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Abstract 

Biomarkers play a crucial role in advancing precision medicine by enabling more targeted and individualized 
approaches to diagnosis and treatment. Various biofluids, including serum, plasma, cerebrospinal fluid (CSF), saliva, 
tears, pancreatic cyst fluids, and urine, have been identified as rich sources of potential for the early detection of dis-
ease biomarkers in conditions such as cancer, cardiovascular diseases, and neurodegenerative disorders. The analy-
sis of plasma and serum in proteomics research encounters challenges due to their high complexity and the wide 
dynamic range of protein abundance. These factors impede the sensitivity, coverage, and precision of protein 
detection when employing mass spectrometry, a widely utilized technology in discovery proteomics. Conventional 
approaches such as Neat Plasma workflow are inefficient in accurately quantifying low-abundant proteins, includ-
ing those associated with tissue leakage, immune response molecules, interleukins, cytokines, and interferons. Moreo-
ver, the manual nature of the workflow poses a significant hurdle in conducting large cohort studies. In this study, our 
focus is on comparing workflows for plasma proteomic profiling to establish a methodology that is not only sensi-
tive and reproducible but also applicable for large cohort studies in biomarker discovery. Our investigation revealed 
that the Proteograph XT workflow outperforms other workflows in terms of plasma proteome depth, quantitative 
accuracy, and reproducibility while offering complete automation of sample preparation. Notably, Proteograph XT 
demonstrates versatility by applying it to various types of biofluids. Additionally, the proteins quantified widely cover 
secretory proteins in peripheral blood, and the pathway analysis enriched with relevant components such as interleu-
kins, tissue necrosis factors, chemokines, and B and T cell receptors provides valuable insights. These proteins, often 
challenging to quantify in complex biological samples, hold potential as early detection markers for various diseases, 
thereby contributing to the improvement of patient care quality.
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Background
Biomarkers, encompassing measurable substances, struc-
tures, or biological processes in the body, play a crucial 
role in various aspects of medical research and clinical 

applications. They are integral to disease diagnosis, prog-
nosis, and monitoring, as well as drug development and 
the emerging field of personalized medicine [1, 2].

Cutting-edge technologies such as genomics, prot-
eomics, metabolomics, and imaging techniques enable 
the identification and validation of biomarkers. Tradi-
tionally, tissue biopsy has been a cornerstone for diag-
nosis, providing histological and mutational profiles. 
However, this method is invasive and presents chal-
lenges in sample accessibility, repetition frequency, 
patient comorbidities, tissue storage, and sample 
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integrity maintenance. Overcoming these barriers, var-
ious non-invasive biofluids such as blood, urine, saliva, 
or cerebrospinal fluid serve as rich sources of biomark-
ers [3]. Nonetheless, the high complexity and large 
dynamic range of protein abundance in these fluids 
pose challenges to mass spectrometry analysis, affect-
ing sensitivity, coverage, and precision [4].

Despite the availability of over 100 FDA-approved 
plasma or serum tests for detecting highly abundant 
proteins and certain tissue leakage protein biomarkers 
[5], many of these biomarkers are not available for early 
disease detection in conditions such as cancer, car-
diovascular diseases (CVDs), and neurological disor-
ders. The increasing burden of CVDs, now the leading 
cause of death in the United States [6, 7], highlights the 
urgent need for effective biomarkers. Similarly, neuro-
logical disorders contribute significantly to global mor-
bidity and mortality [8], underscoring the importance 
of biomarker research in this field.

Early detection plays a crucial role in mitigating the 
impact of cancer, the second leading cause of death 
worldwide [9]. Biomarkers such as cardiac troponin, 
C-reactive protein, and natriuretic peptides are piv-
otal in the early detection and prognosis of heart fail-
ure [10]. While clinical tests for conditions like ALS 
and FTD are lacking, recent research has identified 
abnormal proteins, notably TDP-43 dysfunction, in the 
spinal fluid of individuals with these conditions [11], 
offering promise as potential protein biomarkers for 
improvement.

Advancements in mass spectrometry proteomics tech-
nologies, including improvements in sensitivity, scan 
speed, reproducibility, and dynamic range coverage, 
make it possible to work with complex biological samples 
such as biofluids. Automation of sample preparation and 
high-throughput LC–MS/MS systems enable large-scale 
clinical studies, addressing the pressing need for early 
disease detection biomarkers [12]. Improved data analysis 
pipelines and machine learning tools such as OmicLearn 
[13] and Clinical Knowledge Graph (CKG) [14] acceler-
ate the analysis and interpretation of large cohort studies, 
facilitating informed clinical decision-making.

This study evaluates three distinct workflows Neat 
Plasma, ENRICH-iST, and Proteograph XT for their 
applicability in biomarker discovery. The assessment 
focuses on reproducibility, robustness, and the ability 
to achieve comprehensive proteome coverage, utilizing 
human pool plasma samples as a representative model. 
Among these workflows, Proteograph XT stands out 
as it outperforms others while also offering complete 
automation of sample preparation, thereby providing a 
promising avenue for advancing early detection disease 
biomarker discovery.

Methods
Neat plasma sample preparation
1 μL of Neat Plasma samples was diluted at a 1:10 ratio 
with 100 mM Tris–HCl, pH 8.5. Subsequently, 1.5 μL of 
the diluted plasma samples were resuspended in 40  μL 
of freshly prepared SDC lysis buffer [15] (1% SDC and 
100  mM Tris–HCl, pH 8.5) and boiled for 15  min at 
60 °C, 1200 rpm for denaturation. Protein reduction and 
alkylation of cysteines were carried out using 10  mM 
TCEP and 40  mM CAA for 10  min at 45  °C, 1200  rpm 
followed by sonication in a water bath, cooled down to 
room temperature. Protein digestion was performed 
overnight by adding LysC/trypsin mix in a 1:50 ratio 
(µg of enzyme to µg of protein) at 37  °C and 1400 rpm. 
The resulting peptides were acidified by adding 1% TFA, 
vortexed, and subjected to Stage Tip clean-up via SDB-
RPS [15], followed by drying in a speed-vac. The pep-
tides were then resuspended in 10  μL of LC buffer (3% 
ACN/0.1% FA). Peptide concentrations were determined 
using NanoDrop, and 200 ng of each sample was utilized 
for diaPASEF analysis on timsTOF Pro 2.

Plasma sample preparation with ENRICH‑iST workflow
Plasma samples were processed using the PreOmics 
ENRICH-iST Kit following the vendor’s provided pro-
tocols [16]. In brief, 20 µL of plasma samples were incu-
bated with pre-washed EN-BEADS for 30  min at 30  °C 
and 1200  rpm in 1.5  mL Eppendorf tubes on a Ther-
moMixer with EN-BIND buffer. Proteins bound to EN-
BEADS were washed three times, and the proteins were 
further processed using the iST-BCT workflow, opti-
mized for biofluids. Next, 50 μL of LYSE-BCT was added 
to each Eppendorf tube, and the samples were heated at 
95 °C for 10 min with agitation at 1200 rpm. After cool-
ing the Eppendorf tubes to room temperature, a trypsin 
digestion buffer was added, and the tubes were incubated 
at 37 °C for 3 h with shaking at 1200 rpm. The digestion 
process was stopped by adding the supplied stop buffer, 
and the remaining reaction supernatant was cleaned up 
using the provided filter cartridge. The peptides were 
eluted twice with 100 μL of elution buffer and combined.

The peptides were then dried in a speed-vac and resus-
pended in 10 μL of LC buffer (3% ACN/0.1% FA). Peptide 
concentrations were determined using NanoDrop, and 
200 ng of each sample was utilized for diaPASEF analysis 
on the timsTOF Pro 2.

Plasma sample preparation with Proteograph XT workflow
240  µL plasma samples were used. The corona forma-
tion, wash, protein lysis and alkylation, digestion, and 
peptide cleanup were done on Proteograph XT workflow 
on SP100 Automation Instrument (Seer) as described 
[17]. The eluted peptides were dried in a speed-vac and 
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resuspended in 10  μL of LC buffer (3% ACN/0.1% FA). 
Peptide concentrations were determined using Nan-
oDrop, and 200  ng of each sample was utilized for dia-
PASEF analysis on the timsTOF Pro 2.

Liquid chromatography with tandem mass spectrometry 
(LC–MS/MS)
Peptides were separated over 65  min at a flow rate of 
300 nL/min using a reversed-phase C18 column with an 
integrated CaptiveSpray Emitter (25 cm × 75 µm, 1.6 µm, 
IonOpticks). Mobile phases A and B consisted of 0.1% 
formic acid in water and 0.1% formic acid in acetoni-
trile, respectively. The percentage of mobile phase B was 
increased linearly from 2 to 25% over 35 min, followed by 
a further increase to 40% over 10 min, then to 95% over 
10 min, and finally, the column was washed for 10 min. 
The timsTOF Pro 2 operated in diaPASEF mode [18] with 
data acquired across defined 50 Th isolation windows 
from 350 to 1000 m/z and 0.66 to 1.31 1/K0 for mass and 
IM range, respectively. To adjust the MS1 cycle time in 
diaPASEF, repetitions were set to 2 in the 13-scan dia-
PASEF scheme. The collision energy was ramped linearly 
as a function of mobility from 59  eV at 1/K0 = 1.60 Vs 
cm−2 to 20 eV at 1/K0 = 0.60 Vs cm−2. Detailed LC–MS/
MS settings are provided in the Supplementary Informa-
tion, Table S3.

Data analysis
The acquired diaPASEF raw files were searched using 
the UniProtKB/Swiss-Prot Homo sapiens database 
(downloaded in 2023, 42,356 entries) was performed 
using library-free workflow in the DIA- DIA-NN 1.8.1 
[19] search engine, employing the default settings of the 
library-free search algorithm with match-between-runs 
(MBR) enabled. A maximum of 1 trypsin missed cleavage 
was allowed and the maximum variable modification was 
set to 1. Carbamidomethylation was set as the fixed mod-
ification, whereas protein N-terminal methionine exci-
sion, methionine oxidation, and N-terminal acetylation 
were set as variable modifications. The peptide length 
range was set to 7–30 amino acids, precursor charge 
range 1–4, precursor m/z range 300–1000, and fragment 
ion m/z range 200–1800. The false discovery rates (FDRs) 
at the protein and peptide levels were set to 1%, and MS1 
and MS2 mass tolerances were automatically determined 
by DIA-NN.

Results obtained from DIA-NN were subjected to fur-
ther statistical analyses, and data visualizations were 
performed using R software version 4.2.3 and RStudio 
version 2023.12.0 + 369. All plots, including bar plots, 
protein rankings, and coefficients of variation (CV), were 
created using the ggplot2 library from the tidyverse pack-
age. The Venn diagram was generated using a web-based 

tool (https://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​
Venn/), and gene ontology (GO) term and pathway analy-
ses were performed using the R package clusterProfiler 
[20]. Heatmaps were created using the statistical tool 
Perseus (1.6.15.0) (from MaxQuant) [21]. All R scripts 
and plots generated to compose the figures are reported 
on are provided in Supplementary Material by figure 
number.

Results
A comprehensive comparison of workflows for plasma 
proteome profiling
Early disease detection relies on the identification and 
quantification of reliable biomarkers. The pooled human 
plasma samples were divided into 8 aliquots, and each 
aliquot underwent processing to evaluate the Neat 
Plasma workflow and commercially available sample 
preparation kit ENRICH-iST and the fully automated 
Proteograph XT workflow, as depicted in (Fig.  1). The 
Neat Plasma workflow entails manual processing with 
laboratory reagents, while the ENRICH-iST approach 
enriches proteins, providing a streamlined sample prepa-
ration workflow. In contrast, the Proteograph XT work-
flow is fully automated and utilizes two nanoparticles, 
selectively enriching an unbiased subset of proteins in 
complex plasma samples.

All three workflows (Fig. 1) were processed using iden-
tical pooled plasma aliquots, and data acquisition was 
conducted on a timsTOF Pro 2 instrument with a 65 min 
gradient and diaPASEF method. The subsequent data 
analysis was performed employing DIA-NN. Initially, the 
protein identification performance of each workflow was 
assessed. Across all three workflows, approximately 5881 
protein groups were identified. Notably, Proteograph XT 
exhibited superior performance, identifying, and quan-
tifying over 4.2-fold more protein groups compared to 
Neat Plasma and 2.4-fold more compared to ENRICH-
iST (Supplementary Information: Table S1, Fig. 2A). Sim-
ilarly, 66,987 peptides were identified, with Proteograph 
XT quantifying over 6.7-fold more compared to Neat 
Plasma and fourfold more compared to ENRICH-iST 
(Supplementary Information: Table S2, Fig. 2B).

The protein dynamic range and complexity play cru-
cial roles in the depth of the quantified plasma proteome, 
with Neat Plasma samples providing the least informa-
tion. However, ENRICH-iST exhibits improvement com-
pared to Neat Plasma, and the Proteograph XT workflow 
outperforms both alternatives.

Large cohort studies rely on a robust and reproducible 
workflow. We compared the quantified normalized inten-
sity of protein groups within different workflows Neat 
Plasma, ENRICH-iST, and Proteograph XT. The Neat 
Plasma, ENRICH-iST, and Proteograph XT workflows 

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 1  Plasma sample preparation workflows. A visual representation comparing the Neat Plasma, ENRICH-iST, and Proteograph XT workflows step 
by step.
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yielded a median coefficient of variation (CV) of 24.6, 
21.0, and 10.7%, respectively, as shown in (Fig. 2C). The 
Proteograph XT workflow demonstrated the lowest CV 
compared to the Neat Plasma and ENRICH-iST work-
flows, attributed to the uniform and consistent enrich-
ment of proteins using SeerProteograph’s nanoparticle 
technology, operating across a large dynamic range. The 
fully automated capabilities of SeerProteograph also 
contribute to minimizing technical challenges in the 
workflow.

Plasma/serum samples are complex due to the broad 
dynamic range of proteins, posing challenges for the iden-
tification and quantification of low-abundant proteins 
through LC–MS/MS. To assess the dynamic range cov-
ered by each workflow, we utilized a protein abundance 
ranking of protein groups’ normalized intensities, reveal-
ing an approximate span of 4.6 orders of magnitude. The 
Proteograph XT workflow significantly increased the 

number of quantified proteins by over 6.3-fold and 3.4-
fold compared to the Neat Plasma and ENRICH-iST 
workflows. This extension indicates a highly efficient 
reduction of the dynamic range (Fig.  2D) compared to 
the Neat Plasma and ENRICH-iST workflows.

Comparative analysis of workflows for secretome database 
coverage
Next, we explored the coverage of the secretome data-
base, which comprises soluble proteins and secreted 
extracellular vesicles, encompassing biologically active 
factors such as cytokines, interleukins, interferons, 
chemokines, complement and coagulation factors, hor-
mones, growth factors, enzymes [22]. These proteins, 
shed from cells/tumors, play a crucial role in cell signal-
ing, communication, and growth, and their abundance 
changes under various pathological conditions. While 
these proteins are secreted into the extracellular space, 

Fig. 2  Plasma sample preparation workflow comparison. A Protein groups identified by each workflow B Peptides identified by each workflow. 
C Coefficient of Variation (CV) for median quantified protein intensities within workflows. D The dynamic range of quantified protein abundance 
across workflows
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they are generally more abundant in biological fluids [23]. 
The dynamic nature of secretome protein composition 
makes them a valuable source of potential biomarkers for 
cancer and other diseases, aiding in diagnosis, prognosis, 
and therapeutic monitoring [24].

The Secretome database, sourced from The Human 
Protein Atlas [25], underwent a comprehensive 

comparison across the Neat Plasma, ENRICH-iST, and 
Proteograph XT workflows to assess coverage. Proteins 
quantified in all samples within these workflows were 
included in the analysis, revealing that the Proteograph 
XT workflow exhibited notably high coverage, particu-
larly in the quantification of low-abundant proteins 
(Fig. 3A).
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For Gene Ontology (GO) terms functional analysis, 
a ~ 39% overlap of proteins of Proteograph XT workflow 
was chosen (Fig. 3B). This analysis encompassed Molecu-
lar Function (MF), Biological Processes (BP), and Cellu-
lar Compartments (CC) (Fig. 3C). The proteins predicted 
to be secreted into human blood encompassed a diverse 
array, including well-characterized proteins associated 
with the extracellular matrix organization, enzymes, 
receptors, cytokines, complement activation, peptidase 
activator, humoral immune response, wound healing, 
leukocyte migration, cell chemotaxis, myeloid leukocyte 
migration, transport proteins, developmental proteins, 
defense proteins, enzymes, enzyme inhibitors, integrin 
binding, antigen binding, glycosaminoglycan binding, 
collagen binding, B cell-mediated immunity-related pro-
teins, and classical pathway.

While the identified proteins were found in plasma, 
statistical analysis suggests they are secreted from vari-
ous cellular compartments, including the endoplasmic 
reticulum (ER) lumen, vesicle lumen, secretory granule 
lumen, blood microparticles, lysosomal lumen, platelet 
alpha granule lumen, Golgi lumen, plasma lipoprotein 
particles, and protein-lipid complexes.

In the KEGG pathway analysis, these proteins showed 
significant enrichment for a variety of pathways includ-
ing complement and coagulation cascades, cytokine-
cytokine receptor interaction, PI3K-AKT signaling 
pathways, ECM-receptor interaction, lysosome, protein 
digestion and absorption, cholesterol metabolism, TGF-
beta signaling pathway, antigen processing and presen-
tation, fat digestion and absorption, glycosaminoglycan 
degradation pathways (Fig. 3D).

Comparative analysis of workflows for functional 
annotation coverage
We investigated the coverage of proteins quantified in 
three workflows using functional annotation enrich-
ment analysis. Hierarchical clustering of quantified pro-
teins based on their log2 intensity yielded three distinct 
groups of clusters (Fig.  4A). Each cluster was analyzed 
for enriched pathways using ClusterProfiler R package 
of the function of compareCluster with WikiPathways 
[20] using a threshold of Benjamini and Hochberg (BH) 
adjusted p-value < 0.05. Proteins covered with cluster 1 
showed significant enrichment for a variety of pathways 
including complement and coagulation cascades, com-
plement system, complement activation, blood clotting 
cascade, lipid particle composition, cholesterol metabo-
lism, metabolism of triglycerides, and acute inflamma-
tory response. Proteins present in Cluster 1, quantified 
in all three workflows, these proteins are highly abundant 
and consistently quantified.

Proteins associated with EGF EGFR signaling, VEGFA 
VEGFR2 signaling, glycolysis and gluconeogenesis, 
chemokine signaling pathway, and B cell receptor signal-
ing pathway are enriched by cluster 2. Proteins present in 
Cluster 2, quantified in ENRICH-iST, and Proteograph 
XT workflows.

Proteins associated with Insulin signaling, TNF alpha 
signaling pathway, T and B cell receptor signaling, 
IL1/2/5 signaling, proteasome degradation pathways 
were enriched by cluster 3. Cluster 3 proteins were iden-
tified in Proteograph XT workflow only, these proteins 
are low abundant in the samples and could potentially 
serve as crucial biomarkers.

Discussion
The emergence of cutting-edge technologies for discov-
ery-based quantitative proteomics, such as ultra-sensi-
tive and high-speed mass spectrometers, fully automated 
sample preparation systems, and machine learning algo-
rithms for data analysis and quantification, has made it 
feasible to conduct large cohort studies for novel early 
diseases biomarker discovery [26, 27].

In this study, various workflows for plasma proteomic 
profiling were compared to establish a methodology char-
acterized by sensitivity, reproducibility, and depth. Our 
results demonstrated that the Proteograph XT outper-
formed other methods, identifying, and quantifying over 
4.2-fold more protein groups compared to Neat Plasma 
and 2.4-fold more compared to ENRICH-iST. Similarly, 
peptides were identified at a higher rate, with Proteo-
graph XT quantifying over 6.7-fold more compared to 
Neat Plasma and fourfold more compared to ENRICH-
iST. The Proteograph XT workflow’s full automation 
improved the median coefficients of variation (CV) to 
10.7%, compared to 24.6% for Neat Plasma and 21.0% for 
ENRICH-iST. The enhanced depth and dynamic range 
reduction achieved by the Proteograph XT workflow are 
crucial for detecting extremely low-abundance proteins. 
Functional analysis using Gene Ontology (GO) terms 
and pathway analysis revealed associations with recep-
tors, cytokines, interleukins, immune responses, TNF 
alpha signaling pathway, and T and B cell receptor signal-
ing, suggesting the potential of these proteins as critical 
biomarkers.

Each workflow has its limitations. The Neat Plasma 
workflow, widely used and requiring only 1 µL of sam-
ple volume, is inefficient in accurately quantifying low-
abundance proteins. Furthermore, its manual nature 
poses significant hurdles for conducting large cohort 
studies. Similarly, the ENRICH-iST workflow, although 
it simplifies the sample preparation process through a 
vendor-supplied protocol, shares similar limitations in 
detecting low-abundance proteins and lacks complete 
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automation. This limitation can introduce variability 
and limit throughput. Moreover, the Proteograph XT 
workflow demands a larger sample volume of 240 µL of 
plasma per sample, which may not always be feasible, 
particularly in studies with limited sample availability. 
These limitations underscore the urgent need for ongo-
ing improvements in proteomics workflows to enhance 
their efficiency, automation, and ability to detect low-
abundance proteins effectively, which are crucial for 
advancing discovery in proteomics research.

In conclusion, despite these limitations, the Pro-
teograph XT workflow stands out for its sensitivity, 
reproducibility, and capacity to provide deep proteome 
coverage with state-of-the-art mass spectrometers. 
It holds promise in contributing significantly to the 

discovery of novel early disease biomarkers through 
large cohort studies across various diseases such as 
cancer, neurological disorders, and cardiovascular 
conditions.
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