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Abstract
Background  Progressive supranuclear palsy (PSP) is a neurodegenerative disorder often misdiagnosed as Parkinson’s 
Disease (PD) due to shared symptoms. PSP is characterized by the accumulation of tau protein in specific brain 
regions, leading to loss of balance, gaze impairment, and dementia. Diagnosing PSP is challenging, and there is a 
significant demand for reliable biomarkers. Existing biomarkers, including tau protein and neurofilament light chain 
(NfL) levels in cerebrospinal fluid (CSF), show inconsistencies in distinguishing PSP from other neurodegenerative 
disorders. Therefore, the development of new biomarkers for PSP is imperative.

Methods  We conducted an extensive proteome analysis of CSF samples from 40 PSP patients, 40 PD patients, and 
40 healthy controls (HC) using tandem mass tag-based quantification. Mass spectrometry analysis of 120 CSF samples 
was performed across 13 batches of 11-plex TMT experiments, with data normalization to reduce batch effects. 
Pathway, interactome, cell-type-specific enrichment, and bootstrap receiver operating characteristic analyses were 
performed to identify key candidate biomarkers.

Results  We identified a total of 3,653 unique proteins. Our analysis revealed 190, 152, and 247 differentially expressed 
proteins in comparisons of PSP vs. HC, PSP vs. PD, and PSP vs. both PD and HC, respectively. Gene set enrichment 
and interactome analysis of the differentially expressed proteins in PSP CSF showed their involvement in cell 
adhesion, cholesterol metabolism, and glycan biosynthesis. Cell-type enrichment analysis indicated a predominance 
of neuronally-derived proteins among the differentially expressed proteins. The potential biomarker classification 
performance demonstrated that ATP6AP2 (reduced in PSP) had the highest AUC (0.922), followed by NEFM, EFEMP2, 
LAMP2, CHST12, FAT2, B4GALT1, LCAT, CBLN3, FSTL5, ATP6AP1, and GGH.
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Introduction
Progressive supranuclear palsy (PSP) is a neurodegenera-
tive Parkinsonian disorder with an estimated prevalence 
of about 5 to 6 in every 100,000 people worldwide, typi-
cally beginning after the age of 60 [1–3]. The pathological 
features of PSP are characterized by progressive accumu-
lation of 4-repeat tau, formation of globose neurofibril-
lary tangles, and neuronal loss in the brainstem, basal 
ganglia, and cortex [1]. Two of the classic clinical signs 
of patients with PSP are impairment of vertical gaze and 
balance loss with backward falls [4]. The most common 
initial symptom of people with PSP is balance loss [5] and 
subsequently, PSP patients show changes in their mood 
and behavior and develop dementia over time [1–3]. It is 
recognized that PSP can have different clinical presenta-
tions, and the current clinical diagnostic criteria include 
several variants in addition to the most common PSP-
Richardson syndrome [6]. 

The clinical evaluation of early-stage and variant forms 
of PSP is challenging, with limited sensitivity and speci-
ficity, making it difficult to distinguish PSP from alter-
native diagnoses such as Parkinson’s Disease (PD) [6]. 
In recent years, diagnostic approaches have evolved, 
exploiting magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET) [7]. Currently, there 
are no established diagnostic biomarkers of PSP, owing 
to observed discrepancies between clinical manifesta-
tions and underlying neuropathological findings. These 
inconsistencies hinder their utilization in key areas such 
as early-stage diagnosis, precise pathological character-
ization, and longitudinal tracking of disease progression 
[8]. Further research and development are essential for 
discovering and optimizing PSP biomarkers, given their 
potential importance in understanding and managing the 
disease.

Multiple research groups have endeavored to establish 
an accurate diagnosis of PSP by identifying specific CSF 
biomarkers [1, 4]. Since the abnormal accumulation of 
tau proteins within brain cells is considered a potential 
target for developing therapeutic interventions for PSP, 
the predominant studies on CSF biomarkers for PSP were 
focused on tau proteins [9–11]. However, the relationship 
between total tau, phosphorylated tau, and tau fraction 
levels in CSF and the disease’s clinical presentation may 
be complex, and not necessarily distinct from healthy 
control (HC) groups in certain contexts [2, 12]. 

On the other hand, multiple studies report that neu-
rofilament light chain (NfL) concentrations are 2 to 
5 times higher in the CSF of PSP patients compared to 
HC and PD groups, and similar results were observed in 
plasma [3–5]. Nevertheless, the diagnostic specificity of 
NfL for PSP remains inconclusive [3, 4, 13, 14]. To tackle 
this challenge, in this study, we conducted a mass spec-
trometry-based proteomics experiment for the identifi-
cation of additional biomarkers in CSF of PSP patients. 
We analyzed 120 CSF samples from 40 PSP, 40 PD, and 
40 HC individuals. We exploited 11-plex tandem mass 
tags (TMTs) to analyze 120 samples more accurately. 
This study represents a comprehensive mass spectrom-
etry-based proteomic analysis of human CSF from PSP 
patients, aiming to identify PSP biomarkers that distin-
guish it from PD and HC. The candidate biomarkers dis-
covered in this study—if validated—will pave the way for 
the development of reliable PSP biomarkers.

Materials and methods
Collection of cerebrospinal fluid samples
We employed CSF samples from 40 PSP, 40 PD, and 40 
HC individuals well-matched on gender and age. The 
CSF samples were collected from study volunteers at the 
University of Pennsylvania using the previously described 
Parkinson’s Disease Biomarkers Program CSF collection 
protocol [15] (procedure Manual: https://biosend.org/
docs/studies/PDBP/PDBP%20Manual%20of%20Proce-
dures.pdf ). Briefly, the CSF samples were collected from 
study participants in polypropylene vials, spun down at 
2000 x g for 10 min at room temperature (18 °C to 25 °C), 
aliquoted, and stored at ‒80  °C. Samples were shipped 
on dry ice to Johns Hopkins and stored at ‒80  °C. The 
sample information is provided in Table 1. This study was 
approved by the University of Pennsylvania Institutional 
Review Board. Informed consent was obtained from each 
participant at study enrollment in accordance with the 
Declaration of Helsinki.

Sample preparation for the mass spectrometry analysis
We conducted mass spectrometry analysis of 120 CSF 
samples using 13 batches of 11-plex tandem mass tag 
(TMT, Thermo Scientific) experiments. For the normal-
ization of data from 13 batches of the TMT experiment, 
we included the master pool (MP) in the last channel of 
each batch. We also included quality control (QC) in 10 

Conclusion  Biomarker candidate proteins ATP6AP2, NEFM, and CHI3L1 were identified as key differentiators of PSP 
from the other groups. This study represents the first large-scale use of mass spectrometry-based proteome analysis 
to identify cerebrospinal fluid (CSF) biomarkers specific to progressive supranuclear palsy (PSP) that can differentiate 
it from Parkinson’s disease (PD) and healthy controls. Our findings lay a crucial foundation for the development and 
validation of reliable biomarkers, which will enhance diagnostic accuracy and facilitate early detection of PSP.
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batches to monitor data quality. To minimize the batch 
effect, the batch allocation and the order of 120 CSF sam-
ples and QCs were block-randomized, keeping diagnosis, 
sex, and age balanced using an in-house R-script. The MP 
was created by mixing equal volumes from all 120 CSF 
samples. The CSF used for QC came from a control CSF, 
separate from the 20 other control CSFs. The MP was 
divided into each batch after completing the TMT label-
ing. The QC was divided into 10 batches before reduction 
and alkylation. Two hundred twenty microliters of each 
CSF sample were used in this study. All CSF samples, 
including QC and MP, were prepared by adding 1 volume 
of 10 M urea in 100 mM triethylammonium bicarbonate 
(TEAB; Sigma). To perform the reduction and alkylation, 
10 mM tris (2-carboxyethyl) phosphine hydrochloride 
(TCEP; Thermo Scientific) and 40 mM chloroacetamide 
(CAA; Sigma) were added in the CSF samples and then 
incubated at room temperature (RT) for 1  h. Protein 
digestion was carried out using LysC (Lysyl endopep-
tidase mass spectrometry grade; Fujifilm Wako Pure 
Chemical Industries Co., Ltd., Osaka, Japan) at the ratio 
of 1:50 for 3 h at 37 °C and then using trypsin (sequencing 
grade modified trypsin; Promega, Fitchburg, WI, USA) at 
the ratio of 1:50 at 37 °C overnight (for 15 h to 18 h) after 
diluting the concentration of urea from 5  M to 2  M by 
adding 50 mM TEAB. Peptides were purified using C18 
Stage-Tips (3 M Empore™;3 M, St. Paul, MN, USA) after 
acidifying them with trifluoroacetic acid (TFA; Thermo 
Scientific). The eluted solution containing peptides was 
vacuum-dried with a Savant SPD121P SpeedVac con-
centrator (Thermo Scientific). The digested peptides 
were labeled with 11-plex TMT reagents following the 
manufacturer’s instructions (Thermo Scientific). MP 
was labeled by TMT channel 131 C, and the rest of the 

peptide samples were labeled by one of TMT channels 
126, 127 N, 127 C, 128 N, 128 C, 129 N, 129 C, 130 N, 
130  C, and 131. The labeling reaction was conducted 
at RT for 1 h. The remaining TMT tags were quenched 
by adding 100 mM tris buffer (pH 8.0; Thermo Scien-
tific) and incubating for over 5 min at RT. The peptides 
for each batch were pooled and subjected to basic pH 
reversed-phase liquid chromatography (bRPLC) fraction-
ation on an Agilent 1260 HPLC system (Agilent Tech-
nologies, Santa Clara, CA, USA). Briefly, the peptides 
were reconstituted in 10 mM TEAB and fractionated 
using a bRPLC column (Agilent 300 Extend-C18 column, 
5 μm, 4.6 mm × 250 mm, Agilent Technologies) under an 
increasing gradient of the mobile phases consisting of 10 
mM TEAB in water and 90% acetonitrile (ACN). A total 
of 96 fractions were collected by eluting over 97 min (the 
total run time: 150 min and the collection time: between 
50 and 147 min) at a flow rate of 0.3 mL/min and were 
subsequently concatenated into 24 fractions. The eluted 
peptides were vacuum-dried.

LC-MS/MS analysis
The LC-MS/MS analysis was conducted as described 
in previous publications with minor modifications [16, 
17]. The peptide samples were analyzed on an Orbitrap 
Fusion Lumos Tribrid mass spectrometer interfaced with 
an Ultimate 3000 RSLCnano nanoflow liquid chroma-
tography system (Thermo Scientific). The fractionated 
peptides were reconstituted in 0.5% formic acid (FA) and 
loaded onto a trap column (Acclaim™ PepMap™ 100, LC 
C18, 5 μm, 100 μm × 2 cm, nanoViper, Thermo Scientific) 
at a flow rate of 8 µL/min. Peptides were separated on 
an analytical column (Easy-Spray™ PepMap™ RSLC C18, 
2 μm, 75 μm × 50 cm, Thermo Scientific) at a voltage of 

Table 1  Demographic information of the CSF samples used in this study
Diagnosis Total (N = 120) Test
HC (N = 40) PD (N = 40) PSP (N = 40)

Age.Yrs P value: 0.0253
(Kruskal-Wallis rank sum test)Mean (95% CI) 67.7 (65.5; 69.9) 64.1 (61.7; 66.5) 68.8 (66.6; 71.0) 66.9 (64.5; 69.2)

Median 66 65 69 66.5
Sex P value: 0.1864

(Pearson’s Chi-squared test)Female 27 (67.5%) 19 (47.5%) 24 (60%) 70 (58.3%)
Male 13 (32.5%) 21 (52.5%) 16 (40%) 50 (41.7%)

Race P value: 4.3e-05
(Pearson’s Chi-squared test)Black 10 (25%) 1 (2.5%) 0 (0%) 11 (9.2%)

White 26 (65%) 39 (97.5%) 39 (97.5%) 104 (86.7%)
More than one
race

4 (10%) 0 (0%) 0 (0%) 4 (3.3%)

American
Indian

0 (0%) 0 (0%) 1 (2.5%) 1 (0.8%)

Education.Yrs P value: 0.0038
(Kruskal-Wallis rank sum test)Mean (95% CI) 15.1 (16.5; 13.8) 17.1 (17.7; 16.5) 14.9 (15.8; 14) 15.7 (16.7; 14.7)

Median 16 18 14.5 16
CI: confidence interval
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about 2.4 kV and at a flow rate of 0.3 µL/min with mobile 
phases of 0.1% FA in water and in 95% ACN using a lin-
ear gradient. The total run time was 120 min. The mass 
spectrometer was operated in data-dependent acquisi-
tion (DDA) mode. The MS1 scan range for a survey full 
scan was acquired from m/z 300 to 1800 in the Orbitrap 
at a resolution of 120,000 at an m/z 200. The automatic 
gain control (AGC) target for MS1 was set as 1 × 106 and 
the maximum injection time was set to 50 ms. The most 
intense ions with charge states of 2 to 5 were isolated in 
a 3-sec cycle, fragmented using higher-energy collisional 
dissociation (HCD) fragmentation with 35% normal-
ized collision energy, and detected at a mass resolution 
of 50,000. The precursor isolation window was set to m/z 
1.6 with m/z 0.4 of offset. The AGC target for MS/MS 
was set to 5 × 104, and the ion filling time was set to 100 
ms. The dynamic exclusion was set to 30 s with a 7 ppm 
of mass tolerance. Internal calibration was carried out 
using the lock mass option (m/z 445.12002) from ambi-
ent air.

Database searches for peptide and protein identification
Database searches were conducted as described in prior 
publications with minor modifications [16, 17]. The 
acquired MS/MS spectra were searched against a human 
UniProt database (released in May 2018, containing pro-
tein entries of common contaminants) using SEQUEST 
search algorithm in the Thermo Proteome Discoverer 
platform (version 2.2.0.388, Thermo Scientific). The data-
base search parameters used were as follows. The precur-
sor mass tolerance was set to 10 ppm and the fragment 
mass tolerance to 0.02 Da. The maximum missed cleav-
ages allowed was 2. Carbamidomethyl (+ 57.02146 Da) at 
cysteine and TMT tags (+ 229.162932 Da) modification at 
the N-terminus of a peptide and lysine were set as fixed 
modifications. Oxidation (+ 15.99492 Da) of methionine 
was set as a variable modification. The peptides and pro-
teins were filtered at 1% of the false discovery rate (FDR). 
The protein quantification was performed with the fol-
lowing parameters and methods. Both unique and razor 
peptides were used for peptide quantification, while 
protein groups were considered for peptide uniqueness. 
Reporter ion abundance was computed based on signal-
to-noise (S/N) ratios, and the missing intensity values 
were replaced with the minimum value. The quantifica-
tion value corrections for isobaric tags were disabled. 
The average reporter S/N threshold was set to 50. Data 
normalization was disabled. Protein grouping was per-
formed with a strict parsimony principle to generate the 
final protein groups. All proteins sharing the same set or 
subset of identified peptides were grouped, while protein 
groups with no unique peptides were filtered out. The 
Proteome Discoverer iterated through all spectra and 

selected a peptide-spectrum match (PSM) with the high-
est number of unambiguous and unique peptides.

Bioinformatics analyses
Gene set enrichment analysis (GSEA) was performed 
by feeding differentially expressed proteins to the Kyoto 
encyclopedia of genes and genomes (KEGG) pathway 
analysis embedded in DAVID Knowledgebase [18, 19]. 
Interactome analysis was carried out by the Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) 
protein-protein interaction (PPI) database version 11.5 
(https://string-db.org/) [20, 21]. We used a full STRING 
network to analyze functional and physical protein asso-
ciations. Cell-type enrichment analysis was conducted 
as described previously [22]. P values for the cell-type 
enrichment were calculated using Fisher exact tests.

Experimental design and statistical rationale
Experimental design and statistical analyses were per-
formed as described previously with minor modifications 
[16, 17]. We conducted sample size analysis using the 
pwr package in R. When we wanted to detect proteins 
with > 1.35-fold differences between groups, the required 
minimum sample size was 31 when the significance level 
was 0.0001, power was 0.8, sigma was 0.338, and delta 
was 0.433 (= log2 1.35). The sigma value of 0.338 was 
derived from our in-house TMT proteomics experiments 
for the quantification of CSF proteins. We determined 
the significance level of 0.0001 based on our previous 
studies. When we identified several thousands of pro-
teins, most of the proteins with P value < 0.0001 showed 
a q-value < 0.05. Based on this sample size analysis, we 
decided to use 40 samples per group. The statistical anal-
ysis of the mass spectrometry data was performed with 
the Perseus version 1.6.0.7 software package. The pro-
tein abundance data from 13 batches of the TMT experi-
ments were normalized by dividing the abundance values 
of each protein by that of MP included in each batch. The 
relative abundance values for each sample were log2-
transformed. We removed proteins with one or more 
missing values across 120 samples. To further remove 
batch effects, an additional normalization was conducted 
with the ComBat package in R. The technical variation 
was monitored by a coefficient of variation (CV) of QCs 
embedded in each experimental batch. To estimate CV, 
the log2-transformed values of the proteins for the QC 
samples were converted back to the original values, and 
subsequently, the standard deviation (SD) and mean val-
ues of the proteins for the QC samples were determined. 
The CV was calculated by dividing the SD by the mean. 
To access the biological variation, the signal-to-noise 
(S/N) ratio was calculated by dividing the SD estimated 
from the clinical samples by the SD from the QCs.

https://string-db.org/
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Bootstrap receiver operating characteristic (ROC) 
analysis was carried out using the fbroc package in R. 
Sampling with replacement was repeated 500 times for 
the bootstrap ROC. The area under the curve (AUC) of 
a bootstrap ROC was computed for each sampling. Mean 
and SD values of AUCs from 500 ROCs were then calcu-
lated. This bootstrap ROC was repeated once again after 
labeling permutation. The q-values of bootstrap ROC-
based analysis data were calculated as follows: [1] The 
mean AUC values for non-permuted and permuted data 
were sorted in descending order for proteins with mean 
AUCs > 0.5 and in ascending order for proteins with 
mean AUCs < 0.5; [2] The ratios of the protein numbers 
for the non-permuted data to the protein numbers for 
the permuted data were calculated as lowering the cutoff 
threshold, and the ratios were used as q-values.

To assess the classification performance of poten-
tial biomarkers, MetaboAnalyst software (version 5.0) 
was employed through both univariate and multivariate 
ROCcurve analyses. These analyses were conducted as 
described previously with minor modifications [23]. For 
the univariate ROC analysis, a bootstrapping approach 
involving 500 resampling iterations was implemented to 
yield an AUC mean value accompanied by a 95% confi-
dence interval. For the multivariate ROC analysis, the 
partial least squares discriminant analysis (PLS-DA) 
classification technique, coupled with the inherent fea-
ture ranking method of PLS-DA, was used. A total of 
two latent variables were specified for this analysis. To 
initiate the multivariate analysis utilizing PLS-DA, ROC 
curves were generated using balanced subsampling by 
the Monte-Carlo cross-validation (MCCV) method. In 
each MCCV iteration, two-thirds of the samples were 
employed to appraise feature significance, while the 
remaining one-third served to validate the models devel-
oped in the initial phase. Subsequently, the most crucial 
features were used to construct biomarker classification 
models. This procedure was reiterated 50 times to esti-
mate the performance metrics and confidence intervals 
for each respective model. The estimation for the pre-
dictive performance was also conducted using the bal-
anced MCCV with 50 iterations, as described above [24]. 
The average importance, the mean variable importance 
in projection (mean VIP), of the features was estimated 
from PLS-DA by subsampling [25]. PCA-biplot was gen-
erated using the factoextra package in R.

Results
Quantitative proteome analysis of CSF samples
To identify differentially expressed proteins in PSP, we 
conducted a quantitative proteome analysis of 120 CSF 
samples from 40 PSP, 40 PD, and 40 HC individuals. For 
more accurate quantification of proteins, we exploited 
the TMT-based quantification method. To analyze 

120 CSF samples using 11-plex TMT, we conducted 13 
batches of TMT experiments. To normalize the protein 
abundances between the different batches, we added MP 
to the last channel of each batch. We also added QC to 
a random channel in 10 batches each to monitor quan-
tification quality (Fig. 1). We first digested CSF proteins 
into peptides and then labeled the resulting peptides 
with TMT tags as described above. For in-depth protein 
identification, the TMT-labeled peptides were pre-frac-
tionated by bRPLC before mass spectrometry analysis. 
In total, 23,508,013 MS/MS spectra were acquired, and 
2,277,905 MS/MS spectra were assigned to peptides lead-
ing to the identification of 283,975 peptides and 3,653 
proteins (Supplemental Data S1). The number of proteins 
that were identified across 13 batches of the TMT experi-
ments was 1,409, which we used for the downstream 
data analysis (Supplemental Figure S1A). To normalize 
the data from 13 different batches, the intensity values 
of each protein were normalized by the MP samples in 
each batch (Supplemental Figure S1B, left), and then, 
to remove residual batch effects, another round of nor-
malization was conducted by the ComBat package in R 
(Supplemental Figure S1B, right). To visually assess the 
batch effects of 13 batches of the data set before and after 
the ComBat normalization, the data were plotted on 2D 
PCA. Batch 2 (orange) showed the biggest batch effect 
before the Combat normalization, but this batch effect 
disappeared, and overall data showed a more evenly dis-
persed pattern. To further assess the quality of the data, 
the technical variations and S/N ratio of the normalized 
data were examined (Supplemental Figure S1C). More 
than 98.7% of proteins manifested technical variations of 
20% or less (Supplemental Figure S1C, left). On the other 
hand, > 99.6% of proteins manifested S/N of 1 or higher, 
demonstrating the outstanding measurement precision 
of this TMT-based quantification experiments (Supple-
mental Figure S1C, right).

Bootstrap ROC-based statistical analysis for the 
identification of differential proteins
We next conducted bootstrap ROC-based statistical 
analyses to identify proteins differentially expressed in 
PSP compared to the other groups [16, 17, 26]. For the 
bootstrap ROC analysis, sampling with replacement was 
repeated 500 times generating ROC curves for each itera-
tion. This sampling process was repeated once again after 
a permutation of comparison groups to estimate an FDR. 
The average AUC and SD of ROC curves were plotted 
(Fig. 2). When we used a q-value of < 0.01 as cutoff lines, 
the number of differential proteins was 190 between PSP 
and HC, 152 between PSP and PD, and 247 between PSP 
and PD plus HC (Supplemental Data S2). When PSP was 
compared to HC, NEFM was most upregulated followed 
by CHI3L1, SERPINA3, and MMRN1. On the other hand, 
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ATP6AP2 showed the greatest downregulation, followed 
by CHST12, EFEMP2, and ATP6AP1 (Fig.  2A). When 
PSP was compared to PD, a similar pattern was observed. 
NEFM was the most upregulated, followed by SERPINA3 
and CHI3L1, while ATP6AP2 was the most downregu-
lated, followed by EFEMP2, LAMP2, and B4GALT1 
(Fig.  2B). When PSP was compared to the group of PD 
plus HC, a similar pattern was observed. NEFM was the 
most upregulated, followed by SERPINA3 and CHI3L1, 
but ATP6AP2 was the most downregulated, followed by 
EFEMP2, LAMP2, CHST12, and B4GALT1 (Fig. 2C). We 
summarized the top 50 up- and down-regulated proteins 
with a q-value < 0.01 between PSP and HC (Supplemental 
Table S1), between PSP and PD (Supplemental Table S2), 
and between PSP and PD plus HC (Supplemental Table 
S3). Other than the top differentially expressed proteins, 

we also observed downregulation of NPTX2 (0.31 of 
mean of bootstrap AUC and 0.005 of q-value in PSP vs. 
PD plus HC), which is a synaptic protein that plays a cru-
cial role in regulating cortical network dynamics, synap-
tic adaptability, memory, and is associated with cognitive 
decline and AD progression (Supplemental Data S2) [27–
29]. These results suggest that we successfully identified 
differentially expressed proteins in PSP.

Comparison of differentially expressed proteins in CSF 
with those from Globus Pallidus
The main goal of this study was to discover poten-
tial PSP biomarkers. Therefore, we needed to narrow 
down the list of the differentially expressed proteins 
in CSF. If the differentially expressed proteins in CSF 
reflect the changes in the brain, this change should be 

Fig. 1  Experimental strategy for the proteomic study of the CSF samples from PSP patients, PD patients, and HC individuals. Thirteen batches of 11-plex 
TMT experiments were conducted to analyze the proteome of human CSF samples from 40 PSP patients, 40 PD patients, and 40 HC individuals. Master 
pool (MP) and QC samples were prepared by combining an equal amount of protein from all 120 CSF samples. MP was added to each batch after label-
ing with Tag 11 in one tube. QC was split into 10 aliquots and processed in 10 of 13 batches separately. TMT tags for individual samples and QC were 
determined by randomization. The proteins were digested with Lys-C and trypsin, followed by TMT labeling and prefractionation into 24 fractions prior 
to mass spectrometry analysis. Proteins were identified by conducting a database search of the acquired mass spectra
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observed in the brain. Thus, we compared the list of dif-
ferentially expressed proteins in CSF with the differen-
tially expressed proteins in globus pallidus (GP) of PSP 
patients, which we reported previously [17]. When PSP 
was compared to HC, 4 differentially expressed proteins 
overlapped between CSF and GP (Supplemental Figure 
S2A). When PSP was compared to PD, only 2 proteins 
overlapped (Supplemental Figure S2B). When PSP was 
compared to PD plus HC, 8 proteins were overlapping 

(Supplemental Figure S2C). CNTNAP2 and EPDR1 were 
common differentiating proteins for PSP vs. HC and PSP 
vs. PD plus HC. HAPLN4 was the common differentiat-
ing protein for PSP vs. PD and PSP vs. PD plus HC. GGH 
was the common differentiating protein in all three com-
parisons (Supplemental Table S4). The limited protein 
overlap between CSF and GP may be due to the fact that 
the CSF proteome reflects changes occurring through-
out the entire brain during disease progression, whereas 

Fig. 2  Bootstrap ROC plots of the CSF proteins identified from PSP patients, PD patients, and HC individuals. Bootstrap ROC analyses were conducted to 
estimate variations of resampling. To calculate q-values, bootstrap ROC analyses after permutation of the comparison groups were conducted too. The 
differentially expressed proteins with a q-value < 0.01 are shown at the outside of the upper and lower horizontal lines. The proteins on the upper and 
lower side of the q-value line are up- and down-regulated in PSP compared to HC (A), in PSP compared to PD (B) and in PD compared to PD plus HC (C), 
respectively
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the GP proteome represents a specific region of the basal 
ganglia at the terminal stage of the disease.

Characterization of differentially expressed proteins in CSF 
from PSP patients
To better understand the differentially expressed pro-
teins in PSP CSF, we evaluated implicated pathways 
by GSEA. When PSP was compared to HC, the axonal 
guidance pathway was the most enriched, followed by 
lysosome pathway, metabolic pathway, cell adhesion mol-
ecules pathway, and glycosphingolipid biosynthesis path-
way. When PSP was compared to PD, the cell adhesion 

molecules pathway was the most enriched, followed by 
cholesterol metabolism pathway, glycosphingolipid bio-
synthesis pathway, and glycosaminoglycan biosynthesis 
pathway. When PSP was compared to the group of PD 
plus HC, cell adhesion molecules pathway was the most 
enriched, followed by axonal guidance pathway, choles-
terol metabolism pathway, lysosome pathway, and vari-
ous types of N-glycan biosynthesis pathway (Table  2; 
Fig. 3A and Supplemental Data S3). As expected, proteins 
known to be implicated in neurodegeneration represent 
key components in the enriched pathways. Surprisingly, 
lipid-related proteins were also frequently observed, 

Table 2  KEGG pathway analysis for the differentially expressed proteins
Term Count % P Value Benjamini

PSP vs.
HC

Axon guidance 12 6.6 8.E-06 1.30E-03
Lysosome 8 4.4 9.E-04 6.80E-02
Metabolic pathways 31 16.9 2.E-03 9.30E-02
Cell adhesion molecules 8 4.4 2.E-03 9.30E-02
Glycosphingolipid biosynthesis - lacto and neolacto series 4 2.2 4.E-03 1.20E-01
Other types of O-glycan biosynthesis 4 2.2 2.E-02 4.40E-01
N-Glycan biosynthesis 4 2.2 2.E-02 4.40E-01
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 3 1.6 2.E-02 4.40E-01
Renin-angiotensin system 3 1.6 3.E-02 5.00E-01
Glycosaminoglycan biosynthesis - heparan sulfate / heparin 3 1.6 3.E-02 5.00E-01
Amphetamine addiction 4 2.2 5.E-02 6.70E-01
Various types of N-glycan biosynthesis 3 1.6 8.E-02 1.00E + 00
Type I diabetes mellitus 3 1.6 9.E-02 1.00E + 00

PSP vs.
PD

Cell adhesion molecules 8 5.4 4.E-04 5.60E-02
Cholesterol metabolism 5 3.4 1.E-03 6.60E-02
Glycosphingolipid biosynthesis - lacto and neolacto series 4 2.7 2.E-03 7.20E-02
Glycosaminoglycan biosynthesis - keratan sulfate 3 2 7.E-03 2.10E-01
Other types of O-glycan biosynthesis 4 2.7 8.E-03 2.10E-01
Metabolic pathways 23 15.5 1.E-02 2.30E-01
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 3 2 1.E-02 2.50E-01
Glycosaminoglycan biosynthesis - heparan sulfate / heparin 3 2 2.E-02 3.10E-01
Lysosome 5 3.4 3.E-02 4.20E-01
Various types of N-glycan biosynthesis 3 2 5.E-02 6.00E-01
Prostate cancer 4 2.7 5.E-02 6.40E-01
N-Glycan biosynthesis 3 2 7.E-02 7.80E-01
Sphingolipid metabolism 3 2 8.E-02 8.00E-01

PSP vs.
PD + HC

Cell adhesion molecules 16 6.6 6.70E-09 1.20E-06
Axon guidance 14 5.8 2.10E-06 1.90E-04
Cholesterol metabolism 7 2.9 8.80E-05 5.30E-03
Lysosome 9 3.7 6.50E-04 2.90E-02
Various types of N-glycan biosynthesis 5 2.1 3.10E-03 1.10E-01
Other types of O-glycan biosynthesis 5 2.1 4.70E-03 1.30E-01
Glycosaminoglycan biosynthesis - heparan sulfate / heparin 4 1.7 4.80E-03 1.30E-01
Glycosphingolipid biosynthesis - lacto and neolacto series 4 1.7 6.80E-03 1.50E-01
N-Glycan biosynthesis 5 2.1 7.20E-03 1.50E-01
Metabolic pathways 33 13.7 1.90E-02 3.50E-01
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 3 1.7 3.70E-02 6.10E-01
Renin-angiotensin system 3 1.2 4.30E-02 6.60E-01
Amphetamine addiction 4 1.7 7.90E-02 1.00E + 00
Mucin type O-glycan biosynthesis 3 1.2 9.60E-02 1.00E + 00
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Fig. 3 (See legend on next page.)
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suggesting their potential connection to the pathogenesis 
process of PSP.

A protein-protein interaction analysis was conducted. 
APOE and B4GALT1 were clustered with 7 other pro-
teins, NRXN1 was clustered with 6 other proteins, and 
APP, LCAT, NOTCH3, and NRXN2 were clustered with 
5 other proteins (Fig. 3B). This interaction analysis sug-
gested that APOE, B4GALT1, NRXN1, NRXN2, APP, 
LCAT, and NOTCH3 were key components. Among 
them, APOE, B4GALT1, NRXN1, NRXN2, and LCAT 
are involved in the cell adhesion molecules pathway, cho-
lesterol metabolism pathway, and glycan biosynthesis 
pathway in PSP versus PD plus HC of GSEA, further sug-
gesting a potential connection of cell adhesion molecule 
and cholesterol metabolism pathways to PSP.

Cell-type enrichment analysis was performed to char-
acterize the differentially expressed proteins in PSP 
compared to the group of PD plus HC. When we ana-
lyzed the top 50 up- and down-regulated proteins with 
a q-value < 0.01, astrocytic and neuronal proteins were 
the most enriched. When we analyzed all the differen-
tially expressed proteins, neuronal proteins were the 
most enriched, followed by oligodendrocytic and astro-
cytic proteins (Table  3). These data suggest that neu-
ron-derived proteins were the main component of the 
proteins that changed in PSP CSF, reflecting the loss of 
neurons in the PSP brains. On the other hand, astrocytic 
proteins were the main component among the proteins 
that changed in greater magnitude in PSP CSF.

Evaluation of the candidate biomarker proteins for 
classification performance
As the main goal of this study was to identify proteins 
that can be used to differentiate PSP from HC and PD, 
we evaluated the classification performance of differen-
tially expressed proteins using ROC analysis. ATP6AP2 
showed the highest AUC value (0.922), followed by 
NEFM (AUC 0.894), EFEMP2 (AUC 0.892), LAMP2 
(AUC 0.845), CHST12 (AUC 0.838), FAT2 (AUC 0.810), 
B4GALT1 (AUC 0.808), LCAT (AUC 0.800), CBLN3 
(AUC 0.792), FSTL5 (AUC 0.791), ATP6AP1 (AUC 
0.790), and GGH (AUC 0.789) (Fig.  4). The remainder 
of the top 50 up- and down-regulated proteins with a 
q-value < 0.01 showed AUC > 0.696 (Supplemental Figure 
S3). To further improve the classification performance 
of differentially expressed proteins, we conducted mul-
tivariate analyses by varying the number of features up 

to 53. The 53 features for the multivariate analysis were 
from the top 50 up- and down-regulated proteins with 
a q-value < 0.01, when comparing PSP versus PD plus 
HC (Supplemental Table S3). The predictive accuracy 
reached the maximum value, 94.1%, when 5 features 
were used. After then, the predictive accuracy slightly 
decreased when more features were used, suggesting that 
it was overfitted when more features were used (Fig. 5A). 
NEFM was the most contributing marker followed by 
CHI3L1, ATP6AP2, LAMP2, CHGB, GRIA4, GGH, 
FAT2, ENPP5, BDNF, CBLN3, SERPINE2, ZP2, CDH7, 
and FSTL5 (Fig. 5B). To estimate how these marker pro-
teins contributed to discriminating the PSP group from 
the other two groups, we conducted a PCA-biplot analy-
sis. The PCA-biplot showed why it was overfitted when 
more than 5 features were used. The marker proteins 
formed a few clusters: ATP6AP2 and CDH7 that contrib-
uted to the negative direction for dimension 1 and the 
positive direction for dimension 2; CHGB and ATP6AP1 
that contributed to the negative direction only for dimen-
sion 1; LAMP2, CHST10, GRIA4, and SLITRK4 that 
contributed to the negative direction for dimensions 1 
and 2; CHI3L1 and NEFM that contributed to the nega-
tive direction only for dimension 2; and SERPINA3 that 
contributed to the positive direction only for dimension 
1. Among them, NEFM, ATP6AP2, and CHI3L1 contrib-
uted the most to discriminating the PSP group from the 
other two groups. CDH7, CHGB, and SERPINA3 were 
complementary to the three most contributing proteins 
while the discriminating powers of the individual pro-
teins were weaker (Fig.  5C). So, we conducted multi-
variate ROC analysis using the top 5 important marker 
proteins. While the AUCs for the individual proteins 
were 0.924 or lower, the AUC of the multivariate analy-
sis using the 5 marker proteins was increased to 0.972 
(Fig. 5D). NEFM showed the highest average importance, 
followed by LAMP2, ATP6AP2, CHGB, and CHI3L1 
when both 5 and 2 features were used in the classifica-
tion model (Supplemental Figure S4) These data suggest 
that the combination of these potential biomarker pro-
teins can be used to marginally improve the classification 
performance, and NEFM, CHI3L1, and ATP6AP2 are key 
proteins in differentiating PSP from two other groups, 
although a further validation experiment is required.

(See figure on previous page.)
Fig. 3  Interactome analysis of differentially expressed proteins. Bubble plot illustrating the –log10 (P values) derived from KEGG pathway analysis con-
ducted on the pool of differentially expressed proteins. The vertical axis delineates the pathway names, while the horizontal axis represents the com-
parative analysis (A). STRING PPI analysis was conducted to estimate the connectivity of the differentially expressed proteins with a q-value < 0.01 in PSP 
compared to the group of HC plus PD. All active interaction sources, including text mining, experiments, databases, co-expression, neighborhood, gene 
fusion, and co-occurrence, were used with a 0.9 of the highest confidence threshold as a minimum required interaction score. Network edges were set to 
confidence, which indicates data strength based on thickness. The network contains 241 nodes with 76 edges. (average node degree: 0.63, average local 
clustering coefficient: 0.178, and PPI enrichment P-value < 1 × 10− 16). We selected to hide disconnected nodes in the network (B)
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Discussion
In this study, mass spectrometry-based proteomic anal-
ysis of 120 human CSF samples from 40 PSP, 40 PD, 
and 40 HC individuals was conducted using the TMT-
based multiplexing approach, identifying 3,653 proteins. 
Although we analyzed 120 CSF samples using 13 batches 
of 11-plex TMT experiments, the precision of the exper-
iment was very high, with < 10% of CV for most of the 
proteins. This suggests that the two-step normalization 
using MP and, subsequently, the ComBat package was 
effective for analyzing the large number of CSF samples 
using the TMT-based quantification approach.

Since we wanted to explore whether the differen-
tially expressed proteins in both CSF and GP of PSP 
patients may have greater relevance as PSP biomark-
ers, we built on our prior work and compared the pro-
teins differentially expressed in both CSF and GP. While 
ATP1B2, CNTNAP2, EPDR1, FBLN2, GGH, GOT1, 
HAPLN4, PREP, and SERPINE2 were the main differen-
tially expressed proteins common in CSF and GP of PSP 
patients, they were not identified as the key proteins in 
GSEA, interactome analysis, and ROC analyses. This 
discrepancy suggests that GP-derived proteins may not 
reflect the same pathogenic process giving rise to differ-
entially expressed proteins in PSP CSF. Rather, because 
multiple other brain regions (such as the subthalamic 
nucleus, substantia nigra, putamen, and perirolandic 
cortex) are prominently affected by PSP pathology, eval-
uating protein expression in these additional regions 
may yield results in greater concordance with the CSF 

findings [30, 31]. Furthermore, because autopsy samples 
are mostly derived from patients in advanced stages of 
PSP, the differentially expressed proteins in early or mid-
stage PSP could well be different from the ones expressed 
in the advanced stages—reflecting a dynamic pathophysi-
ological process. Further investigations utilizing CSF 
samples derived from multiple disease stages and autopsy 
samples derived from multiple implicated brain regions 
are necessary to further characterize the proteomic sig-
nature of PSP.

GSEA and interactome analysis demonstrated that 
cell adhesion molecules pathway, cholesterol metabo-
lism pathway, and glycan biosynthesis pathway were 
the critical ones for the differentially expressed pro-
teins in PSP CSFs. In these pathways, APOE, B4GALT1, 
NRXN1, NRXN2, and LCAT were key proteins. Cell 
adhesion molecules are already known to be involved in 
neurodegenerative diseases [32, 33], especially by alter-
ing synaptic plasticity, neuroinflammatory events, and 
effecting vascular changes. Cholesterol is an indispens-
able component of the cell membrane, and aberrations 
of cholesterol metabolism are involved in various neuro-
degenerative conditions, including Alzheimer’s disease 
(AD) and PD [34]. Glycan is a key molecule involved in 
the modification of lipids, proteins, and other glycans 
[35]. Glycosylated lipids are involved in cell adhesion and 
glycosylated proteins are major components of cell mem-
brane proteins [36]. Our cell-type enrichment analysis 
results indicated that the main fraction of the differen-
tially expressed proteins was derived from neuronal cells, 

Table 3  Cell-type-specific enrichment of proteins differential between PSP and PD plus HC
Cell type P value List of differential proteins that overlap with the proteins enriched in a specific cell type

Top 50 
up- and 
down-
regu-
lated 
proteins 
with q-
val-
ue < 0.01

Astrocyte 0.039 LCAT, TIMP3, CRYM, BTD, SLITRK2, MFGE8, BDNF, PDYN
Microglia 0.093 LAMP2, CHST12, B4GALT1, ADAM15, GGH, KCTD12, GBA
Neurons 0.015 NDRG4, MINPP1, ST8SIA5, CDH7, CLSTN3, CHGB, FAT2
Oligodendrocyte 0.353 PCSK1N, LINGO3, SLITRK4, ADAMTS2, SERPINA3
Endothelia 0.556 B3GNT2, A4GALT, SEMA3G, PREP

All the 
differ-
ential 
proteins 
with q-
val-
ue < 0.01

Astrocyte 0.026 PRDX6, BTD, ALDH1A1 FGFR1, BDNF, MFGE8, PDYN, TRIL, TIMP3, SLITRK2 CRYM, LCAT, ATP1A2, ATP1B2, 
SCG3, CPE, LINGO1, NOTCH3, NRXN1, APOE, LRIG1, CLU, FABP7, VNN1, NRCAM, EPHB3, EDNRB

Microglia 0.026 GBA, ASPH, OLFML3, KCTD12, APOC2, ADAM15, GGH, B4GALT1, CHST12, LAMP2, HPRT1, HS6ST1, DPP7, 
AP1B1, ADGRB1, MGAT2, EPDR1, CORO1A, B4GALNT1 CDH23, LFNG, FAM3A, PLA2G15, MGAT1, PLOD1, 
CTSA, LIPA

Neurons 4.68E-11 TRHDE, XXYLT1, NRSN2, ST8SIA5, CLSTN3, CBLN1, ST8SIA3, MINPP1, MGAT5, CDH7, CHGB, NDRG4, FAT2, 
NPTX1, SCN4B, NRN1, CNTNAP2, EPHA6, PCDHAC2, TMEM59L, NXPH3, SEMA6C, ADGRL1, CBLN4, SCG2, 
SERPINI1, VGF, L1CAM, RTN4R, RGMB, SCN2B, CA10, CNTNAP5, CAMK2B, MMP24, ROBO2, IDS, CNTNAP4, 
CACNA2D2, SYT1, CLSTN1, FSTL4, PCSK1, DNER, VWC2, PENK, B4GALNT4, MDGA1, PCDH17, PTPRN2

Oligodendrocyte 0.009 QPCT, SLITRK4, ADAMTS2, GALNT13, LINGO3, EXTL2, SERPINA3, PCSK1N, PCDH7, NFASC, SEMA6A, 
NPTX2, TMEM132C, SEMA4D, GPR158, NLGN3, ADAM11, ADGRL3, FBLN7, TMEM132D, MFAP4, CA10, 
LDLR, XYLT1, CHST8, NXPH1, SERPINE2, BRINP1, LRFN2

Endothelia 0.280 SPOCK2, PREP, SLC39A10 MMRN2, SEMA3G, A4GALT, B3GNT2, HPRT1, GINM1, TFRC, JAG1, ITM2A, 
ADAMTSL2, PTPRM, SEMA7A, SPON2, FBLN5, GALNT18, PLTP, ART3, ADAM10

Italicized proteins indicate those that showed increased expression in PSP compared to PD plus HC
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suggesting that the pathway changes observed in CSF 
were predominantly from neuronal cells; further investi-
gation is required to validate this.

The primary aim of this study was to identify biomark-
ers for PSP. To this end, we assessed the discriminatory 
potential of several candidate biomarker proteins for 
PSP. ATP6AP2 had the highest AUC, followed by NEFM, 
EFEMP2, LAMP2, CHST12, FAT2, B4GALT1, LCAT, 
CBLN3, FSTL5, ATP6AP1, and GGH, when compared 
to PD and HC. Of the top 12 proteins, B4GALT1 plays 
a role in glycan biosynthesis, while LCAT is involved in 
cholesterol metabolism. Both these proteins emerged as 
significant in our interactome analysis as well, suggesting 

that B4GALT1 and LCAT might be promising novel bio-
markers for PSP.

B4GALT1 is a galactosyltransferase enzyme, which is 
responsible for the synthesis of oligosaccharides in glyco-
proteins and glycolipids. B4GALT1 is known to be linked 
to microglial activation and neuroinflammation [37]. In 
AD brains, elevated B4GALT1 expression correlated 
with heightened galactosylation of N-glycans [38]. Fur-
thermore, a previous study indicated a notable increase 
in B4GALT1 gene expression within the substantia nigra 
of PD patients compared to controls [37]. However, 
our result showed downregulation of B4GALT1 in the 
CSF from PSP patients when compared to PD and HC. 

Fig. 4  ROC analysis of 12 representative proteins with the highest AUCs between PSP vs. PD plus HC. The discriminating capabilities of candidate PSP 
biomarkers were estimated by comparing PSP to PD plus HC using ROC analysis. ROC curves were generated by bootstrapping. The values in the paren-
thesis show the lower and upper AUC values of 95% confidence interval. The values in the parenthesis show the lower and upper AUC values of a 95% 
confidence interval. The X-axis denotes a false positive rate (1-specificity), and the Y-axis denotes a true positive rate (sensitivity)
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Fig. 5  Multivariate ROC analysis and predictive accuracy. The differentially expressed proteins of PSP-specific biomarker candidates were compared with 
HC plus PD. (A) The accuracy for predicting PSP as the number of features increased is shown. (B) The top 15 significant features affecting the discrimina-
tion of PSP from PD plus HC are shown with their average importance values, which are equivalent to the mean of Variable Importance in Projection (VIP) 
scores. (C) PCA-biplot analysis for the top 53 differential proteins between PSP vs. PD plus HC was conducted. The representative upregulated and down-
regulated proteins among 53 proteins are shown on the PCA-biplot. (D) Multivariate ROC analyses were conducted using 2 and 5 features. Var. indicates 
the number of features used. CI indicates confidence interval. Individual ROCs for 5 proteins used for the multivariate ROC are shown too.
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Further investigation is required to assess whether and 
how B4GALT1 is involved in the pathogenesis of PSP.

LCAT is a lipoprotein-associated enzyme that plays a 
key role in transferring excessive cholesterol in peripheral 
tissues to the liver for excretion [39, 40]. The dysregula-
tion of LCAT leads to the disturbance of lipid metabo-
lism and it is potentially implicated in the pathogenesis 
of PD [41]. Recent plasma metabolomics analyses under-
score this by revealing a decrease in lipid and lipid-asso-
ciated molecules in PD compared to the control group 
[42]. Our findings showed that LCAT was downregulated 
in PSP patients compared to PD and HC, suggesting the 
link between lipid metabolism disturbance by LCAT dys-
regulation and PSP pathogenesis.

ATP6AP2 is ATPase H + transporting lysosomal 
accessory protein, which is a vital component of the 
vacuolar ATPase and plays a crucial role in lysosomal 
functions and autophagy. Deficiency in ATP6AP2 dis-
rupts V-ATPase function, affecting neural stem cell 
renewal and causing widespread neural degeneration, 
emphasizing ATP6AP2’s central role in the develop-
ing human nervous system [43]. The dysregulation of 
ATP6AP2 was also reported to be implicated in Parkin-
sonism [44]. Our findings indicate a decreased expres-
sion of ATP6AP2 in PSP patients relative to both HC and 
PD, suggesting that ATP6AP2 dysregulation plays a role 
in PSP. Notably, the mode of ATP6AP2 dysregulation in 
PSP appears distinct from that in PD, given the differen-
tial levels observed between the two patient groups. Fur-
ther study is required to investigate this distinction.

Neurofilament proteins, including NEFM, are consid-
ered promising candidate state biomarkers for neuronal 
damage and the process of neurodegeneration [45]. How-
ever, they are relatively non-specific when attempting to 
differentiate among neurological diseases diagnostically. 
Elevated levels within CSF have been demonstrated for 
patients with stroke and a wide spectrum of neurode-
generative and neuroinflammatory conditions [46, 47]. 
While there is a lack of research on the relationship 
between neurofilament proteins and PSP, our findings 
suggest that PSP patients sustain significant ongoing neu-
ronal damage and thus release greater amounts of NEFM 
into CSF compared to PD and HC individuals.

EFEMP2, also known as fibulin-4, is a member of the 
fibulin glycoprotein family found predominantly in elas-
tic fiber-rich tissues and is vital for elastic fiber forma-
tion, connective tissue development, and extracellular 
matrix stability [48]. EFEMP2 has been reported to have 
implications in the advancement of different cancer types 
[49]. Little is known about the relationship between 
EFEMP2 and neurodegeneration. We found downregula-
tion of EFEMP2 in PSP patients compared to HC and PD, 
and further investigation of this relationship is required.

LAMP2 is a lysosomal-associated membrane protein 
and constitutes a significant portion of the lysosomal 
membrane [50]. Lysosomes serve as the main catabolic 
units responsible for breaking down intracellular pro-
teins via the process of autophagy [51]. The existence of 
α-synuclein aggregates in PD is potentially mediated by 
compromised degradation capabilities of lysosomes [52]. 
A prior investigation using Western blot quantification 
reported that PD CSFs showed reduced levels of LAMP2 
compared to HC, while PSP CSF did not show differences 
[53]. Our result showed a downregulation of LAMP2 in 
PSP patients compared to HC and PD. This discrepancy 
could be caused by quantification method differences or 
case specificity, and further investigation is required to 
clarify this.

CHST12 is a carbohydrate sulfotransferase involved 
in the biosynthesis of proteoglycans that facilitate cell 
interactions. Its overexpression serves as an unfavorable 
prognostic factor in ovarian cancer [54]. Little is known 
about the involvement of CHST12 in neurodegeneration. 
We found that the CHST12 level was decreased in PSP 
compared to PD and HC.

FAT2 is a cadherin superfamily protein and is known to 
be expressed in granule cells in the cerebellum [55]. The 
cadherin family proteins have consistently demonstrated 
their influence in governing the contact between axons 
and dendrites [56]. Our results showed a downregulation 
of FAT2 in PSP patients compared to PD and HC. Fur-
ther investigation is required to understand how FAT2 is 
involved in PSP.

CBLN3 is a member of the precerebellin protein family 
[57] and is expressed in cerebellum and dorsal cochlear 
nucleus [57]. The link between CBLN3 and neurode-
generation is not clear, although our finding shows that 
CBLN3 was downregulated in PSP compared to PD and 
HC and cerebellar pathology (particularly in the dentate) 
is well-described in PSP [58, 59]. 

FSTL5 is a secretory glycoprotein [60] and is known to 
be a prognostic biomarker for medulloblastoma [61]. Our 
data showed that FSTL5 was significantly downregulated 
in PSP compared PD and HC.

ATP6AP1 is an accessory protein of V-type ATPase 
proton pump [62]. Its role is to direct the V-ATPase to 
specific subcellular compartments, such as neuroendo-
crine-regulated secretory vesicles, and to regulate various 
aspects of their function, including intragranular pH and 
the Ca2+-dependent exocytotic membrane fusion [48]. 
In our results, ATP6AP1 showed significant downregu-
lation in the PSP compared to PD and HC. Considering 
that both ATP6AP1 and ATP6AP2 are downregulated 
in PSP, the subcellular mislocalization of V-type ATPase 
proton pump by the dysfunction of its accessory proteins 
is potentially involved in PSP pathogenesis.
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GGH is an enzyme involved in folate metabolism [63]. 
Fang et al. reported GGH was downregulated in human 
CSF from Huntington disease patients [64]. Licker et al. 
also reported that GGH was downregulated in substantia 
nigra of PD patients [65]. Our finding also showed that 
GGH was significantly downregulated in PSP compared 
to PD and HC. These studies suggest that GGH is down-
regulated in multiple various neurodegenerative diseases.

In this study, NPTX2 was downregulated in PSP com-
pared to PD and HC. The downregulation of NPTX2 is 
a predictive marker for the progression from normal 
cognition to mild cognitive impairment [27], and cogni-
tive decline is a typical symptom of PSP [66]. This sug-
gests that dysregulated synaptic adaptability mediated by 
NPTX2 downregulation could be a potential mechanism 
of the cognitive decline of PSP patients.

Multivariate analysis showed marginally improved dis-
criminating capability (AUC 0.937) compared to the best 
single-marker AUC (0.922) of ATP6AP2. This suggests 
that ATP6AP2 is a promising single-marker candidate for 
PSP and that integrating multiple PSP biomarkers could 
be beneficial for the better diagnosis of PSP. Interestingly, 
CHI3L1, which has a relatively lower AUC (0.755), was 
selected as the second most important feature in the mul-
tivariate analysis. CHI3L1 was the only protein that had a 
similar loading value to that of NEFM, while most other 
proteins had similar loading values to that of ATP6AP2. 
Thus, CHI3L1 had a high average importance because of 
its high complementarity with other proteins.Important 
study limitations include the lack of post-mortem confir-
mation of PSP or PD diagnosis and differences between 
groups with respect to age, race/ethnicity, and education. 
Every effort to match samples on demographic charac-
teristics was made, but we acknowledge that these differ-
ences may have contributed to differential CSF protein 
expression in ways that are not currently well under-
stood. It should be noted that lower education levels have 
previously been associated with higher likelihood of a 
PSP diagnosis [67], though the pathophysiological mech-
anism of this association remains unclear. The candidate 
biomarkers discovered in this study also need to be vali-
dated using an independent cohort and also evaluated for 
their applicability to differentiate across subtypes of PSP.

Conclusion
To the best of our knowledge, this is the first global-scale 
proteome analysis to discover CSF PSP biomarkers using 
a mass spectrometry-based proteomics approach and 
utilizing samples from well-matched PSP, PD, and HC. 
The biomarker candidate proteins ATP6AP2, NEFM, 
and LAMP2 were identified as key differentiators of PSP 
from the other groups. The identification of these key dif-
ferentially expressed proteins and their associated path-
ways provides a crucial foundation for the development 

and validation of specific, reliable biomarkers for PSP 
diagnosis.
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