on one arbitrary representative of 
the group of correlated features to make predictions. This 
is especially true of tree-based models. To avoid losing 
information about the correlated features within a group, 
a clustering strategy was used before ML model training 
and interpretation. Using the 80% train set, we visual-
ized correlations between the 198 protein features using 

Fig. 1  Study overview. A Proteomic dataset generation and analysis 
for classification between Type B and DTAA cases and identification 
of important protein predictors. B Left: Volcano plot of 1,549 peptides 
quantified across all samples; no peptides were differentially 
expressed between diseases. Right: Volcano plot of 198 proteins 
quantified across all samples; one protein was differentially expressed 
between diseases. A positive log2FC indicates protein mean 
is higher in Type B. Negative log10 (adjusted p-value) > 2 corresponds 
to an adjusted p < 0.01
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a heatmap of Spearman rank-order correlation coeffi-
cients. The heatmap indicates distinct groups of highly 
correlated proteins (Fig.  2A). Hierarchical clustering of 
proteins was performed across linkage distances from 
zero to five; as linkage distance increases, there are fewer 
uncorrelated protein clusters (Fig. 2B). For example, at a 

linkage distance of four, all proteins are grouped into only 
two protein clusters. The number of protein clusters at 
each linkage distance is depicted in Fig. 2C. A single pro-
tein was selected at random from each group of corre-
lated proteins to be used for model training. This allowed 
tracing each protein selected by the model as ‘important’ 

Table 1  Baseline characteristics of patients with Type B or DTAA​

Continuous variables are reported as median (IQR) and categorical as counts (%)

Type B (N = 75) DTAA (N = 62) p-value

Age (yrs) median (IQR) 57 (51–67) 66 (58–74) 0.002

Sex count (%) M: 46 (61%) M: 36 (58%) 0.73

F: 29 (39%) F: 26 (42%)

Ethnicity count (%) Caucasian: 37 (49.3%) Caucasian: 41 (66.1%) 0.07

African American/Black: 24 (32%) African American/Black: 12 (19.4%)

Hispanic/Latino: 13 (17.3%) Hispanic/Latino: 7 (11.3%)

Asian: 1 (1.3%) Asian: 0 (0%)

Other: 0 (0%) Other: 2 (3.2%)

Fig. 2  Machine learning (ML) approach for discovery of most predictive proteins between Type B dissection compared to DTAA samples. A 
Heatmap of Spearman rank-order correlation coefficients for each pairing between 198 proteins (zero implies no correlation). B Hierarchical 
clustering on Spearman rank-order correlations using Ward’s linkage; a linkage distance of 0.5 yields 111 correlated protein clusters. C Number 
of uncorrelated protein clusters at each linkage distance. D Average F1-scores from fivefold cross validation for each ML model with the training 
data across linkage distance thresholds from 0 to 5. A single protein from the clusters at each threshold was arbitrarily selected as input 
to the models; SVC at a linkage distance of 0.5 had the highest F1-score on the train set compared to all other models. At this threshold, there 
were 111 protein clusters. E F1-score and PR AUC for test set across various thresholds for SVC showing good performance at 0.5 linkage distance 
threshold (SVC test F1-score 0.67, PR AUC 0.69). F Box and whisker plots of the distribution of PI scores for the top 10 sentinel proteins from the total 
111 clusters. Each box has a line at the median and extends between the lower and upper quartiles of the PI distribution for that protein



Page 7 of 11Momenzadeh et al. Clinical Proteomics           (2024) 21:38 	

back to the larger group of correlated proteins after we 
performed feature importance on the best model. Aver-
age training F1-scores across linkage distances from zero 
to five were visualized for six ML models (Fig. 2D). Train-
ing F1-scores generally declined across models as linkage 
distance increased and there were fewer features input 
to the models. The highest F1-scoring model using the 
training set at any linkage distance was SVC with a score 
of 0.67 at a linkage distance of 0.5. One hundred eleven 
protein clusters were present at this threshold. Figure 2E 
shows generalizability of the optimized SVC model on 
the test set (accuracy 0.74, F1-score 0.67, and PR AUC 
0.69). Optimal hyperparameters for the SVC model were 
C = 0.1, gamma = 1, kernel = poly, and  probability = True 
when tested with the 111 representative proteins from 
each cluster. PI scores were then calculated for these 111 
proteins. Figure 2F shows box and whisker plots for the 
decrease in accuracy score across the 10 permutations 
for the top 10 most important sentinel proteins sorted 
by their mean decrease in accuracy score. The mean 
decrease in accuracy score and representative protein for 
each cluster are listed in Table S1.

Using these mean PI scores, we filtered for only the 
proteins with a positive score. The threshold to apply as 
a cut off to the PI score is objective [10], i.e., we chose 
values above zero, but a higher PI may have been selected 
to filter the number of proteins. There were 23 sentinel 
proteins with a positive PI score and a total of 38 pro-
teins making up the 23 sentinel protein clusters. PI scores 
provide a ranked list of important proteins in prediction 
between the two diseases, versus statistics which selects 
a protein based on an  adjusted p-value cut-off [10]. To 
visualize the difference in level of information provided 
by each method, negative log10 of the adjusted p-values 
derived for each protein between the two groups was 
plotted as a function of the mean PI scores for these 23 
proteins (Fig.  3). While HPX is the only significantly 

different protein, there are proteins (LCAT, F12 and 
IGHV6-1) chosen by the model as more ‘important’ than 
HPX for classification between diseases. There are also 
a number of proteins that have similar mean PI scores 
to HPX. Log2FC, B-H adjusted p-values and mean PI 
scores for the top 10 protein clusters, mapping to 19 total 
protein, are listed in Table  2. IGHV6-1 had the highest 
PI score, however it’s quantity between groups was not 
significantly different (B-H adjusted p-value 0.38). A 
negative  log2FC indicates the mean quantity of the pro-
tein  was higher in the DTAA group compared to the 
Type B group. Mean quantities per group, log2FC, nega-
tive log10 adjusted p-values and adjusted p-values for all 
198 proteins are listed in Table S2.

These 19 proteins from the top 10 clusters shown in 
Fig.  2F were then input to GO term enrichment analy-
sis. Proteins in the following pathways were significantly 
enriched in the plasma of Type B dissection compared 
to DTAA patients: complement activation, humoral 
immune response mediated by circulating immuno-
globin, and blood coagulation/fibrin clot formation 
(Fig. 4).

Discussion
These data represent the most comprehensive analysis 
we are aware of describing the circulating proteome from 
patients with descending aortic disease to date. As the 

Fig. 3  Comparison of -log10 (adjusted p-values) to mean PI for all 
proteins with a positive mean PI score

Table 2  Log2FC, adjusted p-values, and mean PI scores for 10 
highest PI scoring clusters

Representative cluster protein is shown in bold for each cluster. Positive log2FC 
indicates mean protein quantity is higher in Type B group. Negative log2FC 
indicates mean protein quantity is higher in DTAA group

Clustered proteins Log2FC B-H adjusted 
p-value

Mean PI

IGHV6-1 −0.17 0.38 0.057

LCAT​
HRG
HGFAC
PGLYRP2

−0.21 0.047 0.057

F12 −0.21 0.076 0.050

HPX −0.25 0.0081 0.032

IGHV4-4
IGHV1-45
IGHV1-24
IGHV5-51
IGLV1-40

−0.055 0.89 0.029

IGLV7-46 −0.070 0.95 0.025

F13A1
F13B

−0.24 0.50 0.025

IGLV2-11 0.071 0.89 0.021

A2M
FBLN1

−0.14 0.55 0.018

IGHV3-11 −0.10 0.84 0.018
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process of identifying informative features for eventual 
biomarker panel production is arguably more intuitive 
at the protein level and proteins appeared highly corre-
lated, we segregated proteins into similar clusters, and 
used permutation-based importance ranking to identify 
correlated protein groups that were informative for sep-
arating patients between DTAA and Type B conditions. 
We were able to find only one differentially expressed 
protein between Type B and DTAA patients, yet the ML 
approaches still differentiated patients between these 
two groups to some extent (AUPR = 0.7) using the test 
set data not used during model training. We found that 
we can reduce our protein data to a list of 111 uncor-
related proteins to train the highest performing model. 
Clusters important in distinguishing between the dis-
eases included proteins involved in inflammation and 
coagulation.

ML is likely picking up patterns across many meas-
ured proteins, compared to statistical tests that ask if one 
protein in aggregate has a different mean value between 
the groups. This may be useful for complex diseases that 
are heterogeneous across individuals; ML models can 
learn multiple signatures leading to disease. The main 
downside of using ML is that it requires many samples, 
typically hundreds, compared to statistics, which can 
be performed with as few as three replicates per group. 
Thus, modeling larger proteomic datasets using more 
sophisticated and modern approaches may be a potent 
approach for gaining new insight into the power of pro-
teomic signatures for predictive biomarker development.

Many of the informative proteins selected by the ML 
model demonstrated similar trends for differential abun-
dance in our previous proteomic analysis of tissue sam-
ples comparing Type B and DTAA [8]. Plasma HPX was 
both a ML model selected and significantly abundant 
protein between aneurysm and dissection cases in our 

study, and also demonstrated a trend toward increased 
abundance in aneurysm tissue relative to dissected tis-
sue. Hemopexin is a heme scavenging protein considered 
to be generally protective against cardiovascular disease 
and atherosclerosis [35, 36]. Similarly matched trends 
for abundance in both circulating plasma and tissue pro-
teome of DTAA relative to Type B patients was observed 
for another heme scavenger, A2M, as well as proteins 
IGHV6-1, HRG, PGLYRP2 and F13A and B. Prominent 
involvement of immunoglobulins including IGHV6-1 
is consistent with recent reports of a potentially patho-
genic role for B cells and immunoglobulin deposition in 
abdominal aortic aneurysm (AAA) [37], and suggests 
similar involvement in the descending thoracic aorta. 
Factor 13A and B are fibrinolytic proteins with gene poly-
morphisms associated with AAA and hemolytic aneu-
rysmal subarachnoid hemorrhage in the brain [38, 39]. 
One other interesting standouts in the list of informa-
tive proteins differentiating aneurysm and dissection 
was SAA4 (elevated in dissection). Overall levels of cir-
culating Serum Amyloid A were recently identified as a 
potential biomarker for acute ascending and type B aortic 
dissection [40]. While the prior mentioned study did not 
differentiate between SAA subtypes (e.g., SAA1, SAA2, 
or SAA4), this work generally supports the biological 
relevance of SAA4 protein as potentially important for 
distinguishing aneurysm from dissection in descending 
thoracic aortic disease. Taken together, many of the pro-
teins selected by the ML models as highly informative for 
discriminating diseases are supported by solid corrobo-
rating biological evidence and for some, prior identifica-
tion as putative biomarkers for thoracic aortic disease, 
thus providing evidence for the validity of this approach 
for identifying informative plasma biomarker candidates.

This study is a preliminary effort to address a press-
ing need for informative biomarkers for descending 

F12
IGHV5-51

IGHV1-24

IGHV3-11

IGHV4-4
HPX

IGHV1-45

complement
activation

A2M

blood coagulation,
fibrin clot formation
F13A1 F13B

FBLN1

humoral immune
response

IGHV6-1

Fig. 4  Biological term enrichment analysis of proteins altered between Type B dissection vs DTAA samples
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thoracic disease, and while powerful and biologically 
plausible new hypotheses have been generated, there 
are some weaknesses to mention. It is likely that small 
sample sizes impacted discriminative power and per-
formance of the ML classifier, and future studies that 
expand the numbers of patients are needed. Samples 
were collected at very late-stage disease, just prior to 
surgical intervention. By this time, many aneurysm 
patients may have very similar overall pro-inflamma-
tory plasma proteome signatures relative to aortic 
dissection patients. While this can be helpful in dis-
tinguishing disease states at their most extreme, the 
highest translational and clinical impact will come 
from biomarkers that can detect and distinguish dis-
ease at very early stages of development and thus both 
predict adverse progression and provide theranostics 
to monitor effectiveness of pharmacological interven-
tion. In addition, dissection absent a prior aneurysm 
may represent a very distinct pathogenic process for 
which late-stage aneurysm biomarkers cannot predict, 
and from which biomarkers of Type B dissection alone 
will not transfer to cases of dissection after significant 
aneurysm degeneration. Thus, future work is needed 
to determine the robustness of the selected candidate 
markers in additional patients at later disease stage and, 
importantly, then determine which putative biomarkers 
may be informative at detecting early-stage disease and 
predicting risk for severe outcomes.

Conclusions
The data presented in this preliminary report provide 
a framework and preliminary protein signature from 
which ongoing efforts will be built and support the 
power of ML for identifying biomarker candidates and 
building discriminative models to distinguish between 
biological states within the context of descending tho-
racic aortic disease.
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