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Abstract

During the past several decades, the understanding of cancer at the molecular level has been primarily focused on
mechanisms on how signaling molecules transform homeostatically balanced cells into malignant ones within an
individual pathway. However, it is becoming more apparent that pathways are dynamic and crosstalk at different
control points of the signaling cascades, making the traditional linear signaling models inadequate to interpret
complex biological systems. Recent technological advances in high throughput, deep sequencing for the human
genomes and proteomic technologies to comprehensively characterize the human proteomes in conjunction with
multiplexed targeted proteomic assays to measure panels of proteins involved in biologically relevant pathways
have made significant progress in understanding cancer at the molecular level. It is undeniable that proteomic
profiling of differentially expressed proteins under many perturbation conditions, or between normal and “diseased”
states is important to capture a first glance at the overall proteomic landscape, which has been a main focus of
proteomics research during the past 15-20 years. However, the research community is gradually shifting its heavy
focus from that initial discovery step to protein target verification using multiplexed quantitative proteomic assays,
capable of measuring changes in proteins and their interacting partners, isoforms, and post-translational modifications
(PTMs) in response to stimuli in the context of signaling pathways and protein networks. With a critical link to
genotypes (i.e., high throughput genomics and transcriptomics data), new and complementary information can
be gleaned from multi-dimensional omics data to (1) assess the effect of genomic and transcriptomic aberrations
on such complex molecular machinery in the context of cell signaling architectures associated with pathological
diseases such as cancer (i.e., from genotype to proteotype to phenotype); and (2) target pathway- and network-driven
changes and map the fluctuations of these functional units (proteins) responsible for cellular activities in response to
perturbation in a spatiotemporal fashion to better understand cancer biology as a whole system.

Keywords: Protein identification and quantitation, Post-translational modification, Targeted proteomics,
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Systems biology
Introduction
Recent advances in high throughput genomics in the
past few years as evidenced by large-scale collaborative
initiatives such as The Cancer Genome Atlas (TCGA),
the International Cancer Genome Consortium (ICGC),
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) and others have extensively
characterized and sequenced the genomic alterations from
different types of cancer [1-6]. These highly coordinated
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efforts are creating large complex datasets for mining and
computational modeling by the scientific community. The
availability of these rich datasets to the public sets the
stage for understanding the underlying mechanisms of
cancer initiation and progression, and the development of
new, more effective targeted cancer interventions. It is
well known that aberrations in genome structure and
defects in maintenance and repair are instrumental for
tumor initiation and progression by expediting the accu-
mulation of favorable genotypes in evolving premalignant
cells [7-9]. As such, genome aberrations and instability are
clearly enabling characteristics that are causally associated
with the acquisition of many cancer hallmarks [10]. In
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addition, cancer is a highly heterogeneous disease in terms
of cell type and tissue origin, and a disease of dysregu-
lation of multiple pathways involved in fundamental
cellular processes, such as death, proliferation and
differentiation [11-13]. Hence, a better understanding of
cancer biology using deep genomic and proteomic
characterization of high quality human clinical speci-
mens, well-annotated cell lines and animal models (+/-
perturbation) is the first logical step to pursue, perhaps
even at the single cell level [14].
Following the maturity of genomic sequencing technolo-

gies, proteomic technologies such as mass spectrometry
(MS), protein- and affinity-based arrays and bead-based
flow cytometry have also progressed and evolved tre-
mendously over the past 15 years to deeply and sys-
tematically characterize the human proteomes [15-18].
The combination of brute force protein profiling and
targeted proteomic methodologies for a subset of the
proteomes or selected pathways have proven to be
powerful approaches for identifying and quantifying
proteins in biological materials, such as tumors, prox-
imal fluids and blood. As these advances in multi-
omics technologies yield large inventories of genes,
transcripts, proteins, metabolites and relevant bio-
logical information with data and bioinformatic tools
becoming publicly accessible, the paradigm has grad-
ually shifted from studying single genes and proteins in
a specific biological system to the study of cellular pro-
cesses as a whole (systems biology). A fundamental
insight in signal transduction, as recently precipitated
by omics results, has demonstrated that cancer-related
pathways are not linear but are rather organized as net-
works [19]. As an extremely complex and heterogeneous
disease, cancer inevitably displays highly nonlinear
dynamics due to the involvement of a large number
and variety of components that interact via complex
networks. The challenge for the research community
in this multi-omics era is to solve the puzzle of how
these network modules work synergistically to regulate
the processes whereby cells respond to external and
internal signals. This will in turn shed light on these
complex biological phenomena by generating detailed
roadmaps of a variety of cellular networks based on
many types of data. Once the network models are
established by bioinformatic and statistical tools, our
hope is to translate gained knowledge from research to
medicine and clinical practice, for example, knocking
out several target molecules in several biochemical
pathways for a more effective cancer therapy due to
the fact that cells often find alternative molecular
routes to escape the blockage targeted by a single drug.
Herein, we provide a comprehensive proteogenomic-

centric review on the current status of technologies
and bioinformatics for studying cancer systems biology
in light of the growing maturity of high throughput, deep
genomic sequencing and deep proteomic characterization.
Additionally, we offer our perspective on the importance
of developing and implementing an efficient, community-
based multi-omics integration pipeline with standards to
further this area of science. Altogether, the emerging
multi-omics era promises a collection of high through-
put, multidimensional quality data and computational
resources from which new knowledge and hypotheses
can be generated and validated to enhance the under-
standing of signaling events and roadmaps critical for
cancer development and progression.

Overview on biochemical and proteomics technologies
for the analysis of pathways and networks
Studying known pathways and networks using quantitative
proteomics and PTM-omics
With tremendous improvements in instrumentation and
automation, particularly with MS during the last 15 years,
shotgun proteomics have been widely used to detect a
large number of proteins (often in the range of 1000 s
to 10,000 s depending on the biological matrices) and
their PTMs such as phosphorylation. Mass spectrometry
(MS)-based labeling methodologies, such as iTRAQ or
stable isotope labeling by amino acids in cell culture
[SILAC]) and/or label-free approaches have made semi-
quantitative protein measurements, including PTMs and
isoforms feasible at a global scale [20,21]. Although these
approaches do not reveal direct protein-protein interac-
tions (PPIs) for mapping interactomes, the interpretation
of proteomics and PTM-omics data generated from
these studies can be performed through established
known protein-protein interaction pathways and net-
works, or through the inference of regulatory networks
built upon a variety of “omics” input. The inference of
regulatory networks is usually done by transcriptomics
studies initially, and would benefit from the addition of
rich proteomics data in order to enhance pathway pre-
dictions with the goal of understanding the regulatory
pathways rather than directly mapping them. One advan-
tage of using proteomics data for this is unarguably the
added value from quantitative measurements of PTMs
and functional sub-proteomes (e.g., kinase/phosphatase
families) important for signaling events throughout the
networks that neither genomics nor transcriptomics can
provide. Furthermore, signaling pathways modulate cellu-
lar processes interact such that the resulting signal cross-
talk contributes largely to many of the key characteristics
of cancer or other dysfunctional cells [22-24]. In some
cases, PTMs crosstalk and work in concert to determine
the final biological read-outs (e.g., crosstalk between
histone phosphorylation and acetylation [25]). Thus,
quantitative assessment of various types of PTMs in-
volved in the regulation of cellular processes becomes
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crucial to the understanding of signal flow in relevant
pathways and networks.
In this regard, Beli et al. reported a multi-level pro-

teomics study that integrates large-scale quantitation of
protein PTMs and protein abundances in response to
DNA damage signals [26]. In the past, proteomic studies
have been biased towards phosphorylation analysis of
ataxia telangiectasia, mutated (ATM), ATM- and Rad3-
related (ATR), DNA-dependent protein kinase (ATM/
ATR/DNA-PK) substrates or nuclear proteins, attribut-
ing to the fact that DNA strand breaks were primarily
triggered by the phosphatidylinositol 3-kinase-like pro-
tein kinase (PIKK) ATM and, by the related kinases ATR
and DNA-PK to a lesser extent. These PIKKs prefe-
rentially phosphorylate substrates at serine or threonine
residues, followed by a glutamine ([S/T]Q motif ), setting
them apart from other protein kinases in terms of
substrate specificity. However, complex DNA damage
response (DDR) signaling is not confined to the nucleus,
and involves a plethora of PTM mechanisms including
phosphorylation, acetylation, ubiquitination and sumoy-
lation along with transcriptional and post-transcriptional
regulation [26]. Quantitative measurements of DDR-
regulated phosphoproteome, acetylome, and proteome
have broaden our knowledge of DNA damage signaling
networks and highlighted an important link between
RNA metabolism and DNA repair.
Despite the intricacy of pathway crosstalk modulated

by different PTMs, phosphoproteomics remain one of
the most important and preferred PTMs to study by
biologists as it is believed that quantitative determin-
ation of phosphorylation sites and their stoichiometries
are possible indicators of kinase activity and substrate
specificity. One such approach is to comprehensively
localize and quantify phosphopeptides in a complex bio-
logical mixture with and without perturbation to infer
upstream kinase activities using MS [27]. Complemen-
tarily, kinase assays linked with phosphoproteomics
(KALIP) have been developed for the determination of
downstream substrate specificity and the identification
of direct substrates of protein kinases with high sensitiv-
ity. Kinase assays linked with phosphoproteomics
(KALIP) is based on a kinase reaction using formerly
in vivo phosphorylated peptides as candidates [28]. This
method efficiently improves the sensitivity of a kinase
reaction linked to endogenous phosphoproteomics mod-
ulated by the kinase of interest to detect substrates.
With this strategy, it has been demonstrated that spleen
tyrosine kinase (Syk), a 72-kDa protein tyrosine kinase
(RTK) with duel properties of an oncogene and a tumor
suppressor in distinctive cell types (known to play a
crucial role in adaptive immune receptor signaling,
particularly in B cells), used as a target kinase, helped
identify direct substrates of Syk specific to B cells and
breast cancer cells. As a result, both known and unique
substrates, including multiple centrosomal substrates for
Syk were identified, supporting a unique mechanism that
Syk negatively affects cell division through its centrosomal
kinase activity [28]. Similar activity-based methodologies
have been developed using functional protein microarray
platforms to identify kinase substrates representing a
broad spectrum of different biochemical functions and
cellular roles [29]. These array-based methodologies have
recently been applied to profile PTMs, including phos-
phorylation, ubiquitination, acetylation, glycosylation and
nitrosylation.
Although many methodologies using proxies for kinase

activities (e.g., antibody- or MS-based measurements of
phosphorylation states upon biological perturbation)
[30,31] are very useful and quantitative, these indirect
inferences of kinase activity generally lack a temporal
component, making the interpretation of enzymatic
reaction rates very difficult. Additionally, other types of
PTMs occurring on kinases as previously described play
a role in modulating their activities, which are usually
not accounted for in these studies. To complicate this
issue further, there is a lack of correlation between
phosphorylation events and kinase activities, thus argu-
ing that it may be better to directly measure kinase
activity rather than a substitute. Consequently, Activity-
based Protein Profiling (ABPP) (or chemoproteomics)
has been developed to address this issue. The use of
chemical probes to directly measure enzyme activity is
not a new concept. They usually consist of two key
elements (a reactive group for binding and covalently la-
beling the active sites of a given enzyme class or classes;
and a reporter tag for the detection, enrichment and iden-
tification of probe-labeled enzymes in proteomes), such as
fluorescence or MS [32,33]. These ABPP probes selectively
label the active forms of enzymes followed by quantitative
analysis to characterize changes in enzyme activity without
corresponding changes in protein expression. However,
recent improvements in such technologies, such as click
chemistry, have been applied to more extensively study
sub-proteomes of a complex biological context rather than
focusing on one single enzyme. An example of “click
chemistry” version of the ABPP method is the analysis of
the functional state of enzymes in living cells and organ-
isms [34], an improvement to in vitro assays. Contrary to
traditional ABPP, this version allows the profiling of living
cells and organisms by treating these specimens with
tag-free azide- or alkyne-modified probes, followed by
conjugation in vitro to the complementary alkyne- or
azide-modified tags via cycloaddition reaction to visualize
probe-labeled proteins. This approach has enabled the
capture and characterization of several enzyme classes,
including many that have central roles in cancer such as
kinases and phosphatases [35,36], histone deacetylases
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[37], and deubiquitylases [38], followed by subsequent
multiple reaction monitoring mass spectrometry (MRM-
MS) quantitation. Hence, this version of activity-based
probes enhances the elucidation of underlying mecha-
nisms of disease pathophysiology and potential therapeutic
intervention as analysis can reveal the intricate interplay
between different signaling transduction pathways respon-
sible for cellular function such as differentiation and apop-
tosis. Similarly, biotin-tagged acyl-phosphates of ATP and
ADP have been developed, which are capable of acylating
the conserved active site lysines for a range of known
human protein and lipid kinases and other ATP-
dependent enzymes, followed by LC-MS analysis post
affinity enrichment of biotinylated peptides on strep-
tavidin beads. This broader, probe-based strategy was
deployed to profile well-studied kinase inhibitors against
>200 kinases in native cell proteomes, revealing biological
targets for some of these inhibitors with therapeutic
potential. Such activity-based studies truly highlight
the complexities of protein kinase behavior in the
cellular context [39].
Complementary to MS detection, Stains et al. developed

a probe in which a phosphorylation-sensitive fluorescent
amino acid, Sox, a sulfonamido-oxine fluorophore, has
been employed to directly monitor kinase activity in
unfractionated cell lysates [40]. With this approach,
phosphorylation at a proximal residue can dramatically
increase the affinity of Sox for Mg2+, resulting in fluor-
escence increase, a method applicable for substrates for
all kinases. A second-generation cysteine derivative of
Sox fluorophore (CSox) has been engineered, allowing
for the incorporation of N- and C-terminal kinase
recognition elements to improve selectivity and kinetic
properties with lower sample demand. Using a panel
of probes including p38α, mitogen-activated protein
kinase-activated protein kinase 2, extracellular-signal
regulated kinases 1/2 (ERK1/2), Akt and protein kinase
A, this method has been used to perform activity mea-
surements of individual kinases in a model of skeletal
muscle differentiation and cancer tissue samples, pro-
viding direct, quantitative readouts of kinase enzymatic
activity associated with cellular differentiation and hu-
man tumors [41]. More importantly, this proof-of-
principle study can be expanded to larger sample sizes
to illustrate biological perturbations in kinase activities
in a given disease.

Mapping direct protein-protein interactions
To complement data from shotgun proteomics and
PTM-omics studies discussed in the previous section,
PPIs can be directly mapped by more focused sample
isolation strategies—particularly the use of tandem affin-
ity purification (TAP)–tagged proteins. This method is
based on the creation of a fusion protein with a tag,
expressed in cells and used as a bait to purify stable pro-
tein complexes that assemble on the TAP-tagged protein
in vivo, followed by SILAC or other labeling strategies
(e.g., iTRAQ)-MS to identify proteins that interact with
particular signaling networks. This sensitive and specific
method has demonstrated its utility in large-scale pro-
tein interaction mapping in lower organisms (e.g., Dros-
ophila melanogaster [42] and yeast [43]), and elucidating
smaller interactomes and signaling pathways in mam-
mals [44]. Finally, the TAP–MS approach applied to
transgenic mice enables the comparison of protein
complex organization between different tissues, facili-
tating the characterization of novel interacting partners
not previously identified in cell cultures [45]. This
method can be used for real determination of protein
partners quantitatively in vivo without prior knowledge
of complex composition, is simple to execute and often
provides high yield. However, the tags may obscure
binding of a new protein to its interacting partners,
affect protein expression levels, and not be sufficiently
exposed to the affinity beads, thus skewing the results.
In addition to TAP-MS, the yeast two-hybrid (Y2H)

system has long been applied to enhance the mapping
of direct PPI networks with vast improvement and
optimization over the years. For instance, Y2H maps
of human mitogen-activated protein kinase (MAPK)
signaling network not only confirmed many known
interactions but also revealed many new roles for chap-
erons and proton pumps in the regulation of MAPK
functions [46]. Furthermore, Y2H interaction data, in
combination with time-resolved proteomic data on
protein phosphorylation induced by epidermal growth
factor (EGF), tracked the dynamic information flow in
the EGF-activated ERK network, a member of the MAPK
family [47]. This allowed the identification of several
hitherto 18 unknown modulators of EGF-stimulated
ERK signaling.
Despite vast improvements in such methodologies

over the years, the caveats of both of these experimental
approaches still remain, including: (1) using model or-
ganisms readily manipulated genetically (e.g., expression
of a bait protein, RNA interference screening) with the
assumption that interactions observed in these model
systems reflect normal physiology and are meaningful to
human biology; (2) false-positive hits yielded by the Y2H
system suffer from the absence of known PPIs that
depend on contextual information (e.g., PTMs that may
or may not occur in yeast); (3) a lack of dynamic
changes in PPIs do not reveal the flow of signaling infor-
mation. Furthermore, unlike Y2H, TAP-MS may fail to
detect transient interactions, low stoichiometric protein
complexes, and/or those interactions occurring only in
certain physiological conditions under-represented in
exponentially growing cells as most cellular processes
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require PPIs, or the assemblies of large protein com-
plexes that are dynamic and assemble in spatial and
temporal manner to store and relay various cellular
signals or to contribute to the cellular architecture (e.g.,
enzymes often interact with regulatory subunits required
for their activity, or subcellular localization [48,49]).
Although monitoring changes in protein interactions in
response to signals or over a time course of stimulation
can track the flow of a signal through a network [50-52],
the high cost and time limit for the generation of dense
time-course data required for reconstructing large-scale
temporal signaling dynamic networks can greatly burden
the researchers. As an alternative approach to relieve
such burden, one can design smaller-scale experiments
to interrogate a subset of known pathways in a time-
resolved manner, or one or more PTMs and key network
hubs. With this compromise, proteomic measurements
of time-dependent changes in signaling pathways can
be obtained using targeted, multiplexed and quantita-
tive approaches, such as MRM-MS coupled with stable
isotope dilution (SID) [53-55], in vitro kinase assays
[56], quantitative immunoblotting and enzyme-linked
immunosorbent assays (ELISAs) [57] or protein arrays
[58-60]. By monitoring dynamic changes in these PPIs,
temporal data have been used to reconstruct signaling
pathways involved in cell differentiation and apoptosis
[61-63]. In addition, immuno-enrichment of phospho-
tyrosine residues and quantitative MS methods have
previously explored time-dependent changes in signal-
ing downstream of epidermal growth factor receptor
(EGFR) [64,65]; the combination of MS, phosphoryl-
ation motif–directed antibodies, and phosphorylated
serine-threonine–binding modules (e.g., 14-3-3 proteins
or the Polo-box domain of Polo-like kinases) identified
signaling networks involved in cell migration, metabolism,
mitosis, and DNA damage [66-68]; and the use of analog-
specific protein kinase mutants and MS identified compre-
hensive lists of substrates, e.g., those previously unknown
to cyclin-dependent kinase 1-cyclin B, with the potential
of expanding our understanding of kinase-substrate
connections in signaling networks [69,70].
In reality, different technologies/platforms for studying

and refining known pathways in databases and literature
based on proteomic signatures, or for directly mapping
protein interaction networks have their own advantages
and disadvantages, thereby arguing for the benefit of
complementary approaches to better answer the bio-
logical questions under investigation. While some of
these advantages and disadvantages have previously
been described, it is also important to add that direct
mapping of PPIs are mostly done in cell or tissue cul-
ture systems that can easily be genetically manipulated,
or perturbed by biochemical agents in a time-dependent
fashion to measure the temporal dynamics of signaling
circuitries. In contrast, a human tissue sample, e.g.,
tumor biopsy materials during a time-course drug treat-
ment clinical trial (perturbation), while representing
true human cancer biology, are more difficult to
acquire and control due to clinical practice guidelines,
pre-analytical variables, etc. These samples are more
suitable for pathway and network analyses through
deep proteogenomic characterization, followed by bio-
informatic analysis using known PPI pathways and net-
works, or inferring regulatory networks from a variety of
“omics” data. In that regard, a lack of analytical sensitivity
of direct MRM-MS to quantitatively measure targeted sig-
naling proteins (especially phosphorylated proteins) in tiny
amounts of tumors, which often populate most personal-
ized therapeutic trials, is also a major limiting factor. It
often requires affinity reagents or other depletion/separ-
ation approaches to enrich for the proteins/peptides of
interest prior to MS analysis. On the other hand, while
multiplexed reverse-phase protein arrays (RPPAs) or ELI-
SAs provide more sensitive detection of proteins involved
in signaling events even with small amount of materials
(e.g., from laser-capture microdissection to enrich for
cancer cells), it requires high quality antibodies and
some level of prior knowledge on protein interactions
under investigation that may not exist in the market-
place and database/literature, respectively.

Overview on bioinformatics for the analysis of pathways
and networks
Multi-dimensional cancer omics studies and related data
Over the past 10–15 years, the genomics community has
produced large amounts of high quality datasets and
revolutionized the understanding of biology and medicine.
High throughput technologies, such as next-generation
genome sequencing, RNAseq, chip-on-chip, large-scale
chromatin immunoprecipitation (ChIP-seq) microarrays,
have been applied to measure gene expression levels and
gene regulatory elements that identify genes with influ-
ence on some interesting phenotypes on a genome-wide
scale. These technological advances in deep sequencing
(Ion Torrent’s PGM, Illumina MiSeq, and Applied BioSys-
tem’s SOLiD to name a few) have facilitated a paradigm
shift in biological studies from a ‘one gene model’ to a
‘multiple gene model’ and have generated many large-
scale biology projects (e.g., human genome project [71]).
As these technologies become more affordable and access-
ible, the implementation of such large-scale projects will
become more routine in both research and perhaps
clinical settings. For instance, comparative genomics and
microarray-based approaches have generated methods
such as the mathematical simulation of pathway dynamics
that enabled the reconstruction of gene regulatory net-
works to understand and predict how different transcrip-
tion factors interact to activate or deactivate defined sets
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of genes. Using a database of known and predicted
transcription factor binding sites (TFBS), all genes with
a specific motif pair combination in their promoters
have been identified. Subsequently, the expression co-
herence score calculated based on microarray data for
each set of genes associated with a TFBS pair yields a
quantitative measure for the synergistic behavior of TF
combinations [72].
On the cancer front, the success of large-scale genomics

projects have anchored on a set of statistically-powered
number of human specimens, including thousands per
cancer type characterized by TCGA from the National
Cancer Institute (NCI) and National Human Genome
Research Institute (NHGRI), ICGC, and TARGET. These
projects are significantly advancing the comprehensive
characterization of cancer genomes for understanding
cancer at DNA (genomics) and RNA (transcriptomics)
level, and facilitating the discovery of molecular targets
and translation of those findings into the clinic. Such deep
analyses included multiple platforms, e.g., whole tumor
genome sequencing, miRNA expression, RNAseq, muta-
tions, and DNA copy number that provide rich datasets
for the scientific community to mine and extract meaning-
ful biological information (hypothesis generation) [73,74].
As a result, genomic alterations associated with cancer
have been produced through multi-dimensional datasets
that include high level integrative analysis with omics
datasets. As an example, TCGA research network has
comprehensively cataloged the molecular aberrations in
487 high-grade serous ovarian cancers. While the initial
report from TCGA on 489 high-grade serous ovarian
adenocarcinomas (487 of which had corresponding
miRNA data) presented a broad molecular picture of
the disease, microRNAs, gene copy number alterations
and methylation of gene promoter regions that globally
influence gene expression ultimately determine cellular
behavior [75]. In-depth analyses revealed four ovarian
cancer transcriptional subtypes, three microRNA sub-
types, four promoter methylation subtypes and a tran-
scriptional signature associated with survival duration,
which illuminated on the impact of BRCA1/2 (BRCA1
or BRCA2) and CCNE1 aberrations on patient survival.
Pathway analyses of ovarian cancer data suggested the
defect of homologous recombination in half of the
analyzed tumors, and implicated the role of NOTCH and
FOXM1 signaling in serous ovarian cancer pathophysi-
ology. Analysis of miRNAs within the TCGA ovarian data-
set (particularly miRNA and mRNA data) generated from
the same set of tumors demonstrated miRNAs as a key
factor with huge impact on gene expression in ovarian
cancer. Due to these public datasets, other research
groups have now been able to develop computational
algorithms using TCGA multi-analysis data and two
additional datasets based on methods that identify network
alterations and quantify network behavior through gene
expression [76]. As a result, a network biomarker candi-
date around the platelet-derived growth factor (PDGF)
pathway that significantly stratifies survival rates in
ovarian cancer patients, which the expression levels of
single or sets of genes alone cannot explain the prog-
nostic stratification, emerged, further strengthening the
power of gene expression networks. Collectively, the
TCGA Pan-Cancer project assembled data from thou-
sands of patients with primary untreated tumors occur-
ring in different sites of the human body, covering 12
tumor types including GBM, head and neck squamous
carcinoma (HNSC), lung adenocarcinoma (LUAD),
breast carcinoma (BRCA), ovarian carcinoma (OV),
colon adenocarcinoma (COAD), etc. Six types of omics
characterization were performed (including RPPA data),
tying the data elements across the various platforms
by the fact that the same samples were used for each
to maximize the potential of integrative analysis. Data
integration enables the identification of general trends,
including common pathways, revealing master regula-
tory hubs activated or deactivated across different tissue
types [77].
What does this entail for proteomics and integrative

biology? These rich datasets present an unprecedented
opportunity for the research community to study cancer
systems biology by linking cancer genotype to cancer
phenotype through the understanding of cancer proteo-
type and the complex dysregulated signaling pathways
and interaction networks. An example of the importance
of such integrative analysis is shown by Wang, et al.
where the corroboration of genomic aberrations at the
protein level has been demonstrated with KRAS in pan-
creatic cancer in which targeted MRM-MS approach
coupled with immunoprecipitation of intact RAS protein
isoforms detected a single point mutation at the peptide
level in KRAS oncogenes from a cell line, tumor sample
and pancreatic cyst fluid at sensitivity of <25 fmol/mL
[78]. While peptide-level mutation confirmation is cru-
cial, the impact of such activating mutations on pancre-
atic cancer proteome was not evaluated. This requires a
comprehensive characterization of wild-type and mu-
tant KRAS proteomes including PTMs and subsequent
integrative analysis of omics data superimposed on
genes/proteins and their regulatory networks, signaling
pathways and dynamics of operation. As illustrated in
Figure 1, a systematic and comprehensive molecular-
level characterization (DNA, RNA and protein) could
provide a specific context for important biological pro-
cesses responsible for cell and tissue function, thereby
shedding new light on how genomic instabilities and
aberrations result in changes in dynamic protein signal-
ing pathways and networks to give rise to its ultimate
phenotypic behaviors.



Figure 1 Linking cancer genotypes to cancer phenotypes. The comprehensive molecular level analysis at the DNA, RNA, protein and
dynamic protein pathways and networks through proteogenomics and network modeling can greatly enhance our understanding of cancer
systems biology (i.e., linking genotype to proteotype to cell/tissue phenotype).
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To begin connecting these levels of biology, a multi-
disciplinary, network-driven program, Clinical Proteomics
Tumor Analysis Consortium (CPTAC) (http://proteomics.
cancer.gov), a component of the Clinical Proteomic Tech-
nologies for Cancer initiative (CPTC) at the NCI, was
launched in 2011 to capitalize on the investments made
by large-scale cancer genomics initiatives. It is believed
that changes deriving from genetic alterations can be
functionalized by comprehensive proteomic analysis on
the same tumor to enhance the rich multi-dimensional
genomic data sets, improve the understanding of cancer
biology, and potentially drive the development of new
Figure 2 From proteogenomics to cancer biology – An integrative pip
discovery to validation.
diagnostics and therapeutics. The scientific approaches
to this endeavor are illustrated in Figure 2, where a
set of statistically powered, genomically-characterized
tumors, for example, by TCGA and other sources are
proteomically characterized in a Discovery stage using
MS and array technologies (1), followed by integrative
proteogenomics to add new insights to cancer biology
at the network and pathway level, providing prioritized
proteins of interest for targeted proteomic assay devel-
opment and testing in a separate cohort in a Verification
stage (2). Simultaneously, genomic information can direct
targeted proteomic measurements including mutations
eline for building a comprehensive human cancer atlas from

http://proteomics.cancer.gov
http://proteomics.cancer.gov
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and isoforms without prior proteomic characterization
as a complementary method. The goals for this proteo-
genomic initiative in the next few years as illustrated in
(3) are the production of community resources includ-
ing: 1) data and databases of tumor-specific proteomes
with proteogenomic annotation/genomic correlation
(https://cptac-data-portal.georgetown.edu/cptacPublic/); 2)
improved understanding of cancer systems biology (for
further hypothesis generation and validation), along
with associated tools and methods; and 3) verified pro-
tein targets with a catalog of multiplexed, quantitative
assays to measure them, including standard operating
procedures (SOPs), associated data and necessary re-
agents (http://assays.cancer.gov; and http://antibodies.
cancer.gov). CPTAC is complementary to existing ef-
forts, such as the Centers for Cancer Systems Biology
(CCSB) of The Integrative Cancer Biology Program
(ICBP) at the NCI (http://icbp.nci.nih.gov/), and the
human proteome organization (HUPO)’s vision to
unite the Encyclopedia of DNA Elements (ENCODE)
Consortium (http://encodeproject.org) [79] (funded by the
NHGRI) with the chromosome-centric human proteome
project [80], both of which decipher the ‘parts list’ of the
human body [80]. By realizing the tremendous value
that can be gained from integrative omics, the scientific
community is committed to making progress towards
the implementation of efficient strategies for develop-
ing, applying and standardizing technologies and tools
to improve our understanding of diseases.

Integrative proteogenomics: benefits and challenges
The importance for omics data integration in under-
standing biology has been demonstrated by studies with
multidimensional datasets at the DNA, RNA and protein
levels. One such example stems from the important role
of EGFR signaling in epithelial cell regulation and cancer
biology where data representing RNA regulation, protein
abundance and protein phosphorylation were combined
to investigate and better describe the mitogenic response
of human mammary epithelial cells to EGF using multiple
datasets from whole genome microarrays, MS-based pro-
teomics and large-scale western blots using more than
1000 antibodies for protein phosphorylation [81]. System-
atic analysis of the practical benefits of merging heteroge-
neous time-dependent data for networks and pathways
concluded the major processes and signaling networks
known to be regulated by EGFR in this cell type, while
individual data sets from different types of platforms
provided different views of EGFR-induced cell processes
and pathways qualitatively. As demonstrated in this
study, one of the important reasons for integrative ana-
lysis is that RNA abundance changes are not always a
good predictor of protein abundance changes, especially
over a time scale of several hours. Although the
canonical correlation analysis described in this study
(with a correlation coefficient r of 0.44 between RNA
and protein expression for 199 genes) is generally in
agreement with correlations previously reported at sin-
gle time points [81], less than half of the protein abun-
dance changes measured by high resolution MS were
accompanied by corresponding RNA changes even
when time course data are included, strongly suggesting
the involvement of a high degree of post-transcriptional
regulation in the response of mammalian cells to EGF.
Some clusters of RNA and protein pairs in this study
showed a classical pattern of post-transcriptional regula-
tion, where RNA changes preceded or coincided with a
corresponding change in protein abundance, while other
clusters indicated complex patterns that imply feedback
processes between protein half-life and compensatory
RNA induction. Thus, estimating steady-state mRNA
and protein changes from a single time point can be
misleading as a result of the time needed for protein
synthesis and degradation, while temporal-based ana-
lyses of correlations between global protein and gene
expression patterns in human cells could be more ac-
curate. Additionally, each analytical platform was biased
towards observed cellular processes, supporting that the
networks derived from heterogeneous datasets via data
integration can show a more connected topology than
those derived from a single dataset. These studies have
conclusively shown the power of mapping the dynamics
of PTM networks in tremendously improving our un-
derstanding of signal propagation through the path-
ways, and providing added value to biology from which
one single omics dataset cannot derive.
Using cancer genomics data, it is likely to map the

functional modules and the cancer-driving mutations
onto network modules, each of which can be a subnet-
work itself containing the functionally-linked pathways
that reflect many cancer hallmarks [10]. For instance, an
integrative analysis using network reconstruction and
co-expression module identification-based approaches
on the human signaling network and cancer driver-
mutating genes has revealed network modules of cell
cycle and apoptotic pathways that are critical for all
types of cancer [82]. WNT/TGF-beta cross-talk, WNT/
VEGF signaling and MAPK/focal adhesion kinase path-
ways have been identified as targets of rare driver mu-
tations in breast, colorectal cancer, and glioblastoma,
respectively. To go beyond cancer biology, a one-person
(Dr. Michael Snyder) longitudinal omics study was pub-
lished using a combination of genomics, transcripto-
mics, proteomics (including autoantibody profiles) and
metabolomics approaches on collected blood samples.
Although this proof-of-principal study has demonstrated
the promise of detailed omics profiling in providing
molecular and physiological information of medical

https://cptac-data-portal.georgetown.edu/cptacPublic/
http://assays.cancer.gov
http://antibodies.cancer.gov
http://antibodies.cancer.gov
http://icbp.nci.nih.gov/
http://encodeproject.org
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significance with the potential to change the future
for personalized health monitoring and medicine [83],
multi-omics studies on larger cohorts are needed to
demonstrate added value of omics data to current med-
ical practice for a specific intended clinical use.
As high throughput approaches generate mountains of

data, the global research community is coalescing around
the overwhelming realization to improve data manage-
ment and interpretation in order to obtain better insights
into molecular mechanisms and biological principles from
these data. The fundamental understanding of biology is,
in large part, based upon the understanding of genes and
their encoded protein products. Hence, the mapping of
cancer genomes and proteomes arising from the cancer
genomes can provide valuable information on the effects
of genomic aberrations on the functional units of a cell. In
the case of TCGA-CPTAC proteogenomics data and other
similar datasets, the primary information gleaned from the
convergence of both types of data is the proteogenomic
mapping against a human reference genome (e.g., HG19)
to better define genome annotation [84,85], to confirm
and discover peptide-level detection of genomic aberra-
tions such as single mutations [78] and splice variants,
and to assess the effect of genomic aberrations on global
protein expression and PTM alteration [86] (Figure 3,
lower tiers). Currently, identifying unannotated genes and
verifying gene calls, defining translational start/stop sites
as well as reading frames, and describing signal peptide
processing events and PTMs, are feasible tasks that can
be carried out at a full-genomic scale once the genomic
sequence becomes available [87,88]. This approach has
demonstrated its efficiency in discovering existing mis-
annotations and enriching genome annotation in organ-
isms, such as Yersinia [89] and Candida glabrata [90].
Furthermore, proteomic data has been utilized to examine
the translation of RNAs to proteins on a genome-wide
Figure 3 Climbing up a proteogenomic data ladder. Integrative omics
systems biology. Proteogenomic data accumulate at the lower tiers of the
expression and PTM changes due to genomic alterations), and compress as da
at the network and pathway level (upper tiers).
scale using computational tools to map peptide-based MS
data to their encoding genomic loci (genome-based pep-
tide fingerprint scanning) [91] and PTMs by protein infer-
ence engine [92]. Through the melding of several large
and heterogeneous data sources including MS-based pro-
teomics data, genome sequences, gene annotation sets,
and single nucleotide polymorphism sets, this approach
revealed alternatively spliced or frameshifted translation
products that could not be easily discovered by standard
proteomics database search strategies.
Establishing the most comprehensive protein list is an

essential prerequisite prior to analysis of the quantitative
cellular dynamics of proteins, their PTMs and complex
network interactions and interpretation of these data as a
whole, which constitutes the basis for systems biology.
Through network inference, analysis and modeling, it will
ultimately provide biological insight by identifying dysreg-
ulated networks and pathways as a result of genomic alter-
ations in cancer (Figure 3, upper tier). This will further
facilitate new hypothesis generation and experimental
validation studies. As more data accumulates through
genomic, transcriptomic and proteomic characterization,
data integration and analysis become more labor-intensive
and complex requiring more sophisticated computational
tools while climbing up the data ladder.

Network analysis and modeling
Realistically, the only efficient way to handle large
amounts of omics data and the relationships within
those datasets buried underneath its surface is through
mathematical representation and computation. The
integration of many types of omics data and the devel-
opment of effective computational tools to decipher
complex systems is believed to be one of the best
approaches to leverage the tsunami of data for bio-
logical insight in a comprehensive way. The integration
experiments generate tiers of data and knowledge to improve cancer
data ladder (proteogenomic mapping of linear sequences and protein
ta analyses become more labor-intensive, complex, and multi-dimensional
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of various types of networks composed of different
types of signaling components, however, remains an
extremely daunting task, partially due to the fact that
protein networks are typically interaction or modification
networks with a time component (temporal distribution).
While transcriptional networks resemble protein networks
in this respect, the time delay between the production
of mRNAs and their encoded protein products can vary
significantly between different genes. To complicate this
matter, bottom up proteomics commonly used to identify
and quantify proteins based on their proteolytic peptide
fragments make it difficult to match proteins to their
splice variants easily detectable by transcriptomic ex-
periments. The mathematical methods for analyzing
these networks are also fundamentally different. Altogether,
these issues make diverse datasets difficult to be directly
superimposed onto networks. One possible solution is
to compare the interpreted information content from
different technologies instead of primary data, but
rather the structure of the inferred networks and the
functional predictions resulting from them. Semantic
Web tools are one of such methods that can automatically
connect different types of information already available in
various databases and repositories by logical rules. How-
ever, it requires rigorous validation of the computational
models and their underlying data [93,94].
Currently, the understanding of how complex molecu-

lar and cellular outcomes that control the fate of a cell
arise from the dynamic interaction topologies at the
mechanistic level remains poor. Constructing a series of
networks with temporal data, therefore, can reveal the
dynamics of biological processes on a time scale such as
tumor progression, with the advantages of simplifying
complex interactions and allowing for the identification
and quantitation of relationships between signal inputs
and outputs. To reach these goals, network construction
relies heavily on integrative omics data and accumulated
knowledge that begin with combining diverse datasets
into networks using informatics tools. Some of these
computational tools merge information from different
databases and allow text-based searches from the litera-
ture into a single Web resource including STRING [95]
and iRefWeb [96], while others attempt to define net-
work topology as the weighted collection of the available
evidence for specific PPIs or both. For instance, a num-
ber of online databases and tools allow the construction
and analysis of weighted collections of protein networks
including BioGRID [97], BIND [98], MINT [99] and
DIP [100]. Kyoto Encyclopedia of Genes and Genomes
(KEGG) [101], Pathway Commons [102] and Reactome
[103] are publicly accessible resources for pathway models.
Once network construction pieces together functional
networks that reflect the relationships between genes
and proteins under certain conditions, e.g., cancer gene
signaling networks in metastasis, these networks can
elucidate the links between omics data and the funda-
mental processes of cancer development and metastasis
on a time scale. As a critical part of network analysis,
visualization tools allow the researcher to “see” molecu-
lar interaction networks and integrate these interactions
with omics data. Some network visualization examples
include Cytoscape (http://www.cytoscape.org) at the cBio
Cancer Genomics Portal, an open source bioinformatics
software with visualization capability and additional
features available for network and molecular profiling
analyses, new layouts, additional file format support
and connection with other databases [104], and VisANT
(http://visant.bu.edu/) [105], another network visualization
tool designed for the integrative data mining of multi-
scale network/pathways that features Network Module
Enrichment Analysis (NMEA) and GO Term Enrichment
Analysis (GOTEA) in batch mode. Most recently, NetGes-
talt has been developed (http://www.netgestalt.org) to pro-
vide a data integration framework based on the context of
a biological network by allowing simultaneous presenta-
tion of large-scale experimental and annotation data from
many different platforms (e.g., DNA microarray, MS-
based proteomics, RNA-seq) [106]. The unique feature
of NetGestalt is its ability to integrate any type of data
in linear tracks, allowing researchers to visualize and
hypothesize based on protein pathways and networks.
The Cancer Proteome Atlas (TCPA) links TCGA gen-
omics data with RPPA proteomics data, also providing
visualization of networks based on TCGA cancer types
(http://app1.bioinformatics.mdanderson.org/tcpa/_design/
basic/index.html).
Following network construction and visualization, com-

putational analysis of the constructed networks using
mathematical and statistical modeling tools takes place.
Once the overall network connectivity has been estab-
lished, the next logical step is to understand how signals
functionally propagate through a network, largely due to
the dynamics of PTMs, including phosphorylation, ubiqui-
tination and acetylation. This remains a huge technical
challenge in itself due to the complication caused by
misidentification of certain post-translationally modi-
fied peptides, and thus missing certain network compo-
nents. To model network dynamics with time course
data, the inference of the network architecture based on
a quantitative definition of the connectivity between
various nodes (or modules) becomes extremely important.
A variety of mathematical and computational models have
been established for the analysis of network inference that
range from data-driven modeling [107] using multiple
clustering analysis (e.g., K-means, hierarchical, or self-
organizing maps). For example, time course studies of
phosphoproteomics data have been clustered to reveal
signals with temporal dynamics [108,109] and regression

http://www.cytoscape.org
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analysis such as principal component analysis-based [107],
Bayesian inference methods [110], Boolean networks
[111], Modular Response Analysis (MRA) [112], and
differential equation modeling [113,114].
High throughput data, albeit rich and powerful, tend

to suffer from low information content (e.g., the observ-
able results contain little information about the unknown
parameters causing them). An example is when a local
perturbation initially confined to a particular network can
propagate and cause widespread global changes in the net-
work, thereby masking immediate connections and routes.
This issue is particularly pertinent to large omics datasets
as their snapshots of the cellular states arise from a variety
of interactions throughout cellular networks, even in
response to a single local perturbation. Hence, the choice
of applying the correct modeling approaches depends, in a
large part, on how much mechanistic detail is needed in
the model by researchers provided with the available
experimental data. Since all modeling tools have their own
limitations, it might be beneficial to deploy a combinator-
ial approach in order to compensate for the limitations of
individual methods. Alternatively, MRA, a method that
takes advantage of the modular nature of biological sys-
tems to infer network architecture and the strengths of
connections between nodes from network responses to
systematic perturbations can serve to deduce information
without prior knowledge on reaction stoichiometries and
kinetics [115]. In this case, a module can either be a single
network including a gene, its mRNA and encoded protein
product, or distinct sets of proteins or network compo-
nents with defined functionalities. The effect of a change
in a module on the activity of another module via these
connectivities with other modules kept constant during
perturbation needs to be quantitatively characterized. This
combinatorial approach has demonstrated its utility in
inferring dynamic topology of feedback loops in the
MAPK cascade in cells activated with EGF via the
organization of differently phosphorylated protein species
and isozymes of the MAPK cascade into modules [116].
A recent study where a large fraction of mutations in

pancreatic cancer were shown to be associated with a
core set of signaling pathways base on microarray tech-
niques could be a good candidate for proteogenomics-
based network analysis [117]. This study showed that
genes in those signaling pathways have a tendency to be
overexpressed, suggesting their potential as clinically
useful biomarker candidates [117]. However, this study
did not establish whether overexpression of pathway-
specific genes resulted in a detectable increase in the
levels or activities of the corresponding proteins. This
presents an opportunity for integrative proteogenomics
to (1) identify changes in pathway-specific protein abun-
dance or PTMs; (2) further verify such pathway-specific
proteogenomic targets by targeted proteomics, e.g.,
MRM-MS or protein arrays prior to network modeling.
Further analysis can go beyond the pathway-association
approaches by building cell-specific network topologies
to link cancer-specific mutations to mechanistically-
linked protein biomarker candidates. Such integrative
approaches could potentially provide a mechanistic
framework to predict pathways and proteins associated
with a particular cellular state [118] that would likely
benefit from more omics datasets. In fact, others have
demonstrated the utility of integrative computational
modeling in a number of studies based on quantitative
experimental data on molecular and cellular networks
to enhance our understanding and prediction of cancer.
Some of these published studies pertain to the analysis of
gene expression profiles to identify markers correlated
with metastasis, resulting in more reproducible subnet-
work markers than individual marker genes selected with-
out network information and achieving higher accuracy in
the classification of metastatic versus non-metastatic
tumors [119], the identification of dysregulated path-
ways with respect to tumor phenotype in comparison to
normal, the elucidation of oncogenic mutation conse-
quences that affect cell behavior by changing cellular
networks, and the identification of novel targets in
regulatory networks for more effective cancer therapies
[120]. Specifically in a study on ErbB receptors using
human mammary epithelial cells with increased ex-
pression level of ErbB2, systems biology approaches
identified nine phosphorylation events from MS data
that serve as important “network controls”, including
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)
that enabled the prediction of cell behavior [121] (as
reflected in Figure 1: linking genotype to phenotype).
Moreover, combined therapeutic strategy against both
EGFR and c-MET targets enhanced the effectiveness as
demonstrated by the phosphoproteomic analysis of
cells expressing increasing levels of the constitutively
active EGFRvIII mutant, suggesting cross-activation
of c-MET pathway by EGFRvIII, a mutant frequently
identified in tumors [122].
Although the cancer systems biology strategies are not

entirely new, their not-fully-realized potential will help
build realistic network models of tumors (via network
construction), as well as identifying network modules
and the key genes and other network features in each
module from these networks (via network analysis and
modeling). To ensure its success, it is imperative for re-
searchers to realize that (1) while network construction
from databases such as Pathway Commons provide
aggregated knowledge of biological networks under
diverse conditions (i.e., neither disease-specific nor
sample-specific), the mounds of omics data generated
using complementary proteogenomic technologies to
date are often sample-specific, revealing the unique



Boja and Rodriguez Clinical Proteomics 2014, 11:22 Page 12 of 17
http://www.clinicalproteomicsjournal.com/content/11/1/22
characteristics of that particular sample (and the dis-
ease), such as the TCGA-CPTAC datasets. Therefore,
in order to reach meaningful biological conclusions
representative of the disease population, it inevitably
requires statistically-powered number of samples that
may or may not be available to researchers. In this regard,
a combinatorial approach to use both prior knowledge
from pathway and network databases and experimental
data in the context of the specific biological/disease
conditions might be useful to help refine known informa-
tion and shed new light on the biology; (2) the results de-
rived from the system biology approaches must ultimately
be validated experimentally (e.g., using siRNA) in cancer
cell lines and/or mouse models (e.g., progression models
for different cancer stages) or statistically (e.g., Bayesian
approaches that accommodate missing data points and
calculate the degree of uncertainty), or by refining the
inferred network using a combination of omics data [123].
An example of this stepwise process that integrates experi-
ment and computational data has been demonstrated in
the elucidation of a complex regulatory network that
governs the activity of the mammalian target of rapamycin
complex 2 (mTORC2) signaling network [124]. It is not
trivial to validate these models, however, especially when
systematic perturbation of network nodes is involved
while inferring large networks (e.g., from global tran-
scriptomics or proteomics data due to a large number of
experiments required). Despite these challenges, at least
for the validation of networks inferred from proteomics or
Y2H data, targeted proteomic data from MRM-MS [125]
or protein arrays [57,58] and subsequent integration of
proteomic data with large-scale RNAi-mediated protein
knockdowns can make the systematic exploration and
validation of large parts of the inferred networks feas-
ible. For instance, the ERK interactome maps from
large-scale Y2H screens including 18 previously unknown
modulators of EGF/ERK signaling were experimentally
validated by RNAi knockdown of components in cells
[126], generating networks with high confidence that
revealed unknown pathways and signaling modulators
that influenced ERK activity.

Building a proteogenomics computational pipeline and
experimental standards
Lastly, challenges and roadblocks to the success of inte-
grative omics biology for the generation of new and
improved molecular knowledge remain in various stages
of a multi-omics pipeline. Specifically, such issues in-
clude but are not limited to a lack of systematic assess-
ment of the impact of pre-analytical variables especially
with clinical samples (e.g., ischemic time during tumor
procurement, a variety of sample processing and storage
conditions, etc.) on the integrity of proteins and their
modifications [127,128]; a lack of experimental study
design to reduce bias and strengthen statistical rigor of
sample size [129,130], and the complication from tumor
and population heterogeneities and their effects on
omics analysis in cancer [131,132]; and a lack of better
technologies and standardization of protocols with high
quality reagents [133]. Computationally, there is a lack
of efficient data storage, more automated network
visualization/modeling tools (with built-in statistical
analysis and standardization) to streamline the nature
of intrinsic complexity of multi-omics data analysis
across all possible datasets, and to make it simple
enough for biologists to interpret the data. This argues
for a harmonized and consolidated resource (e.g., a
consolidated database, standardized gene names) that
can provide added value to the global scientific com-
munity, similar to the world-wide Protein Data Bank
for three-dimensional structures [134].
Such an endeavor requires a long-term commitment

of community-based approaches. Recognizing the bene-
fits of information and resource sharing in building an
enterprise of high quality, multidimensional data, along
with their assays, reagents and protocols for public
access, the scientific community has already made
significant progress in the last several years in two
aspects with respect to data generation and data analysis.
These include the generation of well-characterized mo-
noclonal antibodies (http://antibodies.cancer.gov; http://
neuromab.ucdavis.edu; http://proteincapture.org/) [135];
MS-based peptide spectral libraries, databases and data-
sets (http://peptide.nist.gov/; http://www.peptideatlas.org/;
http://www.srmatlas.org/; https://cptac-data-portal.george
town.edu/cptacPublic/, etc.) [136-138], informatics tools
for targeted MRM-MS assay design [139,140] and qualifi-
cation criteria (http://assays.cancer.gov), as well as data
analyses and computational modeling [106,141-143].
While it is impossible to list all databases and tools, some
publicly available resources for data integration, pathway
visualization and analysis are PathGuide [141] (http://
www.pathguide.org), BIOPAX (http://www.biopax.org)
[142], cBio (http://cbio.mskcc.org/) [143], MAPT and
PAICE (http://sourceforge.net/projects/mapt/ and http://
sourceforge.net/projects/paice/) [144], iCTNet as a plugin
for Cytoscape (http://www.cs.queensu.ca/ictnet) [145], the
Georgetown Database of Cancer (G-DOC) (https://gdoc.
georgetown.edu/gdoc/) [146], VANTED (http://vanted.ipk-
gatersleben.de/) [147]. Additional tools for the visualiza
tion of omics data have been summarized [148]. Path-
Guide, as an example, provides access to many thousands
of pathways and networks that document millions of
interactions between proteins, genes and small molecules.
BioPAX data standard with well-defined semantics for
pathway representation facilitates the integration, ex-
change, visualization and analysis of biological pathway
data by supporting data exchange between data groups.
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Hence, it allows pathway databases and software to
work in unison, enabling the development of pathway
visualization from databases and facilitating the analysis
of experimentally generated data through the combin-
ation of prior knowledge. As omics science moves for-
ward, more efforts should be directed towards building
a more efficient omics integration foundation for infor-
mation storage, flow and exchange to enable the devel-
opment of quantitative models of biological systems
when they can be integrated into a coherent relational
network of cellular response.

Conclusions
High throughput proteogenomic data using deep se-
quencing technologies emerges as a new era of integra-
tive biology and medicine that could shed new light on
the complex, disease-relevant protein interaction networks
and signal transduction pathways as a whole system. In
combination with time-course perturbation studies, they
would greatly enhance the understanding of signal/in-
formation flow in response to biological stimuli. With
the advent of modern proteogenomic technologies and
bioinformatic tools, it becomes increasingly feasible to
integrate and visualize such complex types of data by
leveraging existing network and pathway knowledge
and experimental data, thereby enabling new biological
hypothesis generation and experimental validation. This
trend will change the research paradigm from more
linear and static “one-gene, one protein” models to more
complex, functional and dynamic “systems biology”
models to complete the biological information flow
from DNA to RNA to proteins and to phenotypes. It is
important to realize, however, that the success of this
endeavor hinges on the success of each component at
every stage of the omics data integration pipeline,
encompassing correct experimental and statistical study
design, understanding the effects of pre-analytical pro-
cessing of biological and clinical materials, improving
analytical reproducibility and accuracy and bioinformatic
reliability of network analysis and modeling, visualization
and subsequent experimental validation. Only such
arduous efforts will ensure that the conclusions can be
replicated and modeled after in other laboratories in
order to advance our understanding of cancer systems
biology.
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