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Abstract

Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant
glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer,
cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS)
technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the
analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related
databases have been established by many laboratories and institutions, they are not yet widely known in the
community. Our study reviews 15 different publicly available databases and identifies their key elements so that
users can identify the most applicable platform for their analytical needs. These databases include biological
information on the experimentally identified glycans and glycopeptides from various cells and organisms such as
human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic
data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for
glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently
established by our group are introduced. The unique features of each database, such as the analytical methods
used and bioinformatical tools available are summarized. This information will be a valuable resource for the
glycobiology community as it presents the analytical methods and glycosylation related databases together in one
compendium. It will also represent a step towards the desired long term goal of integrating the different databases
of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.

Introduction
Glycosylation is a critical protein modification relevant to
numerous physiological functions and cellular pathways. It
is important for protein folding, signaling and stability
in the circulatory system [1,2]. Alterations in the glyco-
sylation site occupancy or glycan structures of glycopro-
teins have been associated with hereditary and chronic
diseases such as cancer, diabetes, cardiovascular, inflam-
matory, neurological and neuromuscular diseases [3-5].
Indeed, the fields of glycopathology and glycophysiology
are providing a broader understanding of disease genesis
and progression [6]. Furthermore, glycoproteins have been
extensively studied for the discovery of disease associated
modifications that can be used for both diagnosis and/or
therapy for these diseases [4,7].

Glycomics and glycoproteomics are two approaches
used for the characterization of a specific cell, tissue or
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organ’s glycoproteome and glycome from an extracted
protein mixture in a specific state. The glycoproteome
is the full composition of glycoproteins in a specific cell
or tissue type, while the glycome is the full set of protein-
bound sugar groups. Glycomics focuses on the study of
glycan structure whereas glycoproteomics focuses on gly-
cosylated proteins and glycosylation sites. In glycoproteo-
mic analysis, glycosylated proteins are first enriched with
proper analytical techniques and then analyzed by LC/
MS/MS for protein and glycosylation site identification. In
glycomic analysis, the glycan moiety is often released from
the glycoprotein and analyzed by mass spectrometry
separately or in combination with chromatographic tech-
niques. The chromatographic techniques can provide add-
itional glycan identification and as well as the retention
time of each identification. In addition, glycopeptides
containing glycosylation sites and attached glycans can
be analyzed by mass spectrometry without the release of
glycans, which allows the identification of the glycosyla-
tion site and the specific glycans attached to the glycosyla-
tion site [8]. Initial works [9,10] and recent reviews have

© 2014 Baycin Hizal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public

Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this

article, unless otherwise stated.


mailto:hzhang32@jhmi.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Baycin Hizal et al. Clinical Proteomics 2014, 11:15
http://www.clinicalproteomicsjournal.com/content/11/1/15

extensively discussed analytical techniques used for identi-
fication and quantification of both the glycome and gly-
coproteome [4,11-15]. Programs have recently being
initiated both to merge current methodologies for iden-
tification of glycans or glycoproteome from complex tis-
sues or cells and to establish databases for the identified
glycosylated proteins [16,17]. Although many of the pub-
licly available databases are dynamic and updated, they are
not being used effectively because of a lack of common
resources, websites, and public awareness. Collating all
of these databases is critically important to the glyco-
biology community since data analysis is another key
element in addition to analytical methods. This review
summarizes the conventional methodologies used in gly-
coproteomic and glycomic studies and also assembles 15
different glycosylation related databases for the scientific
community. Furthermore, this manuscript also introduces
three glycoproteomic databases developed by our group:
UniPep [18], GlycoFly [19] and GlycoFish [20].

Glycoproteomic databases

Glycoproteomics is an emerging field which provides
qualitative and quantitative information on a large number
of glycoproteins. Recent improvements in glycoprotein
isolation methods, bioinformatics, and mass spectrometry
techniques have stimulated the subfield of proteomics
known as glycoproteomic research [21].

In order to identify glycoproteins in a biological sample,
the glycosylated proteins are first enriched with analytical,
affinity, or chemical techniques. Subsequently, the type of
glycosylation is determined. There are two major classes
of glycosylation N-glycosylation and O-glycosylation.

Table 1 Summary of glycoproteomic databases
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With N-glycosylation, the glycan group is attached to usu-
ally N4 residues of asparagines, whereas in O-glycosylation,
the glycan group attaches to the hydroxyl oxygen of serine
or threonine residues of a glycoprotein.

Emerging mass spectrometry techniques have signifi-
cantly improved glycoproteomic studies. After the gly-
copeptides are enriched with a specific method, they
can be qualitatively or quantitatively analyzed by tan-
dem mass spectrometry to identify a large set of glyco-
proteins. A variety of technologies such as hydrazide
chemistry, lectin chromatography or bead-immobilized
techniques have been used for comprehensive analysis
of site-specific glycosylation [22-26]. Although there are
organized and structured databases for the proteomes
and genomes of organisms which are complementary to
each other, there is an absence of a unified, structured
database for glycoproteome and glycome of organisms.
Fortunately, a number of groups have established dy-
namic, publicly available databases to share their glyco-
protome data [18,27,28]. Below are two tables, Tables 1
and 2, listing many of the databases concerned primarily
with glycoproteomics and glycomics.

UniPep

The detection and interpretation of the changes in organ
and plasma proteomes may provide information and in-
sights for delineating disease states. For this reason, it is
important to discover serum or organ-specific biomarkers
for early detection of the disease. Profiling the glycopro-
teome of plasma and organs is promising because changes
in the pathological or physiological state of the human
body can be manifested by aberrant glycosylation [18,24].

Database Type Species Method Entries

Unipep N-Glycosylated proteins Homo sapiens Hydrazide chemistry & Solid Phase Extraction, in-silico 2265
and peptides triptic digestion of IPI proteins, and prediction of NXS/T

glycosylation site with proteotypic potential

Glycofly N-Glycosylated proteins Drosophila melanogaster Hydrazide chemistry and Solid Phase Extraction 740
and peptides

Glycofish N-Glycosylated proteins Danio Rerio Hydrazide chemistry and Solid Phase Extraction 269
and peptides

GlycoSuiteDB O-linked and N-linked Published glycoproteins with different methods 9436

Glycoproteins and glycans
GlycoProtDB N2 and mouse tissues Caenorhabditis elegans Lectin Concavilin A Chromatography 1465
N-Glycoproteins Mus Musculus

O-GlycBase O and C-Glycosylated Combination of Data curation from literature and coupling ZFN gene 2413

NetOGlyc proteins references targeting, SimpleCell and Lectin Chromatography 3000

dbOGAP O-GlcNAcylated proteins Homo Sapiens Curation from literature and SVM based prediction 798 (exp)

300 (pred)

Mus Musculus
Rattus Norvegicus
Drosophila Melanogaster

Xenopus Laevis
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Table 2 Summary of glycomic databases
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Database Type Method

(CFG) Glycan Structure DB Glycan and glycan binding proteins Glycan array screening, Glycan profiling

GlycoBase N and O-linked glycan structures HPLC based and MS based glycan analysis
GlycomeDB Carbohydrate structures Carbohyrate data from CFG , KEGG, BCSDB, Carbbank
GlycoGeneDB GlycoGenes and mRNA expression In-silico collection of cloned and characterized human glycogenes

Glycan Mass Spectral DB

Lectin Frontier Database Glycan-lectin interactions

N-and O-linked glycans, and glycolipid glycans

Glycan glycosidase digestion and analysis by HPLC with fluorescence
or MS" analysis

Frontal affinity chromatography with fluorescence detection

Zhang et al. conducted a study to connect the organ and
plasma proteomes using the hydrazide chemistry method
to capture the N-glycosylated proteins [24] of plasma,
bladder, breast cancer cells, liver, lymphocytes, cerebro-
spinal fluid, prostate tissue and prostate cancer cells [18].
In this study, 2265 unique N-linked glycosylation sites
were identified with high confidence and these glycosyla-
tion sites and associated glycoproteins are publicly avail-
able within the UniPep website (www.unipep.org) [27]. In
addition, thousands of unique N-linked glycosites from
different mouse tissues were also reported [29-31]. The
database for mouse N-linked glycosites can be developed
using a similar process. Thus, UniPep provides access
to human and mouse N-glycosylated proteins and their
N-glycosylation sites for biomarker discovery. All the pro-
teins including their protein ID are listed on this dynamic
website. Furthermore, the website provides information
on all these N-glycosylated proteins including identified
N-glycosylated peptide sequences and probability scores.

Moreover, the consensus N-glycosylation sites of the
proteins can be reached from this database. The database
provides the in silico trysin digest of the proteins and the
possible NXS/T motifs. Another bioinformatics tool in
this website determines whether these glycosylation sites
can be detected or not in an MS/MS experiment which is
an important guide for the experimental design. As a next
phase of the project, this library of theoretical peptides,
which have already been scored for their likelihood of
mass spec detection, will be compared to the experimen-
tally deposited proteotypic peptides from a variety of LC/
MS/MS experiments.

GlycoSuiteDB

Unicarbkb  (http://unicarbkb.org) provides information on
both the glycan structure and glycosylated peptides of
proteins [32,33]. This database includes all the published
glycan types and glycosylation site information found
throughout the literature from 1990 to 2005. Currently,
there are 9436 entries from 864 references belonging to
245 species, including Homo sapiens, Rattus norvegicus
and Mus musculus. On the website, proteins of interest
can be searched by name, Uniprot, SwissProt or TrTEMBL
accession numbers. The database provides access to

information such as the biological source of the protein, its
glycosylation sites and possible glycan structures at those
sites for both N-glycosylated and O-glycosylated proteins.
Furthermore, it includes literature references and the rele-
vant links to PubMed. The methods used for the identifi-
cation of the glycans and glycosites are also provided
on the website. Finally, glycoproteins associated with
particular disease states in the literature are provided
[34,35]. While a major disadvantage of GlycoSuiteDB
is that it has not been updated since 2005, it was re-
cently incorporated as part of UniCarbKB [33]. Since
UniPep and GlycoSuiteDB are excellent sources for bio-
marker and therapeutics discovery, methods should be im-
plemented to update and provide glycoproteomes of more
organisms in addition to those currently catalogued.

GlycoFly

GlycoFly is another publicly available database for N-
glycosylated proteins and peptides of Drosophila melano-
gaster [19]. Drosophila is an important model organism
to study since it is often applied to interpret the effects
of gene mutations on human diseases. For instance, a
mutation in the volado/scab glycoprotein gene, which
leads to glycan variations, has been shown to cause
memory deficits [36] and a mutation of the wolknauel
gene of the glycosylation pathway has resulted in dis-
ruptions in embryonic patterning [37]. Furthermore,
blood nerve barrier dysfunction and loss of glial septate
junctions in the peripheral nervous system have been
observed when contactin, neuroglian, and neuroxin IV
genes are mutated [38]. These proteins are highly glyco-
sylated and localized to the nervous system of flies [19].
As a result, GlycoFly has focused on glycoproteome
identification of the central nervous system of flies.
Four hundred and seventy seven central nervous system
glycoproteins containing 740 NXS/T glycosylation sites
were identified. This information is available publicly on
the GlycoFly website (http://betenbaugh.org/GlycoFly/)
[39]. The proteins are listed with their Flybase IDs, and
a specific protein of interest can be searched by name
or sequence. The function of each protein, identified
glycosylated peptide sequence and its probability are
compiled as well. An example output from the website
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is displayed in Figure 1. The relative publications and an
overview of the experiments as well as in-silico predic-
tion tools and links to other glycoproteome databases
are not yet active in this database.

GlycoFish

Danio rerio (zebrafish) is a promising model system to
understand vertebrate development and human disease
because of biological and functional similarities between
humans and zebrafish. Larval and embryonic zebrafish
have also been used to explore potential therapeutics
for developmental disorders since some pharmacological
agents, especially neurotoxins and neuroprotectants, have
shown similar effects in zebrafish and humans [40,41]. Fur-
thermore, mutations in zebrafish cause diseases that resem-
ble human diseases; for example, both adult and embryo
zebrafish have been used to understand neurological and
neuromuscular diseases such as Huntington’s, Alzheimer’s
and Parkinson’s. [42-44]. Therefore, the glycoproteome
of zebrafish embryos was characterized by our group in
order to determine N-glycosylated sites of proteins present
during in vertebrate development [20].

Using the hydrazide chemistry method, 169 N-gly-
cosylated proteins were identified. These proteins include
269 N-glycosylation sites found on 265 N-glycopeptides. In
order to make this data publicly available, the GlycoFish
database (http://betenbaugh.org/GlycoFish/), which [45]
lists the mass spectrometer properties of identified N-
glycopeptides and gives functional and sequential infor-
mation on the identified N-glycosylated proteins, has
been established. This database can be further improved
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by in-silico prediction of glycosylation sites as well as
addition of related publications, overview of the experi-
ment, and links to the other glycoproteomic databases.

GlycoProtDB (GPDB)

GlycoProtDB  (http://jcggdb.jp/rcmg/gpdb/index.action)
is a database for the N-glycoproteins of Caenorhabditis
elegans N2 and mouse tissues, identified from lectin chro-
matography experiments [46,47]. In order to enrich the N-
glycosylated proteins, lectin affinity column based isotope
coded glycosylation site specific tagging (IGOT) was
used. The proteins were digested, applied to a lectin af-
finity column in order to enrich the N-glycosylated pro-
teins, and N-glycanase treatment was performed to
remove the glycosylated peptides in '*O-labeled water
for tagging of the asparagine sites converted aspartate
sites [48-50]. Then shotgun analysis with LC/MS/MS
identified 400 N-glycosites on 250 glycoproteins using
this elegant technique in the initial study [48]. These
numbers were increased to 1465 N-glycosylated sites on
829 proteins in subsequent studies [50]. Furthermore,
1200 mouse liver glycoproteins, accessible in the Glyco-
ProtDB database [49] were also identified using 2D-LC-
MS/MS studies.

Proteins of interest can be searched on GlycoProtDB by
their name, amino acid length, molecular weight or data-
base identifiers. A user friendly website provides informa-
tion on the glycoprotein ID, amino acid sequence, and
experimentally identified glycosylation sites of the pro-
teins. It also provides access to the method and lectins
used for the identification of these glycopeptides [46,47].

Protein Summary

ID: FBgn0000634
Protein name: Fasciclin 1
Protein Symbol: Fas1

Protein Function: Cell Adhesion
Annotation Symbol: CG6588

Identified N-Linked Glyco-Peptides

= Mascot
NXST g Observed Predicted = Mascot )
location Identified Sequence Enzyme Used Mass Mass Charge  Probability lon Score gis:r(:y
29 (R)DDSELSQFYSLLESNQIANSTLSLR(S) Trypsin 944.45 2830.34 3 95% 95.48 30.97
3N (ANNSSNINNVL(R) Chymotrypsin  488.24 974.47 2 95% 29.58 30.60
407 (KINANLIAQVPTYNANTFLYFNVR(G) Trypsin 841.77 2522.28 3 95% 66.49 30.04
492 (KFSHFNDQLNNTQR(R) Trypsin 811.37 1620.72 2 95% 55.11 27.02

Protein Sequence

mlnaaalllallcaanaaaaadladkl [rddselsqgfysllesngianstlslrs]ctif
vptneafgryksktahvlyhitteaytgkr lpntvssduagnpplyitknsngdifvnna
riipslsvetnsdgkrgimhiidevlepltvkaghsdtpnnpnalkflknaeefnvdnig
vrtyrsgvtmakkesvyd ghtflvpvdegfklsarsslvdgkvidghvipntvifca
aaghddpkasaafedl lkvtvsEfkaknglknyvksnt ivgdakhrvgvvlae ivkanipy
sngvvhlihrplmiidetvegflgsfkfrnenaengalrkfyevindnggavlddinslt
evtilapsnea[wnssninnvlr] drnkwrgilmwhiikdr lnvdkirg [ knanliacvp
tvnnntflyfnvrg] egsdtvitvegggvnatvigadvagtngyvhiidhvlgvpyttvl
gklesdpravsdt ylang [kfshEfndeglnntarr] fryfvprdkgugkte ldypsahkklin
adfsyhsksilerhlaisdkeytwkdlvkfsgesgsvilprfrdslsirveeeagryvii
waykkinvyrpdvectngiihvidyplleekdvvvaggsylpessiciilanlimitvak
fln

Figure 1 Example of GlycoFly website protein, Fascilin 1 (http://betenbaugh.org/GlycoFly/).
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O-GlycBase

O-GlycBase (http://www.cbs.dtu.dk/databases/OGLYCBASE/)
is a prediction website of the Technical University of
Denmark (DTU) [51,52]. This database includes 242
proteins with 2413 O-glycosylation sites and relevant
references. O-glycosylated proteins were documented to
establish a network for predicting the O-GalNac sites of
the proteins [53]. This prediction database for the
mucin-type O-glycosylated proteins is named NetOGlyc
(www.cbs.dtu.dk/services/NetOGlyc/) [54], which iden-
tifies potential O-glycosylation sites for any submitted
protein with 76% confidence [53,54]. Furthermore re-
cently NetOGlyc4.0 model has been developed which is
based on the first O-glycoproteome map of human con-
sisting of 3000 O-glycosites from over 600 O-glycoproteins
using genetic engineering approach [55-57]. O-Unique
(http://www.cbs.dtu.dk/ftp/Oglyc/O-Unique.seq), another
database established by DTU, includes 53 mucin type
mammalian glycoproteins with 265 experimentally
proven O-glycosylation sites [58].

dbOGAP

O-GlcNAcylation is the addition of 3-N-acetylglucosamine
(GlcNac) to Ser or Thr aminoacids by the O-GlcNac trans-
ferase (OGT) enzyme. Unlike mucin type O-glycosylation,
GIcNAc attachment occurs only for nuclear and cytoplas-
mic proteins with no further addition or extension of car-
bohydrates. O-GlcNAcylation plays an important role in
biological processes and has been associated with diseases
such as diabetes, cancer, and neurodegeneration. For this
reason, dbOGAP (http://cbsb.lombardi.georgetown.edu/
OGAP.html) database for O-GlcNAcylated proteins and
sites was established and a support vector machine (SVM)
based sequence program to predict the protein O-GlcNA-
cylation sites was developed [59]. This database includes
798 experimentally proved and 365 predicted proteins
of human, rat, mouse, frog and fly [60]. For each pro-
tein entry, the experimentally characterized or pre-
dicted O-GlcNacylation and phosphorylation sites are
available at this website, along with the molecular and
biological function of each protein and its importance
in disease states. The O-GlcNAcScan feature allows
users to predict O-GlcNacylation sites for any submit-
ted protein [59,60].

Glycomic databases

Both the glycosylation sites and the bound glycan struc-
tures represent important aspects of systems glycobiol-
ogy. More than 200 glycosyltransferases are responsible
for the addition and modification of carbohydrates with
different linkages in order to generate a wide range of
diverse glycans [61]. As a result, glycan characterization
can be challenging due to the heterogeneity and com-
plexity of oligosaccharide moieties. However, specific
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carbohydrates can play key roles in cell-cell recognition,
receptor-ligand binding, protein interactions, and protein
stability in vivo [62]. In recent years, high-throughput gly-
comic techniques have enabled fast and robust glycan
characterization to demonstrate lot-to-lot consistency in
pharmaceutical therapeutics and to understand the role of
glycans in human disease [62].

Complete glycan profiling can include the detection,
identification, and quantification of the carbohydrates as
well as the the identification of linkages between specific
monosaccharides. Different methods including chroma-
tographic separation and mass spectrometry [63] are
used for the analysis of glycans. Glycan analysis from a
biological sample requires the release of an intact glycan
from the protein followed by separation and detection
using chromatography or mass spectrometry based gly-
can methods. Various combinations of methods are also
used in glycan isolation and characterization as summa-
rized in recent articles [62-72].

Evaluating glycans can represent a more complex task
than proteomics or genomics because of the multiple
glycosyltransfers that occur during glycan biosynthesis.
Furthermore, various O and N-glycan structures are pos-
sible depending on the specific target proteins and gly-
cosyltransferases present, making decoding the glycans
challenging [63,73]. To enhance knowledge of glycomic
patterns, glycomic databases are being established that
document the different glycan structures and make this
information publically available [73]. A table summarizing
the various databases primarily concerned with glycomic
studies is listed below.

Consortium Functional Glycomics (CFG) glycan structure
database

CFG provides one of the largest databases for under-
standing the roles of carbohydrates in cell communica-
tion [28]. It also includes a glycan structural database
(http://www.functionalglycomics.org/glycomics/molecule/
jsp/carbohydrate/carbMoleculeHome.,jsp) in order to com-
pile and integrate glycomic data sets for the glycoscience
community [74]. CFG has provided both core facilities
for data generation and a bioinformatics platform for
annotating glycan structural data [75]. The analytical
glycotechnology core facility of CFG has profiled per-
methylated N- and O- glycans for human and mouse
tissues and cell lines. In addition, CarbBank and Glyco-
minds, which include N- and O-glycans analyzed in
other studies, are integrated in this database. Different
options to search for glycans of interest include their
name, composition, molecular weight, Glycan ID, IUPAC
ID, the cell line or tissue sample. Both basic and complex
searches can be performed depending on the bioinformat-
ics goals. For example, one can search for glycans contain-
ing sialic acid or those associated with human cancer.


http://www.cbs.dtu.dk/databases/OGLYCBASE/
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When selecting the glycan of interest, the glycan cartoon
and IUPAC 2D structures are shown and its properties,
such as molecular weight, are listed. Furthermore, CFG
identifies whether this glycan is N- or O-linked and studies
related to this glycan are noted in the reference section
[74,75]. The substructure search option is another uncom-
mon and useful feature of CFG database. The substructure
interface provides different common carbohydrate motifs,
for O-linked and N-linked glycans that can be modified or
extended to form the desired glycan structure [74,75].

GlycoBase

Fluorophore labeling using 2-aminobenzamide (2-AB) is
often used for labeling the glycans for subsequent HPLC
analysis. A 2-AB labeled dextran ladder was used to as-
sign glucose unit (GU) values based on the retention
times of glycans [76]. GU values representing the HPLC
retention times for more than 350 glycan structures are
available on the GlycoBase database (http://glycobase.nibrt.
ie/glycobase/show_nibrt.action) [77]. In addition to the GU
values, monosaccharide compositions and their linkages are
represented with pictures for each glycan. Each entry has
links for the exoglycosidase digestion products and the
groups where the glycan of interest can be found. Also,
relevant publications related to these glycans are listed as
references [76,78].

GlycoBase also includes the GlycoExtractor interface
for extraction of HPLC glycan data into a common format
[79]. GlycoExtractor can export the peak areas and GU
values from large sets of HPLC data in order to integrate
shared data in the same format. This format makes
data analysis and storage easier for glycan profiling,
which is helpful for biomarker discovery and gener-
ation of therapeutics [80].

GlycomeDB

GlycomeDB is a database established for the integra-
tion of the carbohydrate structures and annotations
from seven different publicly available databases (CFG,
Bacterial Carbohydrate Structure Database (BCSDB),
GLYCOSCIENCES.de, Kyoto Encyclopedia of Genes and
Genomes (KEGG), EUROCarbDB and Carbbank) [81].
GlycomeDB also introduced both GlycoCT and Gly-
coUpdateDB interfaces. GlcyoCT is a universal data for-
mat established for the incorporation of glycan datasets
onto the GlycomeDB website. GlycoUpdateDB interface
generates updates from different databases to the web-
site on a weekly basis. After downloading the datasets
from public databases, GlycoUpdateDB translates the
data into the GlycoCT format and integrates the new
data into GlycomeDB website. More than 35,873 differ-
ent carbohydrate sequences have been uploaded in Gly-
coCT format with 11,822 structures fully determined
including all linkage positions, base type, anomers, ring
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size and modifications [82,83]. GlycomeDB provides the
image of the glycan structure, its specifications in Gly-
coCT format, and links to the external databases for fur-
ther information on the glycan of interest. It is also
possible to learn all the identified oligosaccharide struc-
tures for a particular species. When searching a specific
species, the website lists the glycans with their cartoon
representations and references [81].

GlycomeDB has also absorbed another important data-
base: the Japan Consortium Glycobiology and Glycotech-
nology Database (JCGGDB) (http://jcggdb.jp/index_en.
html), which itself is composed of the GlycoGene Data-
base (GGDB) (http://jcggdb.jp/rcmg/ggdb/) and Glycan
Mass Spectral Database (GMDB) (http://jcggdb.jp/
rcmg/glycodb/Ms_ResultSearch) [84-86]. The JCGGDB
database provides a different approach for displaying gly-
comic information compared to other available databases.

GGDB includes all the identified genes related with a
glycosylation pathway such as glycosyltransferases, sialyl-
transferases, carbohydrate transporters and synthases. All
the DNA and mRNA sequences of these enzymes with
their gene expression profiles in tissues are included as
well. Furthermore, graphical representations of the sub-
strate specificities are also provided [84]. The GMDB
approach is similar to the GlycoBase approach for the
identification of glycans. However, instead of GU values,
GMDB provides spectral view of glycans obtained with
MALDI-QIT-TOF MS. Each carbohydrate structure has
an MS" fragmentation pattern and these collision-
induced dissociation spectra are stored in the database
to enable spectral matching and glycan identification.
The MS" spectra of any glycan can then be searched
based on its m/z value or composition. The website also
provides an option to include modifications such as
phosphorylation on the glycan of interest. If the glycan
is coupled with a fluorescent reagent, such as 2-
aminopyridine, this can also be included in the list
of labeling groups to look for the specific spectra of
2-aminopyridine coupled glycans [85,86].

GlycoSuiteDB
In addition to being a glycoproteome database, Glyco-
SuiteDB, established by Tyrian Diagnostics Ltd provides
access tomore than 3238 unique carbohydrate structures
from 245 different species. GlycoSuiteDB is a web-friendly
database which provides information on the mass and
composition of the glycan, the linkages and the anomeric
configuration. This database gives detailed information on
the cell line or tissue in which each glycan structure is
found, as well as the method used to determine the speci-
fied glycan, its role in disease states or therapeutic produc-
tion, and links to references [32,34,35].

The website also lists all the available glycan types in
the database with a particular composition or mass. In
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addition, one can construct or extend a structure and
then look up if that specific carbohydrate has been iden-
tified or investigated in the literature. Another search
option available is the ability to find glycans associated
with a specific biological source or disease. For example,
when performing a search with blood as your biological
source, 49 different glycans are specified [32].

EuroCarbDB

EUROCarbDB (https://code.google.com/p/eurocarb/) is a
European based core database for the collection of
carbohydrate data and the development and housing of
corresponding bioinformatics tools [87]. This initiative
has been established to provide the technical infrastruc-
ture needed for standardization of the glycomic data
and the appropriate analytical tools. EuroCarbDB aims
to compile large, high quality primary research data sets
from MS, NMR and HPLC experimental work into a
single location in order to create common standards for
storing these datasets. In conjunction, EuroCarbDB has
established bioinformatic tools for analyzing, processing
and identifying the glycan structures from MS, NMR spec-
tra and HPLC profiles. For example, a software tool has
been developed, GlycanBuilder, which can be used to
visualize, display and assemble glycan structures with a
symbolic notation. GlycanBuilder can either be used in a
user-independent manner to display glycans or as a user-
dependent tool to draw specific glycan structures [88]. In
addition, GlycoWorkbench is another glycoinformatics
tool which can be used to annotate the N and O-glycans
from mass spectra data [89]. One of the challenges in gly-
comics databases has been the digital representation of
carbohydrate structures in a computer readable format.
Two glycobioinformatics tools, Glyco-CT and Glyde
have been established for encoding the glycan struc-
tures. Recently Glyde has been recognized as the
standard format for the exchange of information be-
tween databases [88]. Besides these, Glyde II and Glyde
II DTD were developed by University of Georgia.
Glyde II DTD especially provides the preservation of
partonomy and granularity in the carbohydrates [90].

Databases for Glycan-protein interactions
Glycan-Binding Proteins (GBP) such as antibodies, lectins,
and receptors has been used for glycan recognition over
many years. However, determination of specificities of
GBPs required a large amount of the glycans and much
labor-intensive preparation prior to the development of
glycan microarray technology. Glycan microarray tech-
nology has since accelerated studies in glycomics since
glycan binding specificities can be analyzed quantita-
tively in a short period of time using much smaller
amounts of sample material [91].
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The most widely used highthroughput method for gly-
can profiling are lectin microarrays, which can analyze
multiple lectin-glycan interactions simultaneously [92-94].
Antibodies are also used in glycan microarrays since they
can be specific to particular carbohydrate epitopes. Anti-
genic epitopes such as Lewis x and Sialyl Lewis A can be
strongly recognized by specific monoclonal antibodies
[73,91,95]. However, antibodies are usually unable to dif-
ferentiate between O-glycans, N-glycans or glicolipids.
They typically bind to their specific epitopes regardless of
the glycan type [95]. The methods that are used in glycan
microarrays and available databases are discussed below.

CFG

The Consortium for Functional Glycomics (CFG) group
also has a Protein-Carbohydrate Interaction Core facility
which applies two different methodologies for protein
analysis and glycan recognition. Both microwell based and
glass slide arrays similar to DNA microarrays are used to
screen hundreds of glycans, lectins, antibodies and patho-
genic proteins. Streptavidin-coated wells are covered with
biotinylated synthetic or biological glycans to identify
novel carbohydrate binding ligands. Moreover, glycan
printing on the N-hydroxysuccinimide-reacted glass
slide arrays is being used to expand number of possible
glycan ligand targets. This technology also has an ad-
vantageous low signal to noise ratio [74].

The CEG database allows users to search through
plate, printed and pathogen arrays for the specific analyte
of interest. Numerous animal lectins such as C-type lec-
tins, siglecs, galectins as well as plant lectins, pathogens,
microbial lectins, antibodies, serum, cells and organisms
are available under the analyte category. When the analyte
of interest and array type are chosen, the website finds
all the studies related to them. The primary glycan bind-
ing specificity, ligand site and any information related
to this glycan binding protein are also provided in the
database [96,97].

LDB
The Lectin Frontier Database (LfDB) was established by
JCGGDB and provides quantitative information on glycan-
protein interactions. The binding specificity of each lec-
tin to different glycans is variable and this affinity can
be quantified in terms of an association constant (K,).
Frontal affinity chromatography with fluorescence de-
tection (FAC-FD) is a common method used to deter-
mine affinity constants since it produces reliable and
reproducible data [47]. As shown in Figure 2, Langmuir’s
adsorption principle is applied in this isocratic elution
system.

Pyridylaminated glycans (PA-glycans) in low concentra-
tions can be loaded onto the lectin-immobilized column,
and the binding specificity of a glycan calculated based on
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the change in the volumes as shown in the following
equations.

B,
Kyg=————-]A d K,=1
(d (V—V()) [ 0] an < /Kd

Where K, is the affinity constant, B; is the effective
lectin content, [Ao] is the initial glycan concentration,
and V-V, is the difference between the initial glycan vol-
ume of the glycan of interest and a negative control [92].

In LIDB (http://jcggdb.jp/rcmg/glycodb/LectinSearch),
a variety of lectin affinities towards glycans are available.
Any lectin type or monosaccharide specificity can be
searched. Once the glycan binding protein is found, all
the information related to this protein and its K, values
toward different glycans can be obtained from this
database [98].

Conclusion

Fifteen different glycomic and glycoproteomic related
databases are described in the current study. These da-
tabases include more than 30,000 entries for experimen-
tally identified or predicted glycans and glycopeptides.
The structural information on the glycan or glycosite of
these glycoproteins and hyperlinks to their references
are also provided in these databases. Each of these data-
bases has key features. For instance Unipep includes
both experimentally proven glycoproteins and their gly-
cosites and also in-silico predicted glycosites on human
proteins. GlycoFly focuses on the N-glycosylated peptides
of Drosophila melanogaster whereas GlycoFish provides
the list of N-glycosites of zebrafish. O-GlycBase, dbOGAP
are the specific databases for O-glycosylation and O-
GlcNAcylation. CFG and EuroCarbDB are the two lar-
gest databases for carbohydrates whereas GlycoBase and
GlcyomeDB databases include extensive information on

the glycans. Furthermore databases such as CFG and
LEDB provide information on the glycan-protein and lec-
tin interactions. This review will be a useful resource for
glycobiology studies and institutions searching for infor-
mation on glycoproteins of interest. Furthermore, assem-
bling the databases in this review and others will assist in
the eventual formation of a single resource for glycomic
and glycoproteomics high-throughput data. In the long
term, the glycobiology community should strive to create
a fully integrated and dynamic database that includes all
the elements described in this review. One vision would
be a database that has all the glycosylated proteins, indi-
cating if they are O or N-glycosylated, and showing their
O and N-glycosylation sites. We could then add additional
functionalities to the database including all known glycan
structures obtained at the designated glycosylation site
together with specific glycosylation linkages. Of course,
some of this data are not yet available, and thus there
are additional experimental data and complementary
bioinformatics that need to be obtained before a com-
prehensive glycomics database can become a reality.
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