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Abstract

Aspergillus is a leading causative agent for fungal morbidity and mortality in
immuno-compromised patients. To identify a putative target to design or identify
new antifungal drug, against Aspergillus is required. In our previous work, we have
analyzed the various biochemical pathways, and we found Ketol Acid Reducto-
Isomerase (KARI) an enzyme involves in the amino acid biosynthesis, could be a
better target. This enzyme was found to be unique by comparing to host proteome
through BLASTp analysis. A homology based model of KARI was generated by Swiss
model server. The generated model had been validated by PROCHECK and WHAT IF
programs. The Zinc library was generated within the limitation of the Lipinski rule of
five, for docking study. Based on the dock-score six molecules have been studied for
ADME/TOX analysis and subjected for pharmacophore model generation. The Zinc ID
of the potential inhibitors is ZINC00720614, ZINC01068126, ZINC0923, ZINC02090678,
ZINC00663057 and ZINC02284065 and found to be pharmacologically active agonist
and antagonist of KARI. This study is an attempt to Insilco evaluation of the KARI as a
drug target and the screened inhibitors could help in the development of the better
drug against Aspergillus.
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Introduction
Various reports from the past two decades point to the occurrence of invasive fungal

infections have been greater than ever. Aspergillus represents a huge genus of econom-

ically, as well as ecologically, important fungi in industry and many fields of applied

and clinical research. Aspergilli are also a leading cause of fungal morbidity and mor-

tality in immune compromised patients [1-6]. Clinically accessible antifungal agents

have quite a few downsides such as restricted potency and spectrum, non-optimal

pharmacokinetics, severe resistance and drug-related toxicity. There is an emergent

need to develop new antifungal drugs with a new chemical composition and novel

mechanism of action [7]. Active efforts are being made by several international agen-

cies and pharmaceutical majors to identify the drug targets and develop new drugs to

treat these diseases effectively. To identify an antifungal drug targets for Aspergilli is

required to develop new pharmaceuticals, to meet the challenge. Metabolic variations

among organisms may be oppressive for the targets for pathogen such as Aspergilli.
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Because of the huge similarity among Metabolism and enzymes with host, Eukaryotic

pathogens such as Aspergilli are always being tedious to control. The information

about pathogen and host and their interaction are recurring deposited. A huge data-

base for metabolome, proteome and genome are available, which may exploit for tar-

geting some enzyme, which could be a server for drug designing [7,8]. The KARI has

been considered as a target for this study as a result of comparative pathway analysis

between host and parasite [8]. This enzyme is involve in biosynthesis of branched

chain amino acid (Valine, leucine, isoleucine), Pantothenate and CoA in Aspergillus.

KARI catalyzes the conversion (s)-2 Aceto-2 hydroxybutanoate to (R)-3-hydroxy 3-

methyl 2-oxopentanoate and again KARI utilizes this substrate and produces (R) 2,3-

dihydroxy-3-methylpentanoate and converted it into Lucine and Isolucine [8,9]. Parallel

to the above, Valine (3-hydroxy 3- methy-l,2-oxobutanoate to 2,3-dihydroxy-3-methyl-

butanoate) is also synthesized by same pathway. In both the reactions threonine moiety

is metabolized into isolucine and valine biosynthesis in Aspergillus [10]. For the reac-

tion catalyzed by KARI, Mg++ and NADPH are required as cofactor and coenzyme

respectively [11,12]. The KARI and Dihydroxy acid dehydratase are essential enzymes

for biosynthesis of Lucine, Isolucine, and Valine and can be targeted as antifungal drug

target. Disruption of Lucine, Isolucine and Valine biosynthetic pathway may affect the

survival of the Aspergilli under the conditions of threonine limitation [8]. Thus, the

KARI have selected for this study as as putative Antifungal target. In this present arti-

cle we have modeled the Aspergillus KARI enzyme, using rice KARI as a template.

The modeled structure was validated and used for docking study to find out drug like

molecules. The identified molecules were subjected for ADME/T analysis and pharma-

cophore generation.

Materials and methods
The criteria for selection of Ketol acid reductoisomerase (KARI) as a drug target have

reported in our last manuscript [8]. The sequences of KARI were retrieved from NCBI

database http://www.blast.ncbi.nlm.nih.gov.

Homology modeling

The protein sequence was also obtained from KEGG data base http://www.genome.jp/

kegg[13] and the sequence of model of KARI was obtained from NCBI database http://

www.blast.ncbi.nlm.nih.gov[14]. Ketol acid reductoisomerase (KARI) enzyme of Aspergilli

was subjected for homology modeling using Swiss model [14,15]. While possible active

site were determined using LIGSITEcsc and CASTp web servers simultaneously [16-18].

The structural homologue, which was used as a template for this model, is ketol acid

reductoisomerase enzymes from rice with PDB identifier 3fr8B [19]. The sequence similar-

ity between the template and the model is about 33%. The quality of the model was veri-

fied using PROCHECK and WHAT IF [20,21] a protein structure verification program. A

sequence alignment of Ketol acid reductoisomerase from Rice chain -B and Aspergillus

was constructed using the multiple sequence alignment program ClustalX [22].

Docking

The chemical structures of antagonists for enzyme Ketol acid reductoisomerase were

extracted from ZINC. In an effort to make virtual screening more accessible to a large
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community, it is a free database of purchasable molecules, many of them “drug-like” or

“lead-like”, in 3D formats compatible with popular docking programs [22]. The ligand

molecule was searched on drug databank by submitting the sequence of the enzyme

[22,23]. On the basis of information obtained from drug bank, http://www.drugbank.

com Library for the antagonist of Ketol acid reductoisomerase were downloaded from

the Zinc server within limitation of Lipinski rule’s of five [24]. The library retrieved

from Zinc http://www.zinc.org was used for Docking.

The docking was performed using Molegro Virtual Docker (MVD), an evaluation ver-

sion. Molegro virtual docker uses a three-dimensional structure of both protein and ligand

(usually derived from X-ray/NMR experiments or homology modeling). MVD performs

flexible ligand docking, so the optimal geometry of the ligand will be determined during

the docking. Molegro virtual dockers explore the full range of ligand conformational flex-

ibility with partial flexibility of the protein. Docking procedure consisted of three interre-

lated components; a) identification of binding site b) a search algorithm to effectively

sample the search space (the set of possible ligand positions and conformations on the

protein surface) and c) a scoring function or energy calculation software [25].

Pharmacophore mapping

Pharmacophore are the lead compound against a desired target. A pharmacophore is a

3 D arrangement of functional groups within a molecule and these are necessary to

bind to a macromolecule or active site Identification of the pharmacophore is an

important step in understanding the interactions between receptor and ligand. This

was generated with Ligandscout software [26-28]. Pharmacophore of six ligands were

generated by this software and align to find out the active site of all [29].

ADME/T analysis

Pharmacokinetics a term used in the pharmacology which gives idea about Absorption,

Distribution, Metabolism and Excretion/Toxicity (ADME/T) of a drug molecule. It has

found that more than 50% drugs are fail during clinical trial due to their weak ADME

properties [30,31]. Recent advancements in Genomics, Proteomics, High-Throughput

Screening (HTS) and the overall drug discovery process have rapidly generated large

numbers of potential pharmacologically active compounds waiting for optimization

and pre-clinical ADMET evaluation. Thus before clinical trail ADME and toxicity

property must be tested. For this analysis we have used Pharma-algorithm server

http://pharma-algorithms.com/webboxes/[32].

Results and discussion
A previous study done in this laboratory about drug target identification through meta-

bolic pathway analysis, total 40 enzymes were found to be essential for Aspergillus [8].

When amino acid sequence of KARI was compared with human proteome by BLASTp

search, this enzyme was found to be non-homologous. Therefore we have targeted

KARI (1.1.1.86) as putative drug target. Some other reasons which make it more inter-

esting is its involvement biosynthesis of lucine, vsoucine and valine and these amino

acids are essential for humans. Thus targeting this enzyme will not alter the amino

acid metabolism in human while unavailability of these amino acids in pathogen inhi-

bits various pathways.
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Homology based model of KARI was accomplished by swiss model server [17,18] and

the structural homologue, which was used as a template for this model, is ketol acid

reductoisomerase enzymes from rice, The PDB identifier 3fr8B [16-18] with a resolu-

tion of 2.8 Å. The modeled structure was validated by UCLA server. The exact

sequence similarity id about 32.19% in respect to template, therefore the sequence

homology between template and subjected sequence have been analyzed by multiple

sequence analysis using Clustal matrix, the results are shown in Figure 1. It was found

that the KARI sequence of Aspergillus shows the conserved patches with template

between 14-280 and 421-556 amino acid residues. The conserved sequences were sub-

jected for the prediction of their functional properties. It was found to be the sequence

from 14-280 belong with NADB_Rossmann protein superfamily (Rossmann-fold NAD

(P)H/NAD(P)(+) binding (NADB) domain). The NADB domain is found in numerous

dehydrogenases of metabolic pathways such as glycolysis, and many other redox

enzymes. NAD binding involves numerous hydrogen-bonds and van der Waals con-

tacts, in particular H-bonding of residues in a turn between the first strand and the

subsequent helix of the Rossmann-fold topology. Characteristically, this turn exhibits a

consensus binding pattern similar to GXGXXG, in which the first 2 glycines participate

in NAD(P)-binding, and the third facilitates close packing of the helix to the beta-

strand. Typically, proteins in this family contain a second domain in addition to the

NADB domain, which is responsible for specifically binding a substrate and catalyzing

a particular enzymatic reaction. amino acid residues between 421-556 was found to be

conserved domain of IlvC superfamily enzymes. This domain is mainly associated with,

catalytic domain, involved in catalysis of acetohydroxy acids to dihydroxy valerates

conversion. This reaction is the second in the synthetic pathway of the essential

branched side chain amino acids valine and isoleucine.

Figure 1 Sequence alignment of Ketol acid reductoisomerase of Aspergillus with Ketol acid
reductoisomerase of Oryza sativa.
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The homology based model was generated with an objective to predict structure

from its sequence with an accuracy that is comparable to the best results achieved

experimentally. This, allow us to safely use rapidly generated Insilico protein models in

all the contexts where only experimentally generated structures provide a solid basis

for structure-based drug design or rational drug designing. The structure of a protein

is uniquely determined by its amino acid sequence. Knowing the sequence should, at

least in theory, suffice to obtain the structure. During evolution, the structure is more

stable and changes much slower than the associated sequence, so that similar

sequences adopt practically identical structures and distantly related sequences still

fold into similar structures [33,34].

Procheck validation

The 3D structural model of KARI gerenated by homology based model has been exam-

ined by their stereo-chemical quality, by Procheck. The phi/psi angles of 85.0% resi-

dues fell in the most favored regions, 13.4% residues lied in the additional allowed

regions and 1% fell in the generously allowed regions; only 0.6% of residues lied in the

disallowed conformations (Figure 2). Thus, statistical analysis suggests that the back-

bone conformation of our predicted model of KARI was almost as good as that of the

template; the 3D conformation of the predicted model of KARI has been shown in Fig-

ure 3. In the Figure 4 main chain parameters are given. These graphs represent a com-

parison between the structures of the model with reference, at the similar resolution.

Figure 3 and four shows various properties namely Ramachandran plot, peptide bond

planarity, bad non bonded interaction’s alpha tetrahedral distortion, main chain hydro-

gen bond energy and the overall G- factor. The overall G - factor is the measure of the

overall normality of the structure. After that, residue which was present in the active

site of the model found out manually and also with the help of molegro software

mainly three residue of amino acid was found to be associated an active site of the

model of KARI these are Arg.101-ser-184 and Val- 175. Figure 3b shows the distance

from active site residue to N- terminal and C- terminal [34,35]. The residues involved

in the active site as predicted by LIGSITEcsc and CASTp were Arg 101, lys 169, glu

233, Asp 223, Glu 269, ser 184 and val 175 are involved in formation of cavity for

binding of ligands. A previous study on Spinach, E. coli and P. aeruginosa have shown

a different active site than the prediction KARI from Aspergillus [36]. The proscane

analysis for pattern elucidation was done according to Bairoch and coworkers [37].

Four patterns were found on the sequence of K.A.R.I. these patterns represent N-gly-

cosylation site, Protein kinase C phosphorylation site, Casein kinase II phosphorylation

site and N-myristoylation site. The above parametric comparison shows that the mod-

eled structure is good for the further analysis like docking, to find some potential

inhibitor.

Docking

The sequence of KARI was submitted to drug data bank for assessment of drug like

molecule, there are three molecules available with ID DB03387; DB03675; DB04497

[38,39]. Based on above information the ligand library was generated using ZINC ser-

ver. This library was used for docking on KARI, using Molegro virtual docker. Six

ligand molecules were selected based on their docking score. After docking, total 4475
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Figure 2 Ramachandran plot generated by UCLA server for validation of modeled KARI.

Figure 3 Ribbon representation of KARI model (A) with the ligand in green color (B). Important
residues are shown (Ser, Arg and Val.) and the distance was calculated from the active site that is serine
residue (ser-184) to N-terminal (31.97Å) and C- (30.57 Å) terminals of the model receptor as calculated by
pymol are shown. The inset shows the length (12.49 Å) of (4R)-6-amino-3-(3,4-dimethoxyphenyl)-4-(5-(4-
fluorophenyl)-1H-pyrazol-4-yl)-2,4 dihydropyrano(2,3-c)pyrazole-5-carbonitrile.
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poses were obtained. On the basis docks core, minimum energy calculation, best fit

poses in the cavity. The best posse from the data was selected. The various properties

and molecular structure studied ligands were mentioned in table 1. The energy score

and other properties of the ligands can be selected as an inhibitor of KARI for further

analysis [40].

Pharmacophore mapping

Pharmacophore mapping was accomplished by the Ligand scout software [28]. The

pharmacophore models produced were evaluated qualitatively through visual inspec-

tion and according to their ability to generate the target pharmacophores. The

Figure 4 Main chain parameter generated by WHAT IF.
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pharmacophore expresses constraints on the 3D structure of the molecule by specify-

ing relative atom positions that should be maintained to increase the likelihood that

the molecule will bind with the receptor site [41,42]. For all six ligand pharmacophore

was generated. Figure 5 shows pharmacophore model generated with ZINC00720614,

which is found to be better and could be use as a skeleton for design new class of

drugs. The other Ligands namely ZINC01068126, ZINC09291743, ZINC02284065,

ZINC00663057, ZINC02090678 was also used to generate pharmacophore models for

comparative analysis [23,24,43].

Table 1 Showing various properties of ligand molecules having better score value.

ZINC I.D. Name (IUPC) MW Formula Dock
score

1 ZINC00720614 (4R)-6-amino-3-(3,
4-dimethoxyphenyl)-4-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]-
2,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile

458.44 C24H19FN6O3 184.335

2 ZINC01068126 6-amino-3-(2,5-dimethoxyphenyl)-4-[5-(4-fluorophenyl)-1H-
pyrazol-4-yl]-2,
4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile

458.44 C24H19FN6O3 164.943

3 ZINC09291743 6-amino-4-(4-hydroxyphenyl)-3-(4-phenylmethoxyphenyl)-
2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile

436.46 C26H20N4O3 161.478

4 ZINC02090678 1-carbazol-9-yl-3-[2-(1-hydroxyethyl)benzimidazol-1-yl]
propan-2-ol

387.47 C24H23N3O2 161.176

5 ZINC00663057 2-[2-(4-amino-1,2,5-oxadiazol-3-yl) benzimidazol-1-yl]-N-[(4-
methylphenyl) methylideneamino]acetamide

376.39 C19H17N7O2 160.238

6 ZINC02284065 4-[5-(4-amino-1,2,5-oxadiazol-3-yl)-2-butyl-1,2,4-triazol-3-yl]-
1,2,
5-oxadiazol-3-amine

291.26 C10H13N9O2 158.524

Figure 5 Shows the generated pharmacophore For ZINC 00720614 with 11 active site, (A).
Alignment of three pharmacophre was (ZINC00720614, ZINC01068126 and ZINC09291743 done with
ligand scout remaining are not able to align (B).
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ADME/Tox properties

Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/Tox) are main

five parameters to test the drug likeness of a molecule. ADME/Tox was tested by the

pharma algorithm [44]. The table 2, summaries above-mentioned properties were

given. Thus, the pharma algorithm gives an idea about drug likeness of the ligand

molecule by studying this (table 2) can be able to know the oral bioavailability, absorp-

tion and the toxic effect of drug like molecule. By this study, it becomes easy to opti-

mize the lethal doses of any molecule without killing any animal, which reduces the

cost [45]. Oral bioavailability of drug must be low, and shows the oral bioavailability of

all six ligands (Table 2). The analysis of the World Drug Index (WDI), which lead to

Lipinski’s ‘rule-of-five’ identifies several critical properties that should be considered

for compounds with oral delivery in mind. These properties, which are usually viewed

more as guidelines rather than absolute cutoffs, are molecular mass < 500 daltons

(Da), calculated octanol/water partition coefficient (CLOGP) < 5, number of hydrogen-

bond donors < 5 and number of hydrogen-bond acceptors < 10. Thus, such studies

point the most important physicochemical properties and structural characteristic of a

good drug in the context of our current knowledge. These properties are then typically

used to construct predictive ADME models and create the basis for what has been

called property-based design [46]. The comparative ADME/Tox analysis of these

Ligands encouraging them to use as drug like molecule, as accord [23,24,43,46,47].

Conclusion
Our previous work in which we have analyzed the metabolic pathways in the finding of

essential protein, which could be targeted for drug designing. Comparative study of

metabolome of the Aspergilli bestows the idea that essential enzymes can be targeted

for antifungal drug designing [8], and 40 imperative proteins were identified from

Aspergillus. Out of these putative targets, KARI was selected for present work, as it

was found to be non-homologous protein in comparison with human protein. There-

fore, targeting this protein will be Safe. Since 3D structure of KARI from Aspergilli

was not reported yet so a model of this enzyme was produced by Swiss model. That

model was validated by procheck and WHAT IF, programs. The structure of KARI

was modeled Insilico based on X- ray crystallography structure of KARI B- chain of

rice was used as the template. The ligand library was generated with the help of the

drug bank from the zinc database. About 495, ligands were used in the preparation of

the ligand library for docking. As a result, six ligands ZINC00720614, ZINC01068126,

ZINC09291743, ZINC02090678, ZINC006637 and ZINC02284065 was selected based

on docking score. It was evaluated that serine-184 was found to be a key residue along

with valine and Arganine residue to form a binding site. These findings advance our

knowledge on specific interactions on ZINC00720614, ZINC01068126, ZINC09291743,

ZINC02090678, ZINC006637 and ZINC02284065 bind with KARI-receptor. Pharmaco-

phore analysis was suggested about the active site of drug like molecule, and 11 such

sites were deduced on ZINC00720614 ligand. This number of the active sites showed

that ZINC00720614 is the best ligand molecule among all selected ligands. Maximum

number of active site in a ligand molecule shows the highest chances of binding and

also of lowest binding energy. The bioavailability, absorption and toxicity of the drug-

like molecule were studied by the pharma algorithm. Oral bioavailability stands for the
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Table 2 Pharmacophore properties of best possible drug like molecules

ZINCI.D. Predicted
values- oral
Bioavailability

Predicted Values
- Passive
Absorption
(Human
Intestinal)

Predicted
Values -
Probabilities of
Health Effects

Predicted Values- acute toxicity
(LD50, Mouse)

LD50
(mg/kg)

pLD50 Lower
limit

Upper
limit

ZINC00720614 less than 30% Maximum
passive
absorption:
100%
Contribution from:
Trancellular route
= 100%
Paracellular route
= 0%
Permeability:
Human Jejunum
scale (pH = 6.5):
Pe, Jejunum =
3.09 × 10-4 cm/s
Absorption rate:
Ka = 0.091 min-1

Blood- 0.99
Cardiovascular
system-1.00
Gastrointestinal
system-1.00
Kidney -0.99
Liver- 0.98
Lungs-0.82

Ip 1000.0 -0.34 -1.17 0.42

O 800.0 -0.24 -1.81 0.92

Iv 62.0 0.87 -0.18 2.24

S 950.0 -0.32 -1.90 1.43

ZINC01068126 less than 30% Ma × imum
passive
absorption:
100%
Contribution from:
Trancellular route
= 100%
Paracellular route
= 0%
Permeability:
Human Jejunum
scale (pH = 6.5):
Pe, Jejunum =
3.42 × 10-4 cm/s
Absorption rate:
Ka = 0.093 min-1

Blood- 0.99
Cardiovascular
system-1.00
Gastrointestinal
system-1.00
Kidney -0.99
Liver- 0.98
Lungs-0.82

Ip 620.0 -0.13 -1.01 0.64

O 610.0 -0.13 -1.69 1.04

Iv 48.0 0.98 -0.05 2.27

S 640.0 -0.15 -1.73 1.56

ZINC09291743 less than 30% Maximum
passive
absorption:
100%
Contribution from:
Trancellular route
= 100%
Paracellular route
= 0%
Permeability:
Human Jejunum
scale (pH = 6.5):
Pe, Jejunum =
5.94 × 10-4 cm/s
Absorption rate:
Ka = 0.100 min-1

Blood- 0.98
Cardiovascular
system-.96
Gastrointestinal
system-1.00
Kidney -0.96
Liver- 0.92
Lungs-0.97

Ip 590.0 -0.13 -1.13 0.73

O 850.0 -0.29 -1.76 0.36

Iv 43.0 1.00 0.20 2.40

S 920.0 -0.32 -1.91 1.42
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Table 2 Pharmacophore properties of best possible drug like molecules (Continued)

ZINC02090678 between 30%
and 70%

Maximum
passive
absorption:
100%
Contribution from:
Trancellular route
= 100%
Paracellular route
= 0%
Permeability:
Human Jejunum
scale (pH = 6.5):
Pe, Jejunum =
5.42 × 10-4 cm/s
Absorption rate:
Ka = 0.100 min-1

Blood- 0.88
Cardiovascular
system-0.82
Gastrointestinal
system-0.82
Kidney -0.31
Liver- 0.63
Lungs-0.98

Ip 420.0 -0.04 -1.08 0.85

O 1100.0 -0.45 -1.97 0.33

Iv 54.0 0.85 -0.28 2.30

S 590.0 -0.19 -1.83 1.32

ZINC00663057 between 30%
and 70%

Maximum
passive
absorption:
100%
Contribution from:
Trancellular route
= 100%
Paracellular route
= 0%
Permeability:
Human Jejunum
scale (pH = 6.5):
Pe, Jejunum =
3.09 × 10-4 cm/s
Absorption rate:
Ka = 0.091 min-1

Blood- 0.61
Cardiovascular
system-0.36
Gastrointestinal
system-0.53
Kidney -0.55
Liver- 0.42
Lungs-0.80

Ip 300.0 0.09 -0.73 0.71

O 1000.0 -0.43 -1.89 0.06

Iv 84.0 0.65 -0.31 1.84

S 440.0 -0.07 -1.86 1.07

ZINC02284065 between 30%
and 70%

Maximum
passive
absorption:
100%
Contribution from:
Trancellular route
= 99%
Paracellular route
= 1%
Permeability:
Human Jejunum
scale (pH = 6.5):
Pe, Jejunum =
1.07 × 10-4 cm/s
Absorption rate:
Ka = 0.034 min-1

Blood- 0.77
Cardiovascular
system-0.01
Gastrointestinal
system-0.77
Kidney -0.38
Liver- 0.43
Lungs-0.22

Ip 120.0 0.40 -0.73 1.66

O 510.0 -0.24 -1.63 0.66

Iv 110.0 0.42 -1.02 2.16

S 570.0 -0.29 -1.86 1.75

** Ip- Intraperitoneal; O - Oral; Iv- Intravenous; S-Subcutaneous
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fraction of drug available for the mouth this six ligand molecule can be the potential

drug for Aspergillosis. Uniformity of absorption of a drug-like molecule is important

factors when considering its formulation and relies upon system. The minimum

absorption rate constant ka value of 0.17 to 0.32 per hour necessary for about 80-95%

absorption over 9-12 hrs. Absorption rate of drug provides an idea about the rate of

absorption of drug like molecule and the absorption rate of these should be high, so

that these molecules must be available for biological system. Thus on the basis infor-

mation obtained from ADMET properties study time and cost both can be saved along

with life of various animals. Therefore, homology based rational drug designing can be

a successful approach for designing of potent antifungal drug. It still needed to explore

some more invivo experimentation for complete evaluation as a drug. Using this select-

able approach for designing the drug, a researcher can minimize the try and hit metho-

dology, thus can save the time, cost and life of test animals. We found KARI as a

potential target while design the drug against Aspergillus.
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