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Abstract

measured for changes in expression.

expression in wild-type and Tg rats after Sel treatment.

expression.

Background: To characterize changes in global protein expression in kidneys of transgenic rats overexpressing
human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from
kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and

Results: Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated,
respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold
difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog,
PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1.
After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats,
whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced

Conclusions: These results show the primary novel biological evidences that new functional protein groups and
individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM

Keywords: Antioxidative protein, Kidney, Selenium, Selenoprotein M, Transgenic rat

Background

Sel is considered to be a ubiquitous trace compound in
nature and has been proven to be essential for mammalian
health [1]. Specifically, Sel plays a dietary antioxidant role
in the human body despite its low content of about 14-20
mg, and it is now recognized as an essential component of
the active sites of numerous selenoenzymes [2]. Sel has
also been shown to have insulin-like effects both in vitro
and in vivo. For example, incubation of rat adipocytes with
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Sel stimulates glucose transport activity due to the trans-
location of two types of glucose transporters, cAMP
phosphodiesterase activity, and ribosomal S6 protein
phosphorylation [3]. Furthermore, Sel has been shown to
regulate the activities of various enzymes involved in gly-
colysis and gluconeogenesis in streptozotocin-induced dia-
betes rats, whereas regulation of these enzymes is not
induced by insulin [4]. Ayaz et al. [5] reported that Sel
treatment may prevent and alleviate the symptoms of
diabetes in animal models exhibiting heart, kidney, and
platelet defects. Further, Sel treatment has been reported
to have insulin-like effects during glucose metabolism
through stimulation of tyrosine kinase in the insulin-
signaling pathway [6].

Several reports have shown that Sel has detoxification
effects on various heavy metals in a variety of toxico-
logical and biochemical processes [7]. Especially, Sel co-
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accumulates with mercury in tissues of various biotas
and significantly decreases the toxicity of inorganic mer-
cury when injected in its selenite form [8]. Further, Sel
has a detoxifying and protective effect upon kidney func-
tion improving glomerular filtration rate and increasing
creatinine clearance under various abnormal conditions
including acute kidney injury and chronic kidney disease
[9-11]. Therefore, the kidney can consider as important
target organ to identify novel markers and regulation
mechanism on the effect of protection and detoxification
induced by Sel treatment. However, although the rela-
tionship between Sel and renal disease have received
enormous interest from nephrologist, few studies have
been conducted to investigate whether or not Sel treat-
ment and SelM overexpression affect global protein ex-
pression in kidneys of Tg rats using 2-DE.

As demonstrated by our data, proteomic analysis using
kidney extracts showed up-regulation of 10 proteins as
well as down-regulation of three proteins in CMV/
hSelM Tg rats following Sel treatment.

Results
Enhancement of antioxidant activity in kidney tissue from
CMV/hSelM Tg rats
To confirm whether or not alteration of antioxidative
conditions is induced by Sel treatment and SelM over-
expression in kidney tissue from Tg rats, SOD and GPx
activities along with total antioxidants were measured in
kidney tissues and sera. As shown in Figure 1A, a high
level of hSelM protein was firstly detected by Western
blotting using specific antibody in kidney tissue from
CMV/hSelM Tg rats, whereas a low level of endogenous
rat SelM protein was detected in non-Tg rats. Further,
strong immunostaining intensity was observed through-
out epithelial cells of proximal tubules in kidney tissue
from CMV/hSelM Tg rats, although weak intensity was
detected in the same region of non-Tg rats (Figure 1B).
Furthermore, the activities of SOD and GPx were
higher in kidneys of CMV/hSelM Tg rats than those of
non-Tg rats under vehicle treatment conditions. After
Sel treatment, their levels further increased in both
groups compared with those of vehicle-treated groups,
although the rates of increase differed (Figure 1D and E).
In addition, analysis of total antioxidants revealed the re-
verse pattern as that of the antioxidant enzymes SOD
and GPx. Under vehicle treatment conditions, the anti-
oxidant concentration was lower in serum of CMV/
hSelM Tg rats compared to that of non-Tg rats. After
Sel treatment, total antioxidants were significantly re-
duced in both CMV/hSelM Tg and non-Tg rats. How-
ever, they maintained their decrease ratio during Sel
treatment (Figure. 1C). These results suggest that SelM
overexpression and Sel treatment induced an increase in
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Figure 1 Characterization of CMV/GFP-hSelM Tg rats.

(A) Expression of SelM proteins in kidney of CMV/hSelM Tg rats
using antibody for both rat and human SelM. (B) Immunostaining
analysis of SelM expression at 200x magnification. (C) Concentration
of total antioxidants in serum by ELISA. Activities of GPx (D) and
SOD (E) were detected in kidney tissues collected from CMV/EGFP-
hSelM Tg and non-Tg rats. Six rats per group were assayed by ELISA.
Data represent the mean + SD of three replicates. a, p<0.05 is the
significance level compared with non-Tg rats. b, p<0.05 is the
significance level compared with the vehicle-treated group.

antioxidant protection in kidney tissues from CMV/
hSelMTg rats.

Effect of Sel treatment and SelM overexpression on
global protein expression in kidney tissues

To characterize changes in global protein expression in
kidneys of CMV/hSelM Tg rats in response to the
increased bioability of Sel and SelM, total proteins
extracted from the cortex of 10-week-old CMV/hSelM
Tg rats were separated by electrophoresis on a 2-DE gel
and measured for changes in expression. Image analysis
of the 2-DE gel showed good matching among the four
analytical replicates, which included vehicle- and Sel-
treated wild-type rats as well as vehicle- and Sel-treated
Tg rats. In the 2-DE protein maps of the four group
samples, approximately 300 spots were detected in one
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gel of kidney tissues (Figure 2). Of these, protein spots
showing significant differences were selected for further
analysis. Quantitative image analysis revealed 13 protein
spots as key proteins that were differentially expressed
among the four experimental groups; 10 spots were up-
regulated while three spots were down-regulated in
CMV/SelM Tg rats compared to wild-type rats of the
vehicle-treated group. As shown in Table 1, the 10 up-
regulated proteins were identified as LAP3, BAIAP2L1,
CRP2, CD73 antigen, PDGF D, KIAA143 homolog,
PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas
the three down-regulated proteins included ALKDHS3,
rMCP-3, and STC-1.

After Sel treatment, these 13 protein spots showed dif-
ferential expression patterns. According to their expres-
sion patterns, the 10 up-regulated spots were classified
into four groups. Protein spots in the first group showed
markedly increased expression upon Sel treatment and
were identified as LAP3 and BAIAP2L1 (Figure 3).
Under vehicle treatment conditions, the volume ratios of
these two spots were significantly higher in CMV/hSelM
Tg rats than in wild-type rats. After Sel treatment, their
volumes were markedly increased by 100% in wild-type
rats (Table 1), whereas CMV/hSelM Tg rats showed
lower volume levels. The three spots in the second
group exhibited medium changes in expression and were
identified as uncharacterized protein KIAA143 homolog,

P[3 —— PII0

Non-Tg CMV/hSelM

Molecular weight
APIPA

WNuRpPS

Figure 2 2-DE protein patterns in kidney tissues from CMV/
EGFP-hSelM Tg and non-Tg rats. Kidney lysates (1 mg) from four
groups, including vehicle-treated non-Tg rats (A), Sel-treated non-Tg
rats (B), vehicle-treated CMV/hSelM Tg rats (C), and Sel-treated CMV/
hSelM Tg rats (D), were subjected to one-dimensional IEF using

24- cm IPG strips in a pH range from 3-10 (nonlinear). Two-
dimensional SDS-PAGE was performed on 8-18 % linear gradient
acrylamide gels in an EttanDalt system. Protein spots were visualized
by staining with Coomassie blue G-250.
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CD73 antigen, and CRP2 (Figure 4). In the vehicle-
treated group, the volumes of these spots were higher in
CMV/hSelM Tg rats than in wild-type rats. However, Sel
treatment significantly reduced spot volumes in wild-
type rats, whereas expression levels of these proteins
remained higher in CMV/hSelM Tg rats.

In the third group, two spots were identified as PDGF
D and PAP41. Expression patterns of these spots were
very similar with those of other up-regulated spots
under vehicle treatment conditions (Figure 5). However,
under Sel treatment conditions, the volumes of these
spots were elevated only in wild-type rats, with spot vol-
umes markedly reduced in CMV/hSelM Tg rats. Finally,
in the fourth group, changes in protein expression were
not affected by Sel treatment but instead induced only
by SelM overexpression. This group included three spots
identified as ZFP313, HSP-60, and N-WASP. These pat-
terns were observed in both groups at the same time
(Figure 6).

Treatment with Sel also induced differential expres-
sion patterns for down-regulated proteins. Firstly, a large
spot was identified in 2-DE protein maps as ALKDH3.
Under vehicle treatment conditions, ALKDH3 was
expressed at a very low level in CMV/hSelM Tg rats
compared to wild-type rats. On the other hand, Sel
treatment induced down-regulation of ALKDH3 in wild-
type rats, with a further decrease in CMV/hSelM Tg
rats. A similar pattern was observed for another spot,
which was identified as STC-1. The expression level of
this protein was markedly decreased in wild-type rats
after Sel treatment, whereas it did not change in CMV/
hSelM Tg rats. Finally, Sel treatment induced a decrease
in the spot volume of rMCP-5 in CMV/hSelM Tg rats,
whereas wild-type rats showed no change (Figure 7).

Therefore, these results suggest that SelM overex-
pression and Sel treatment can induce changes in the ex-
pression levels of 13 major proteins that are related with
blood volume and systemic vascular resistance, nucleotide
metabolism, and kidney disease.

Confirmation of AKLDH3, HSP60, and LAP3 expression

Western blot analysis was performed to validate the
changes in protein expression levels of three selected
spots (AKLDH3, HSP-60, and LPA3) identified by 2-DE.
To achieve this, we selected candidate genes according
to the following criteria: 1) proteins showing a high
magnitude fold change (LAP3), 2) proteins not anno-
tated with function (AKLDH), and 3) proteins linked to
various metabolic functions (HSP60). Accordingly, one
up-regulated protein (LAP3), one maintained protein
(HSP60), and one down-regulated protein (AKLDH3)
were selected and analyzed. As shown in Figure 8, the
expression level of AKLDH3 was significantly lower in
CMV/hSelM Tg rats compared to non-Tg rats (p<0.041).



Table 1 List of differentially expressed proteins in the four experimental groups

Spot No. Protein name Gene  Accession Sequence  Mw(Da)/pl Mascot Vehicle Selenium
hame No. coverage (%) Score non-Tg Tg* non-Tg*  Tg*

1 Cytosol aminopeptidase (EC 3.4.11.1) (Leucine aminopeptidase) (LAP) (Leucyl Lap3 Q68FS4 42% 56115/6.77 25 1 23+024 1.8+031 13009
aminopeptidase) (Leucine aminopeptidase 3) (Proline aminopeptidase) (EC 3.4.11.5)
(Prolyl aminopeptidase)

2 Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1 (BAl1-associated ~ Baiap2l1 ~ Q3KR97 46% 57432/8.95 29 1 21%£0.17 1.7#038 1.5%0.12
protein 2-like protein 1)(BAIAP2L1)

3 Uncharacterized protein KIAA1143 homolog (KIAA1143 homolog) Q5RKH3 52% 17442/8.51 28 1 244013 15+£026 1302

4 5"-nucleotidase precursor (EC 3.1.3.5) (Ecto-5-nucleotidase) (5-NT) (CD73 antigen) Nt5e P21588 64% 63928/6.51 48 1 182031 152022 14+0.16

5 Cysteine and glycine-rich protein 2 (Cysteine-rich protein 2) (CRP2) Smooth muscle Csrp2 062908 64% 20926/8.95 27 1 19+0.16 164015 15+024
cell LIM protein) (SmLIM)

6 Platelet-derived growth factor D precursor (PDGF D) (Iris-expressed growth factor) Pdgfd QOEQT 35% 42782/8.11 25 1 23035 16021 0.9+0.13
(Spinal cord-derived growth factor B) (SCDGF-B)

7 Phosphoribosyl pyrophosphate synthetase-associated protein 2 (PRPP synthetase- Prpsap2 008618 67% 40840/6.73 50 1 26+024 13021 09+0.08
associated protein 2)(PRPPS-AP2)(41 kDa phosphoribosypyrophosphate synthetase-
associated protein) (PAP41)

8 Zinc finger protein 313 (ZFP313) Znf313 Q6J2U6 39% 25647/6.38 38 1 274033 09+0.12 094025

9 60 kDa heat shock protein, mitochondrial precursor (Heat shock protein 60) (HSP-60)  Hspd1 P63039 20% 60917/591 86 1 1.9+0.15 1.1£0.14 1.0£0.06
(Hsp60) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Mitochondrial matrix protein
P1) (HSP-65)

10 Neural Wiskott-Aldrich syndrome protein (N-WASP) Wasl 008816 27% 54291/833 33 1 324034 124021 094025

11 Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3 (EC 1.14.11)) (Alkylated ~ Alkbh3 ~ Q5XIC8 60% 33990/8.53 30 1 05006 03004 04+003
DNA repair protein alkB homolog 3)(ALKDH3)

12 Chymase precursor (EC 3.4.21.39) (Alpha-chymase) (Mast cell protease 3) (Mast cell Cmal P50339 20% 27551/9.47 32 1 04£0.03 094020 024003
protease Ill) (rtMCP-IIl) (rMCP-3) (Mast cell protease 5) (rMCP-5)

13 Stanniocalcin-1 precursor (STC-1) Stcl P97574 43% 27490/8.47 32 1 03004 02003 09+0.26

*The value in the last 3 columns on the right hand side was expressed as the relative value of spot volume for the non-Tg vehicle group which was defined as 1.
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Figure 3 Gel enlargement image showing LAP3 and BAIAP2L1 in kidney extracts. (A) Up-regulated protein spots of LAP3 and BAIAP2L1
were detected in kidney extracts from the four experimental groups. Spots differentially expressed on 2-DE were further analyzed using a matrix-
associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. (B) Expression levels of two proteins regulated by Sel
treatment and SelM expression are represented relative to the non-Tg group. Data represent the mean + SD of three replicates. a, p<0.05 is the
significance level compared with non-Tg rats. b, p<0.05 is the significance level compared with the vehicle-treated group.
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After Sel treatment, its level further decreased in both
groups (p<0.045), although its total expression pattern was
maintained. In the case of HSP-60, its expression level was
higher in CMV/hSelM Tg rats than in non-Tg rats under
vehicle treatment conditions (p<0.008). However, expres-
sion of this protein significantly decreased in response to
Sel treatment only in CMV/hSelM Tg rats (p<0.013),
whereas non-Tg rats did not show any significant differ-
ence in expression. Furthermore, the LAP3 expression
level was significantly increased in CMV/hSelM Tg and
Sel-treated rats compared with non-Tg rats. The expres-
sion pattern of this protein in the Western blot analysis
was very similar with that in the 2-DE gel image. These re-
sults suggest that the alteration of protein spots detected
by 2-DE exactly reflects changes in protein expression in
kidneys of both CMV/hSelM Tg and non-Tg rats.

Discussion

SelM was recently reported as a new selenoprotein
containing a 145-amino acid open reading frame along
with an in-frame TGA as a Sec codon. Further, homolo-
gous SelM proteins have been found in various species,
including rat, zebrafish, and other vertebrates, although
Sec is conserved among these homologs [12]. Further-
more, SelM contributes to spicule formation in the
demosponge Suberitesdomuncula [13]. In addition, this
protein is tightly correlated with a suppressive or pro-
tective role in the pathology of patients with Alzheimer’s
disease [14]. However, global changes in total protein ex-
pression have never been reported in kidney tissue from
Tg rats overexpressing hSelM using 2-DE.

The human body produces several types Sel-dependent
or antioxidant enzymes, including thioredoxin reductase,
glutathione S-transferase, glutathione peroxidase, CuZn-
superoxide dismutase, and Mn-superoxide dismutase [15].
Of these several enzymes, GPX is most abundant sele-
noprotein expressed in both the cytosol and mitochondria
of mammalian cells, where it reduces H,O, and organic
hydroperoxides [16-18]. Further, Sel treatment was shown
to induce increases in GSH-Px and SOD activities com-
pared with control, although their increase ratios varied
[19]. Our results in Figure 1 are in complete agreement
with previous studies. Therefore, these results provide
additional evidence that Sel treatment could induce anti-
oxidant status in animals.

In this study, 2-DE analysis showed that SelM
overexpression and Sel treatment were tightly associated
with the expression of several proteins, including 10 up-
regulated proteins and three down-regulated proteins.
Of these proteins, LAP3 and BAIAP2L1 showed similar
expression patterns after Sel treatment. Aminopeptidase
is a homodimeric type II membrane-bound peptidase
that specifically cleaves the N-terminal aspartyl residues
from angiotensin II, resulting in angiotensin III [20]. It is
also involved in the degradation of angiotensin I to form
(des-Asp) Angiotensin I, which can be further cleavage
to angiotensin III [21]. In the kidney, this enzyme is lo-
cated in several regions, including the glomeruli, endo-
thelial cells, mesangial cells, and tubular cells [22].
Furthermore, the activity of aminopeptidase increases in
response to various divalent cations, particular calcium
[21]. However, there are no reports on the correlation
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between aminopeptidase and Sel content. Our current
results firstly show that aminopeptidase could be af-
fected by SelM overexpression and Sel treatment.

The second group of three member proteins showed
similar expression levels and included KIAA1143 homolog,
CD73 antigen, and CRP2. Of these proteins, CD73 antigen
is an immature form of 5’-nucleotidase (5’'N'T), which is a
glycoprotein located primarily in the plasma membrane as
an ectoenzyme and is composed of two identical subunits
of 70-74 kDa [23]. Generally, 5’NT hydrolyzes extracellu-
lar nucleotides into membrane-permeable nucleosides [24].
Clinical analysis of the biochemistry of 5’NT has found that

this enzyme is tightly associated with several diseases, such
as hepatibiliary disease, primary tumors, hemolytic anemia,
beta-thalassemia, lymphoma, and leukemia [25]. Especially,
Imberti et al. showed that glutathione depletion is asso-
ciated with a significant increase in serum 5NT [26].
Moreover, 5’NT plays a critical role in tubuloglomerular
feedback and rennin secretion in the kidney [27]. In this
study, the expression level of CD73 antigen was differen-
tially regulated by SelM overexpression and Sel treatment
in both rat groups. Another protein identified as CRP2 is a
cystein-rich protein (CRP) that interacts with cytoskeletal
components such as a-actinin and zyxinin in vertebrates
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Figure 5 Gel enlargement image showing PDGF D and PAP41 in kidney extracts. (A) Up-regulated or maintained protein spots of PDGF D
and PAP41 were detected in kidney extracts from the four experimental groups. Spots differentially expressed on 2-DE were further analyzed
using a matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. (B) Expression levels of two proteins
regulated by Sel treatment and SelM expression are represented relative to the non-Tg group. Data represent the mean + SD of three replicates.
a, p<0.05 is the significance level compared with non-Tg rats. b, p<0.05 is the significance level compared with the vehicle-treated group.
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[28]. CRP2 is known as a novel protein that strongly sup-
presses fibroblast transformation induced by retroviral on-
cogenes or chemical carcinogens [29]. Recently, several
studies have suggested that CRP is associated with alter-
ation of cardiomyocyte thickness and hypertrophy [30].
However, until now, there has been no report on the func-
tion of this protein in the kidney. Our study results found
that this protein could be induced by SelM overexpression
and Sel treatment.

PDGF D and PRPPS-AP2 were classified into the third
group. PDGF is comprised of four isoforms (A, B, C,
and D) and two receptor chains (PDGFR-«a and -f). Fur-
ther, it is tightly associated with wound healing, athe-
rosclerosis, fibrosis, and malignancy [31]. Of its four
isoforms, PDGF B and D have been verified as key fac-
tors involved in mesangioproliferative disease and renal
interstitial fibrosis [32]. Until now, many studies have
suggested that PDGF is one of the most well charac-
terized growth factors in renal disease [32]. Especially,
the expression levels of PDGF and its receptor are

significantly altered in renal disease, mesangial and intersti-
tial proliferation, and in response to renal injury [32]. In
our study, we found that SelM overexpression and Sel
treatment could regulate the expression level of PDGF D in
the rat kidney. In addition, PAP41 was detected as one spot
showing a similar expression pattern under Sel treatment
conditions. PRPP synthetase is composed of four different
components, including two isoforms of 34-kDa catalytic
subunits (PRS I and II) and two associated proteins of 39-
and 41-kDa (PAP39 and PAP41). Of these components, rat
PAP41 was first cloned from two expressed sequence tag
(EST) clones, which are similar but not identical to PAP39,
PRSI, or PRS II ¢cDNA [33]. However, the functional mech-
anism and specific role of PAP41 in the kidney has not
been elucidated, except for an association with X-linked
dominant-inherited disorders and hyperuricemia [34]. Our
2-DE analysis results showed that the spot volume of
PAP41 markedly increased upon SelM overexpression in
kidneys of CMV/hSelM Tg rats, whereas Sel treatment may
have affected PAP41 expression in kidneys of non-Tg rats.
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Figure 6 Gel enlargement image showing ZFP313, HSP-60, and N-WASP in kidney extracts. (A) Three spots (ZFP313, HSP-60, and N-WASP)
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of three replicates. a, p<0.05 is the significance level compared with non-Tg rats. b, p<0.05 is the significance level compared with the

The final group of up-regulated spots included three
proteins, ZFP313, HSP-60, and N-WASP. The expression
levels of these proteins were affected by SelM over-
expression, whereas they remained unchanged upon Sel
treatment. Of these proteins, HSP-60, a mammalian stress
protein, is constitutively expressed and plays an essential
function as a molecular chaperone under normal cellular
conditions [35]. Especially, this protein is localized to
the mitochondria and cytoplasm in rat kidneys at the
electromicroscopic level [36]. Further, the expression level
of this protein in the kidney can be altered by various fac-
tors such as high temperature, mercury chloride injection,
transplantation, and osmolality [37]. However, there have
been no reports on the effect of Sel on expression of

HSP60. Finally, N-WASP, a member of the WASP family,
regulates actin polymerization [38]. Moreover, this protein
participates in normal brain development and synaptic
plasticity [39]. In the kidney, N-WASP regulates hepato-
cyte growth factor-induced cell migration and invasion,
which are required for epithelial tubulogenesis in the
kidney [40]. Further, this protein significantly inhibits gen-
tamicin accumulation in the mouse kidney. The above re-
ports collectively suggest that N-WASP is associated with
biological function of the kidney.

Other spots down-regulated by SelM overexpression
were classified into another group that included ALKDH3,
rMCP-3, and STC-1. Alkbh3 ¢cDNA was firstly identified
by the National Institutes of Health Mammalian Gene
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Collection (MGC) Program [41]. However, since then,
there has been no report on the biological function of this
gene. Therefore, our results provide information on the
role of ALKDH3 in the kidney of rats. Finally, STC-1, a
momodimer glycoprotein, is involved in calcium and
phosphate regulation in mammals [42]. This protein is
expressed in various tissues such as the pituitary gland,
brain, kidney, liver, heart, muscle, and gonads. In our
study, Sel treatment affected STC-1 expression in non-Tg
rats, whereas there was no change in CMV/hSelM Tg rats.

Conclusions

These results show a significant number of changes in
proteins expression related to antioxidant protection in
the kidney of CMV/hSelM Tg rats. Furthermore, several
of our results are novel, as they have never been previ-
ously reported. Therefore, our results should increase
our understanding of the detoxification mechanism as
well as identify a novel target for protection of the kid-
ney. However, intensive work is still needed to define the
roles of SelM and Sel in protecting against antioxidant-
related damage in the kidney.

Methods

Maintenance and identification of CMV/hSelM Tg rats
CMV/hSelM Tg rats used in this study showing high
antioxidant status in the serum and erythrocytes were
developed by microinjection of the CMV/hSelM fusion

gene into fertilized rat eggs [43]. The animal protocol was
reviewed and approved based on the ethical and scientific
care procedures of the Korea Food & Drug Administration
(Korea FDA)-Institutional Animal Care and Use Commit-
tee (KFDA-IACUC). All rats were kept in an accredited
KEDA animal facility in accordance with AAALAC Inter-
national Animal Care policies (Accredited Unit-Korea
Food and Drug Administration: Unit Number-000996).
The rats were given a standard irradiated chow diet
(Purina Mills Inc.) ad libitum and maintained in a speci-
fied pathogen-free state (SPF) under a strict light cycle
(lights on at 06:00 h and off at 18:00 h). All pedigrees were
hemizygous for their transgene.

Experimental design and Sel treatment

Sodium selenite (NaSeO3) purchased from Sigma (USA)
was dissolved in distilled water to a final concentration
of 0.2 umol/pl [44,45]. Rats at 15 weeks of age were ran-
domly divided into two subgroups (n=6) per group. The
first subgroups of the CMV/hSelM Tg and non-Tg rat
groups each received a comparable volume of distilled
water daily via intraperitoneal injection (vehicle-treated
CMV/hSelM Tg and non-Tg groups), whereas the sec-
ond subgroups each received 5 pmol/kg body weight/
day of sodium selenite via intraperitoneal injection for 3
weeks (Sel-treated CMV/hSelM Tg and non-Tg groups).
Three weeks after Sel solution injection, the animals
were immediately killed using CO, gas, followed by
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Figure 8 Verification of ALKDH3, HSP-60, and LAP3 protein
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represent the mean =+ SD of three replicates. a, p<0.05 is the
significance level compared with non-Tg rats. b, p<0.05 is the
significance level compared with the vehicle-treated group.

extraction of blood from the abdominal vein and prepar-
ation of kidney samples.

Western blot

Total proteins prepared from organs of CMV/hSelM Tg
and non-Tg rats were separated by electrophoresis on a 4-
20% SDS-PAGE gel for 3 h and then transferred to nitro-
cellulose membranes for 2 h at 40 V. Each membrane was
incubated separately with anti-SelM antibody (Abcam),
anti-ALKDH3 antibody (Santa Cruz Biotechnology Inc.),
anti-HSP60 antibody (Cell Signaling Technology Inc.),
anti-LAP3 antibody (Santa Cruz Biotechnology Inc.), or
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anti-actin antibody (Sigma) overnight at 4°C. The mem-
branes were then incubated with horseradish peroxidase-
conjugated goat anti-rabbit IgG (Zymed) at a 1:1,000
dilution at room temperature for 2 h. The membrane blots
were developed using a Chemiluminescence Reagent Plus
kit (ECL, Pharmacia).

Analysis of GPx and SOD activities and total antioxidant
concentration

The levels of GPx and SOD in kidneys of CMV/hSelM Tg
and non-Tg rats were detected by following the calorimet-
ric assay procedure using BIOXYTECH SOD-525 and
BIOXYTECH GPx-340 kits (OxisResearch™, Portland,
USA). The levels of total antioxidants in sera of CMV/
hSelM Tg and non-Tg rats were detected by following the
assay procedure using reagents in the Total Antioxidant
Status Kit (Randox Labotatories Ltd., Antrim), as in the
previous study [43].

Sample preparation for 2-DE

Analyses of global protein expression by 2-DE were
performed by following the methods established by our
laboratory in previous studies [46]. Cortex samples iso-
lated from kidney tissues were homogenized in liquid ni-
trogen, after which homogenized tissues were lysed in
buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS, 40 mM
Tris, 100 mM DTE). Sample mixtures were centrifuged
at 50,000 rpm at 4°C for 1 h. Protein concentrations
were determined by the Bradford protein assay (Bio-
Rad). In this process, cortex sample was made from a
pool of each of the 6 animals in each group, and each
pooled sample was run 3 times.

2-DE analysis
One-dimensional IEF was performed using 24-cm
IPG strips (GE healthcare) in a pH range from 3-10
(nonlinear). Protein (1 mg) was loaded in a total volume
of 450 pl, after which samples were diluted with rehydra-
tion solution (7 M urea, 2 M thiourea, 4 % w/v CHAPS,
40 mM Tirs, 100 mM DTE, 2 % IPG buffer 3—-10). After
rehydration for 13 h, the strips were focused at 30 V for
2 h, 100 V for 2 h, 200 V for 1 h, 500 V for 1 h, 1,000 V for
1 h, and finally at 8000 V for 22 h in order to obtain an ap-
proximately 100,000 VHr (IPGphor, GE healthcare). Once
IEF was completed, the strips were equilibrated in 6 M
urea containing 20 % glycerol, 2 % SDS, and 0.01 %
bromophenol blue (BPB) with 10 mM tributyl phosphine
(TBP). Two-dimensional SDS-PAGE was performed using
8-18 % linear gradient acrylamide gels on an EttanDalt
system (GE healthcare). Proteins were visualized by stain-
ing with Coomassie blue G-250 (Bio-rad).

To analyze changes in protein expression between
both types of mice according to SelM level, an average
gel representing non-Tg mice was compared to an
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average gel representing CMV/hSelM Tg mice. Only those
filtered spots exceeding an intensity threshold of a 1.5 or
2-fold increase or decrease between non-Tg and CMV/
hSleM Tg mice were studied further, whereas the thresh-
old regulation factor for the significance level was set at
p<0.05. Further, any spot showing a significant difference
in expression between non-Tg and CMV/hSleM Tg mice
was analyzed in all mice in order to map expression
changes according to Sel-related factors. Furthermore,
spots representing significant changes in expression were
subsequently identified by mass spectrometry.

Identification of protein spots

Stained gels were scanned on a GS800 densitometer (Bio-
Rad) and analyzed using Image master™ (SIB, Sweden).
The spots were digested using trypsin, after which super-
natant peptide mixtures were loaded onto a Poros R2 col-
umn (Applied Biosystems) that had been washed with the
following solutions: (1) 70 % acetonotrile in 5 % formic
acid, (2) 100 % acetonitrile, and (3) 5 % formic acid. Pep-
tides were eluted using 5 pl of a-cyano-4-hydroxycinnamic
acid and analyzed by using a matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometer (Voyager DE-PRO, Applied Biosystems). For
protein identification, masses of peptides determined by
MALDI-TOF were matched with theoretical peptides in
the NCBI (http://www.ncbi.nih.gov/) database using the
MASCOT (http://www.matrixscience.com) and ProFound
programs (http://prowl.rockefeller.edu).

Statistical analysis

Tests for significance between vehicle- and Sel-treated
rats were performed using a One-Way ANOVA test of
variance (SPSS for Windows, Release 10.10, Standard
Version, Chicago, IL). Tests for significance between
CMV/hSelM Tg and non-Tg rats were performed using
a Post-Hoc test (SPSS for Windows, Release 10.10,
Standard Version, Chicago, IL) of variance, and signifi-
cance levels are given in the text. All values are reported
as the mean + standard deviation (SD). a p value < 0.05
was considered significant.
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