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Abstract

Predicting the response to medical therapy and subsequently individualizing the
treatment to increase efficacy or reduce toxicity has been a longstanding clinical
goal. Not least within oncology, where many patients fail to be cured, and others are
treated to or beyond the limit of acceptable toxicity, an individualized therapeutic
approach is indicated. The mapping of the human genome and technological
developments in DNA sequencing, gene expression profiling, and proteomics have
raised the expectations for implementing genotype-phenotype data into the clinical
decision process, but also multiplied the complex interaction of genetic and other
laboratory parameters that can be used for therapy adjustments. Thus, with the
advances in the laboratory techniques, post laboratory issues have become major
obstacles for treatment individualization. Many of these challenges have been
illustrated by studies involving childhood acute lymphoblastic leukemia (ALL), where
each patient may receive up to 13 different anticancer agents over a period of 2-3
years. The challenges include i) addressing important, but low-frequency outcomes,
ii) difficulties in interpreting the impact of single drug or single gene response data
that often vary across treatment protocols, iii) combining disease and host genomics
with outcome variations, and iv) physicians’ reluctance in implementing potentially
useful genotype and phenotype data into clinical practice, since unjustified
downward or upward dose adjustments could increase the of risk of relapse or
life-threatening complications. In this review we use childhood ALL therapy as a
model and discuss these issues, and how they may be addressed.
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Introduction
Individualized medicine

In individualized medicine, physicians seek to balance treatment to obtain optimal clin-

ical effect and minimal adverse reactions by taking patient variability into considera-

tion. Drug dosing has traditionally been adjusted by age, weight or side effects. Thus,

in its broadest sense, individualized medicine is not new, but the options and perspec-

tives have become vastly expanded and scientifically established within the last decade

[1]. The increased focus largely reflects the expanded number of potential adjustment

parameters, including single nucleotide polymorphisms (SNPs) available with the
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completion of the human genome project and the potential of such markers in predict-

ing patient responses. Interest has focused on variants in (or haplotypes linked to)

genes involved in drug absorption, metabolism, transport, and excretion or in drug tar-

get pathways. However, variants not related to pharmacogenetics may also be impor-

tant. In ALL for example, variants of genes encoding proteases, angiogenic factors,

hematopoietic cytokines, bone marrow stroma factors, or structural proteins in epithe-

lia may influence disease progression, expansion, or susceptibility to specific toxicities.

Technical advances in proteomics and pharmaceutical measurements or in-vitro sensi-

tivity testing provide another set of potential adjustment parameters.

The clinical perspectives of individualized medicine have been emphasized and out-

lined in numerous publications, but in spite of extensive research within almost all

areas of medicine, few outcome predictors are implemented in routine clinical deci-

sion-making [2]. Hence, re-evaluation of the strategies and feasibility of individualized

medicine is warranted to identify clinical settings and logistic requirements, where the

expectations are likely to be met.

Treatment, disease, and host interactions

The therapeutic outcome of any disease is determined by the interaction between the

patient, the disease, and the therapy (figure 1). The relative impact of patient and dis-

ease variants differs depending on the clinical setting.

Many antibiotics (e.g. penicillins) are characterized by high therapeutic indices. Thus,

relatively high doses may be administered with a low risk of side effects, and patient

Patient

TherapyDisease

           Age
         Weight
       Gender
      Immunity
   Stroma cells
Nutritional status

Drug type and dose
Radiotherapy
Surgery
Stem cell transplantation
Diet

  Pharmacogenetics

Micro-organism
   amount, species
   drug resistance
Neoplasm
    lineage, cytogenetics
    drug resistance

Toxicity

   Remission
induction/failure

Immune response
Hematopenia

Figure 1 The applied therapy affects disease and patient leading to treatment failure or cure, and
side effects, respectively. This in term may lead to therapy changes. For drugs with high therapeutic
indices, therapy modifications is mainly determined by the response of the disease, whereas for drugs with
low therapeutic indices, feedback through both the therapy-patient axis and the therapy-patient axis is
likely to modify the therapy. Patient and disease interact directly via immune responses, bone marrow
stroma support of leukemia, and suppression of hematopoesis etc. In addition to affecting the therapy-
patient interaction, the patient’s pharmacogenetic profile affects the therapy-disease axis through its effect
on drug clearance, metabolism, distribution etc.
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variability in drug metabolism can be overcome by accepting very high exposure to some

patients in order to ensure sufficient exposure to all. In such cases, the treatment outcome

is primarily determined by the therapy-disease interaction, i.e. the drug resistance of the

invading microorganism. Accordingly, benefits of individualized medicine are expected to

be modest and mostly financial, e.g. if high doses of expensive drugs can be avoided.

The opposite is the case in oncology, where most patients are treated to the limit of

acceptable toxicity due to the low therapeutic indices of most anticancer agents and a

significant fraction of the patients are treated beyond this limit and experience serious

late effects or even deaths due to toxicities [3,4]. Hence, in addition to the therapy-dis-

ease axis, variations in the therapy-patient interaction may have substantial effect on

treatment response. Previously, the focus was primarily on the effect of a specific treat-

ment on the disease, and treatment failures were generally regarded to represent resis-

tant disease. However, many studies have indicated that in childhood ALL, host

variations in drug disposition determined by inherited genetic variants may, as fre-

quently as truly resistant disease, lead to treatment failures [3]. In this report we will

use antimetabolite-based therapy of childhood ALL to illustrate the challenges we face

in individualized medicine, and how they can be addressed.

Childhood acute lymphoblastic leukemia

In the industrialized countries cancer is the most common medical cause of death in

children above the age of 1.0 year and ALL is the most common cancer in childhood.

Over the last decades the outcome for children with ALL has changed dramatically

from being an almost universally fatal disease to approximately 80% cure rates by first-

line therapy owing mainly to intensified treatment made possible through better sup-

portive care and willingness to accept more toxicity [5,6]. Childhood ALL therapy con-

sists of 5 treatment phases: induction, consolidation and re-intensification, CNS-

directed treatment, and antimetabolite-based maintenance therapy with 6-mercapto-

purine (6MP) and methotrexate (MTX), which is continued until 2-3 years from diag-

nosis and believed to be of major importance for the improved cure rates [7].

The cytotoxicity of MTX relies on cellular depletion of tetrahydrofolates leading to inhi-

bition of nucleotide de novo synthesis and amino acid metabolism [8,9]. Upon intake, 6MP

may become inactivated through methylation by thiopurine methyltransferase (TPMT).

Some methylated 6MP metabolites (e.g. 6-Methylthioinosine-monophsophate) also inhibit

nucleotide de novo synthesis, however, the main cytotoxic effect relies on the purine sal-

vage pathway and kinase-mediated multi-step conversion of 6MP into 6-thioguanosine

nucleotides (6TGN), which are subsequently incorporated into DNA (DNA-6TGN). Cellu-

lar recognition of the resulting nucleobase mismatches induces apoptosis [3,8].

The improved ALL cure rates during the last decades suggest that many relapses in

the past were insufficiently treated, partly due to variations in drug disposition, rather

than reflecting treatment resistance.

Individualized medicine and childhood acute lymphoblastic leukemia

for implementing individualized medicine the following issues need to be addressed:

1. The patients exhibit variable treatment responses in terms of cure or side effects

If all patients responded uniformly to a disease treatment, an optimized standard treat-

ment could readily be defined. This, however, is rarely the case. In ALL and other
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treatments involving drugs with low therapeutic indices, an important consequence of

this variability is that standard doses must be set sufficiently low to avoid severe toxici-

ties in the most sensitive patients including slow metabolizers, whereby some of the

less sensitive remaining patients with more rapid drug elimination may be left under-

treated. In cases where the inter-individual variation in drug disposition exceeds the

intra-individual variation as well as the therapeutic window of the drug (more likely

with drugs with low therapeutic indices), patients may benefit from individualized

medicine [2].

2. Diversity in cure/toxicity predictable by host genomics

In addition to outcome variability, patients must vary with respect to one or more

geno/phenotypic marker that correlate with and therefore can be used to predict treat-

ment responses. Generally, the outcome is determined by the sum of endogenous (pri-

marily genetic) and exogenous effects (e.g. diet or prehydration prior to chemotherapy

as well as unknown factors). The noise from the latter factors may significantly influ-

ence the intra-individual variation in drug disposition and thus hamper outcome pre-

diction by genetic polymorphisms. When a major part of the genetic contribution to a

specific outcome variability (e.g. a toxicity) can be ascribed to a single gene, a biphasic

(or triphasic) frequency distribution of patients with respect to outcome may be

observed. One such example is the role of TPMT status in myelotoxicity following

6MP therapy [5,10-12]. In contrast, when the response variation reflects the combined

effect of multiple genes, a continuous frequency distribution of the outcome variability

may be seen due to the presence or absence of many small contributions from the

involved loci. In this scenario, patients may be at less well-determined risk of a specific

toxicity and small variability in exogenous factors may significantly influence outcome.

The response to high-dose MTX (HD-MTX) where toxicity reflects variability in both

drug exposure (determined renal clearance [13] and hepatic metabolism [14] i.e. by

variants in kidney and liver transporters and enzymes) and in drug sensitivity of target

tissues (i.e. by apoptosis, DNA repair and MTX target gene variants [3,9]) is an exam-

ples of such multi-locus dependency.

Due to their simplicity, monogenic variants are easier understood in terms of under-

lying biology than multi-allele dependencies, but even for single-locus variants that

seem strongly associated with a specific clinical effect, genetic linkage within haplo-

types containing the true causal variant may cause misleading conclusions with respect

to the biological mechanism of the gene-effect association. Causal biological under-

standing not only strongly increases the willingness for clinical application of a poten-

tial genetic marker for a biological outcome (item 7 below), but may also help in

interpreting whether statistical associations reflect chance findings and point towards

therapeutic interventions. With modern multi-locus genotyping techniques, the asso-

ciations of thousands of variants with clinically defined variables can be tested, which

easily leads to type I errors due to multiple testing. In hypothesis-based investigations,

the higher probability of causality for the individual marker and especially the lower

number of markers tested strongly diminish this risk, relative to random genome-wide

association screenings. However, even a limited number of markers give rise to many

testable genotype-outcome associations, when the markers are combined with each

other and with multiple clinical outcome parameters and patient subgroups. Rocha et

al. [15] investigated the effect of 16 genetic polymorphisms on hematological and CNS
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relapses in lower-risk (LR) and higher-risk (HR) patients in the St Jude protocol and

reported several associations. However, many of these were only valid for selected

combinations of risk group, anatomical relapse location and allele variants within in

the remaining loci. Although correlation of two gene variants with the in vitro expres-

sion of their respective genes was clearly demonstrated and the authors provided plau-

sible explanations why some genetic variants were mainly predictive in the HR group

(more drugs and higher doses used), it is likely that at least some of the associations

with the clinical endpoints are chance findings due to combinatorial multiple testing.

Thus, in individualized medicine candidate associations limited to certain patient sub-

group/marker/outcome combinations not only benefit fewer patients, but should also

be confirmed more rigorously in independent experiments and populations.

3. Treatment adjustments by genetic polymorphisms or therapeutic drug monitoring have

predictable effects on efficacy/toxicity in individual patients

Predicting patients with unfavorable outcomes in response to standard treatment is of

no use if adequate corrective measures cannot be made. For pharmacogenetic dose

adjustments this implies that the desired or adverse effects correlate with the adminis-

tered drug dose. Whereas individualized ALL therapy based on genetic markers this

far has been limited to avoiding acute toxicities by adjusting 6MP doses by TPMT gen-

otyping [12], attempts to improve ALL cure rates have relied on therapeutic drug mon-

itoring. Evans et al. [16] reported improved cure rates of B-lineage ALL relative to

standard doses, when MTX, teniposide and cytarabine doses were adjusted based on

the patients’ individual clearance rates of these drugs. This strategy was based on the

following assumptions: I) Previously observed associations of relapse with lower drugs

levels reflected causality (that is, lower drug levels is not a secondary bystander phe-

nomenon following the true causal effect) and II) increasing drug doses would increase

drug exposure and thereby reduce the relapse rate. Since multivariate analysis showed

that exposure to MTX, but not to teniposide or cytarabine was associated with better

chance of cure, the study suggests that both assumptions are valid for MTX. However,

the individualized group did overall receive higher drug doses (and experienced more

side effects) and it may therefore be argued that the outcome improvement is due to

the overall treatment intensification rather than to the individualized approach per se.

Nonetheless, the study clearly demonstrates that the individual approach was capable

of identifying patients for whom the therapeutic potential of MTX was not fully uti-

lized. Whether improved cure rates can be obtained while keeping the overall drug

dosing constant (and thereby minimizing toxicity) still remains to be demonstrated. In

a similar study in Nordic Society of Paediatric Haematology and Oncology (NOPHO)

ALL-92 protocol, the patients’ levels of 6MP and MTX metabolites (TGN·MTX pro-

duct) in combination with bone marrow suppression (white blood cell and platelet

counts) were used for 6MP and MTX dose adjustments during maintenance therapy of

pre-B and T cell ALL [7]. Although the individualized group in this study did also

receive higher drug doses (especially 6MP, which was primarily intensified to reach

TGN·MTX target level), no outcome improvement was observed for the boys, and a

6.6-fold increase in relapse hazard was observed for the girls, relative to dosing by

bone marrow suppression alone. The choice of 6MP as the primary drug to intensify

was based on previous findings that TGN is more strongly associated with risk of

relapse than MTX. However, increasing 6MP does not increase TGN, but rather
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elevates the levels of methylated 6MP metabolites [17,18]. Moreover, since high TPMT

activity was associated with relapse it was speculated that higher levels of methylated

6MP metabolites put the leukemic cells in a dormant, chemoresistant state from which

they expand after therapy discontinuation. Based on the finding in Evans’ study [16] it

might be speculated that better outcomes of the NOPHO patients would be achieved

if MTX was the primary drug to intensify. Since 6MP dose increment did not increase

TGN as predicted (assumption II) the effect of TGN levels on relapse rate (assumption

I) became irrelevant in the context of this study. This does not mean that an individua-

lized approach is not feasible. Provided that assumption I) is valid, adjustments such as

co-treatment with TPMT inhibitors or adding 6-thioguanine to the 6MP therapy may

correct low TGN levels and thereby improve the prognosis of these patients. This is

currently being explored in the NOPHO cooperation.

4. Dose adjustments by genetics better than by toxicity or by drug concentration

measurements

During long-term continuous therapy or with repeated treatments, dose adjustment by

concurrent measurements of drug concentration or clinical therapeutic targets (e.g.

degree of myelosuppression during ALL maintenance therapy) may reduce the need

for outcome prediction prior to treatment. For implementing dose adjustments by

pharmacogenetics in such cases, it should be better than or add to dosing by drug

monitoring or by toxicity. HD-MTX infusion over 24 hours with Leukovorin rescue is

widely used in the treatment of childhood ALL [19], but patients vary substantially

with respect to MTX elimination rates and steady-state concentrations [9]. Extremely

delayed elimination with life-threatening MTX concentrations occur sporadically in

repeated HD-MTX administration in individual patients and thus likely reflects exo-

genous factors (pre-hydration/alkalization etc.) rather than patient genetics [19,20], but

more moderately delayed MTX elimination can to some extend be predicted by phar-

macogenetics [21,24]. These patients receive extra Leukovorin doses in order to pre-

vent toxicity, but this has been associated with an increased risk of relapse indicating

rescue of leukemic cells [19]. Thus, since individualized HD-MTX dose adjustments by

MTX measurements during-infusion may improve the cure rates [16], pharmacogeneti-

cally improved dosing of MTX could potentially reduce the inter-individual variations

in MTX pharmacokinetics with a reduction in both undertreatment (too low MTX

doses) an over-rescue (too high MTX concentrations). By analogy, TPMT genotyping

is an example of how pharmacogenetic profiling can add to the individualization of

therapy compared with toxicity-based guidelines, since for childhood ALL patients

with TPMT low activity, the cure rate seems independent of the degree of myelosup-

pression obtained, whereas for TPMT high-activity patients 6MP/MTX dose adjust-

ment during maintenance therapy to obtain myelosuppression seems to improve the

cure rate [11]. Thus, pharmacogenetics is not an alternative, but a supplement to tradi-

tional dose adjustments by toxicity or drug measurements.

5. Reducing toxicity or increasing efficacy must not be upset by less efficacy or more

toxicity

The improved cure rates of childhood ALL over the last decades clearly demonstrate

that many leukemias previously regarded treatment resistant were curable, if suffi-

ciently intensive treatment is applied. Accordingly, dose adjustments to overcome

adverse rapid drug elimination would be expected to increase cure rates further.
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However, life threatening or other unacceptable toxicities such as second malignant

neoplasms after 6MP therapy [25] or avascular necrosis after glucocorticosteroid ther-

apy [26] may preclude such intensification. Similarly, attempts to mitigate toxicities by

dose reductions could increase the risk of relapse [27]. The impressive improvements

in the cure of childhood ALL of today was obtained by general treatment intensifica-

tion linked to improved risk grouping primarily based on characteristics of the leuke-

mic clone (e.g. lineage, cytogenetics, and tumor burden). In recent years this has been

refined by adding monitoring of the early response to induction chemotherapy (i.e.

monitoring of minimal residual disease). However, due to the high frequency of toxi-

city, general treatment intensification seems unacceptable. Thus, although the addi-

tional 30% of the patients that is now cured compared to the 1970’ies certainly

benefits from the increased intensity, the treatment is worse for the remaining 70%,

since the 50% was already cured in the 1970’ies and the 20% that still fails has in gen-

eral only experienced more side effects. This burden of toxicity is clearly reflected by

the fact that 25-60% of deaths within 10 years after diagnosis of ALL are non-leukemic

events [4,28]. Accordingly, pharmacogenetic identification of patients at risk of such

toxicities and subsequent adjusting, including reducing, their treatment intensity may

improve the overall survival of childhood ALL patients.

6. Pharmacogenetic-kinetic data for individualized medicine should relate to relevant

patient groups and treatment protocols

In theory, concordant findings should be obtained when significant associations are re-

tested in independent patient populations, provided that the confirmatory study has

appropriate statistical power. However, from the literature it is clear that supporting

findings in association studies are less common [3,8,9]. Trivial explanations such as

low sample sizes are often put forward, but additional leukemia and patient-associated

factors are likely to be involved and should therefore also be integrated in genome-

guided treatment adjustments [29]. As examples of the latter both Rocha [15] and Gre-

gers et al. [21] have shown that the association between cure rates and pharmacoge-

netic variants may be restricted to specific ALL subsets. Thus, in a recent Danish study

of 500 patients, the reduced folate carrier-1 (RFC1, involved in cellular MTX uptake)

high activity-variant RFC1 A80 (rs1051266) [30] was associated with better event-free

survival. However, the RFC1 gene is located on chromosome 21 and this genotype-

phenotype association could not be shown in the subset of patients with three or more

of chromosome 21 copies in their leukemic clone suggesting that a gene-dosage effect

of the RFC1 may compensate for the lower activity of the G80 variant [21]. Since

patients carrying the A80 variant also had higher plasma MTX levels, their superior

outcomes may reflect an increased systemic exposure or higher sensitivity of target cell

to MTX due to an enhanced cellular influx. In support of the latter interpretation, Bui-

tenkamp et al. [31] reported that the higher treatment-related toxicity among ALL

patients with Down syndrome after high-dose MTX most likely reflect higher sensitiv-

ity in affected tissues rather than higher systemic MTX exposure, since MTX clearance

was only marginally (5%) lower among Down ALL patients and the severity of gastro-

intestinal toxicity was not related to systemic MTX exposure (AUC). Nonetheless, the

slower MTX elimination was statistically highly significant, and since the RFC1 A80

variant may have a stronger impact on cellular MTX uptake and elimination rate than

chromosome 21 trisomy, the findings by Buitenkamp [31] support the findings of by
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Gregers [21]. Altogether, these findings support that leukemia karyotype and congeni-

tal chromosomal syndromes [32] can both affect pharmaco-kinetics/dynamics and that

this should be considered in the evaluation of response predictors to be used in treat-

ment individualization.

Other examples of patient-associated confounding factors include ethnicity [33], age

[34], and gender [35]. The latter is reflected in the inferior cure rates of girls in a ther-

apeutic drug monitoring study of MTX/6MP maintenance therapy [7].

Finally, the effect of genetic variants on a drug is highly dependent on the treatment

protocol. In its simplest form, divergent association findings may arise from differences

in co-administered drugs that may diminish the role of the drug under investigation,

or increase the expression of enzymes involved in catabolism of the drug in question

(phenotype changes) [2,3]. Lavadiere et al. [22] reported that the RFC1 A80 variant was

associated with higher plasma MTX concentrations during HD-MTX therapy in

French Canadian ALL patients, which is in line with the findings by Gregers et al. in

the NOPHO study [21]. In contrast, whereas RFC1 A80 was associated with lower

event free survival in the Canadian study, significantly higher chance of staying in

remission was observed in the Danish cohort. This discrepancy is likely to be explained

by the more extensive use of HD-MTX in the Danish cohort (up to 9 courses of HD-

MTX (5-8 g/m2/24h with i.t. MTX and 15 mg/m2 Leucovorin rescue times three) dur-

ing consolidation and maintenance therapy, whereas the Canadian patients only

received one course of HD-MTX during induction therapy (4 g/m2 MTX with 200

mg/m2 initial Leukovorin rescue followed by 24 mg/m2 per subsequent dose) [21,22].

The inferior (rather than similar) outcome among Canadian patients carrying the

RFC1 A80 allele could potentially be ascribed to their higher plasma MTX concentra-

tions and subsequent extensive Leukovorin rescue [19]. Whatever the cause, such con-

flicting findings emphasize the potential pitfalls when interpreting pharmacogenetic

associations across patient groups and treatment protocols.

7. The potential treatment adjustment is defendable statistically, biologically (well

understood), and therapeutically

For genetic markers to be used in treatment individualization, their linkage to clinical

outcome measures needs to be firmly established, and treatment adjustments to

improve cure rates and reduce side effects should not only be statistically significant,

but also validated in separate studies of independent patient populations that receive

comparable therapy.

Ideally, the biology of genetic associations used in treatment individualization should

be understood. Genome-wide association studies, how powerful they may be for identi-

fying new genotype-phenotype associations, frequently lack clear biological explana-

tions, but even for genetic variants that are clearly linked to well-described drug

metabolism pathways, the mechanism of the association may be uncertain. Occasion-

ally, drug concentration measurements may identify the underlying mechanism. In

contrast, causality may be less obvious for associations with confounded (e.g. multi-

drug treatments) or late clinical endpoints (e.g. event-free survival and late effects) or

for markers that are only statistically linked (e.g. haplotype variants) with the causal

variant. In principle, unexplained associations can justify treatment changes if the asso-

ciation is sufficiently strong. Thus, if host genomic profiling across study groups can

identify subsets of patients highly resistant to conventional chemotherapy, shifting such
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patients to very intensive therapy, including bone marrow transplantation, may be as

legitimate as risk grouping based on cytogenetic aberrations, such as for patients with

Philadelphia chromosome positive ALL [36]. More likely however, genetic profiling will

identify patients with moderately increased relapse risk, and the clinical decision-making

(i.e. which treatment phase or drug to intensify) should be based on mapping of the

association at the molecular level. An additional advantage of causal markers is that

their clinical associations are more likely to be valid across ethnicity. Moreover, although

an empiric approach may be scientifically/statistically justified, the lack of causal under-

standing may form a psychological barrier and hamper physicians’ willingness to inflict

further toxicity or risking reduced cure rates. Thus, treatment individualization is likely

to be dominated by associations involving genetic variants that directly affect protein

function or expression that can be further investigated at the functional level.

Identification of patients with high risk of poor outcome is of little use if alternative

treatment is not available or acceptable. Fortunately for childhood ALL, higher drug

doses and the associated toxicities seem acceptable for the antimetabolites, the gluco-

corticosteroids, and L-asparginase, but less so for vincristine, alkylating agents, topoi-

somerase-II inhibitors, and other DNA-damaging agents.

8. The prospective risk profiling must be rapidly available and cost efficient

For implementing individualized medicine, there is a need to improve logistics that

allow genotypic or phenotypic profiling (e.g. pharmacological measurements) within a

reasonable time, which for drugs used during induction therapy may be as short as a

few days. Owing to the low incidences of ALL and the specialized nature (not routinely

available genetic analyses or pharmacological measurements) this likely involves centra-

lized facilities. Since costs and logistics associated with such analyses, data registration

and communication, and not least individual dosing to each patient by the clinicians is

an elaborate task, the cost efficiency of such treatment individualization require careful

evaluation. Table 1 shows the co-distribution of an adverse event and a risk marker in

response to standard treatment in two hypothetical populations of 1000 patients each

and with similar relative risks and odds ratios, but with different sensitivities (18% vs.

89%, respectively) and precisions (9.1% vs. 3.7%) in toxicity prediction. From a clinical

point of view the costs of individualized medicine can be evaluated at three levels: I)

Most simple by looking at the total patient population; does the frequency and severity

of the adverse event (e.g. toxicity) justify the costs? This does not mean that toxicity

prediction should be limited to frequent events, since very severe, although rare,

Table 1 The co-distribution of a risk marker (High/Low risk) and adverse event (+/-
Toxicity) in response to standard treatment in two hypothetical patient populations (A, B)

Population A Outcome Low risk High risk

RR/OR - Toxicity 969 20

9.9/10.8 +Toxicity 9 2

Precision 2/(20+2): 9.1% Sensitivity 2/(9+2): 18%

Population B Outcome Low risk High risk

RR/OR - Toxicity 535 446

9.9/10.2 +Toxicity 2 17

Precision 17/(446+17): 3.7% Sensitivity 17/(2+17): 89%

Precision and sensitivity calculated as explained in the main text. RR: Relative Risk; OR: Odds Ratio.
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toxicities may well justify the costs of genotyping. II) If so, how many of these toxic

events among the total cohort can be avoided by treatment individualization. With the

sensitivities in populations A and B, this is maximally 18 and 89%, respectively, pro-

vided that all toxic events are prevented by treatment individualization. The latter may

not be the case and should therefore also be considered in the cost-benefit evaluation.

III) Does the precision (9.1% and 3.7% of the high-risk patients, respectively, that bene-

fits (potentially avoids toxicity) from intensity reduction) justify the loss (increased risk

of relapse for the remaining 90.9% and 96.3% of the high-risk patients that did not

experience toxicity with standard treatment) and how should these gains and losses be

balanced? Certainly, the weighing should include both the number and the relative

severity of the adverse events (e.g. ALL relapse vs. toxicity) expected with both stan-

dardized and individualized treatment, which will undoubtedly be a challenge. Unfortu-

nately, most published papers on genotype-phenotype associations focus on relative

risks or odds ratios rather than absolute risk and fraction of all events linked to a spe-

cific genotype, which is of more use in cost efficiency evaluations.

9. Individualized medicine approaches should be tested in randomized trials

Regardless of statistical significance and degree of mechanistic understanding of geno-

type-phenotype associations, their clinical applicability should be tested in prospective

randomized trials. Since the profile of toxicities in childhood ALL therapy is very wide

and a limited number of patients available, it is unrealistic to perform randomized clin-

ical trials for each toxicity, and furthermore difficult to obtain sufficient statistical

power to demonstrate changes in the frequency of rare toxicities [37]. The division of

patients into multiple risk groups and the late occurrence of many events further bur-

den such trials. Still, addressing multiple toxicities and allowing genotype-based adjust-

ments of several anticancer agents in order to reduce the burden of therapy and

simultaneously improve cure rates may be a proof-of-principle approach even though

the subsequent statistical and biological identification of the most important treatment

modifications will be challenging.

Conclusions
As initially stated, “individualized medicine” as a concept has gained popularity within

the last decade - largely owing to the development of molecular techniques that allow

patient genotyping in practically any laboratory. However, dose adjustments by thera-

peutic drug monitoring or bone marrow toxicity and stratification of patients to low-

or high-risk treatment groups based on chromosomal aberrations, leukocyte counts at

diagnosis, minimal residual disease, which has been performed for decades can also be

considered “individualization”, although traditionally not referred to as such. From this

point of view, the improvement since the 1950´ies in childhood ALL therapy with

overall survival rates rising from 50 to nearly 90% can be seen as proof that patients

benefit from individualized medicine. However, the persisting high frequency of serious

toxicities and relapses emphasize that implementation and further refinement of such

strategies in leukemia treatment may be worthwhile.
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