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Abstract 

Background:  The contrast between a high prevalence of chronic kidney disease (CKD) and the low incidence of 
end-stage renal disease highlights the need for new biomarkers of progression beyond albuminuria testing. Urinary 
proteomics is a promising method, but more studies focusing on progression rate and patients with hypertensive 
nephropathy are needed.

Results:  We analyzed urine samples with capillary electrophoresis coupled to a mass-spectrometer from 18 well 
characterized patients with CKD stage 4–5 (of whom six with hypertensive nephropathy) and 17 healthy controls. 
Classification scores based on a previously developed panel of 273 urinary peptides were calculated and compared 
to urine albumin dipstick results. Urinary proteomics classified CKD with a sensitivity of 0.95 and specificity of 1.00. 
Overall diagnostic accuracy (area under ROC curve) was 0.98, which was better than for albuminuria (0.85, p = 0.02). 
Results for hypertensive nephropathy were similar to other CKD diagnoses. Adding the proteomic score to an albu-
minuria model improved detection of rapid kidney function decline (>4 ml/min/1.73 m2 per year) substantially: area 
under ROC curve increased from 0.762 to 0.909 (p = 0.042), and 38% of rapid progressors were correctly reclassified 
to a higher risk and 55% of slow progressors were correctly reclassified to a lower risk category. Reduced excretion of 
collagen types I–III, uromodulin, and other indicators of interstitial inflammation, fibrosis and tubular dysfunction were 
associated with CKD diagnosis and rapid progression. Patients with hypertensive nephropathy displayed the same 
findings as other types of CKD.

Conclusions:  Urinary proteomic analyses had a high diagnostic accuracy for CKD, including hypertensive nephropa-
thy, and strongly improved identification of patients with rapid kidney function decline beyond albuminuria testing.
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Background
Chronic kidney disease (CKD) has a high prevalence 
and represents a large burden of morbidity and health 
care cost [1, 2]. Diagnosis and staging is based on esti-
mated glomerular filtration rate (eGFR) and the degree 
of albuminuria, which currently is our most reliable 
marker of rapid kidney function decline [3]. However, 
the diagnostic accuracy of albuminuria for CKD is only 
moderate with most studies reporting area under the 

ROC curve ranging 0.80–0.85 [4–8], so predicting which 
CKD patients will have a more rapid disease progression 
remains a major clinical problem.

Emerging gene-based tests typically report relative 
risks of 1.2–1.4 for polygenetic diseases like hypertension 
and CKD, which renders them largely useless as diagnos-
tic tools [9]. Other recent technologies enable us to detect 
large numbers of proteins and metabolites in urine, and 
these technologies may have a greater potential as they 
focus on the end products of biological processes. Sev-
eral studies have used urine proteomics for diagnostic 
purposes in glomerulonephritis [10], renal cancer [11] 
and renal transplantation [12], but there is a strong call 
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for more clinically relevant studies and better phenotyp-
ing [13]. Despite making up 30% of ESRD cases in the US 
and Europe, hypertensive nephropathy is surprisingly 
understudied, and proteomic analyses has never been 
performed [14]. The diagnosis of hypertensive nephropa-
thy is based on unspecific clinical characteristics, and the 
pathophysiology of this broad clinically-based entity is 
not well described and could be different from what has 
been described in experimental and biopsy based studies.

Our study describes phenotype characteristics, pro-
gression rates, and outcomes in unselected Norwegian 
CKD outpatients, and relate them to their urine prot-
eomic findings, with special attention to clinically diag-
nosed hypertensive nephropathy.

Results
Eighteen CKD stage 4–5 patients with a wide range of 
kidney diagnoses were included: eight with glomerulo-
nephritis/diabetic nephropathy, six with hypertensive 
nephropathy and four cases with miscellaneous causes of 
CKD (lithium nephropathy, Alport disease, chronic inter-
stitial nephritis, and cyclosporine A toxicity). Seventeen 
healthy controls were also included. Baseline demograph-
ics and kidney status are described in Table 1. As expected, 
diabetes, cardiovascular disease, and kidney related vari-
ables were substantially worse in the CKD group, but 

their levels of blood pressure, hemoglobin, phosphate, 
parathyroid hormone (PTH) and other markers of ure-
mia indicated that they were reasonably well treated and 
in an acceptable metabolic state. Mean eGFR at inclusion 
was 17 ml/min/1.73 m2 in the CKD cases, and their mean 
decline in kidney function over the past 1–11 years prior 
to inclusion was very similar to the decline over the two 
and a half years following inclusion [−8.1 ml/min/1.73 m2/
year (±8.4) vs −8.8 ml/min/1.73 m2/year (±7.6), p = 0.75, 
based on a mean of 8.9 and 2.2 measurements per subject]. 
We therefore used data from the total observation period 
to indicate their rate of progression. Controls did not 
show any significant decline in kidney function over the 
2  years, and we display baseline characteristics for rapid 
progressors (eGFR decline >4 ml/min/1.73 m2 per year) 
versus slow progressor (eGFR decline ≤4 ml/min/1.73 m2 

per year). Patients with hypertensive nephropathy typi-
cally had higher age, less albuminuria, and slightly slower 
decline in kidney function compared to patients with glo-
merulonephritis and diabetes nephropathy. By 2012, three 
CKD patients were on dialysis, four had been transplanted, 
and six had died.

The urine proteomic analyses detected 4,276 differ-
ent proteins, and information from 273 of these were 
converted into a classification score for each subject 
with values above the predefined 0.343 cutoff indicating 

Table 1  Baseline characteristics of participants

Data are mean (1SD) or percentages. Rapid progressors: eGFR declined more than 4 ml/min/1.73m2 per year. Slow progressors: eGFR declined less than 4 ml/
min/1.73 m2   per year.

GN glomerulonephritis, DN diabetic nephropathy, HN hypertensive nephropathy, Other other CKD diagnosis.

* One patient fulfilled the diabetes criteria just before study inclusion and another had nephrosclerosis only in his kidney biopsy.

Major groups Progression rate CKD diagnosis

Healthy (17) CKD (18) Rapid (13) Slow (22) HN (6) GN/DN (8) Other (4)

Age 47.8 (10.6) 63.7 (16.3) 63.8 (18.3) 51.5 (13.0) 77.8 (4.9) 61.6 (12.3) 47.0 (20.3)

Male gender (%) 58.8 72.2 84.6 54.5 100 87.5 0.0

Diabetes Mellitus (%) 0.0 33.3 38.5 4.5 33.3 * 37.5 0.0

Cardiovascular disease (%) 0.0 55.6 53.8 13.6 83.3 37.5 50.0

eGFR (ml/min/1.73 m2) 87.2 (5.4) 17.4 (7.2) 16.6 (6.9) 71.0 (30.2) 16.7 (8.6) 19.6 (7.7) 14.0 (1.4)

eGFR (ml/min/1.73 m2)  
decline per year

−0.3 (1.4) −6.7 (5.1) −8.9 (4.6) −0.6 (1.4) −5.8 (1.9) −6.4 (5.1) −8.8 (8.4)

Albuminuria (dipstick)

 Trace/+ (%) 17.7 22.2 23.1 18.2 33.3 25.0 0.0

 ++/+++ (%) 0.0 55.6 61.6 9.1 33.3 62.5 75.0

Systolic BP (mmHg) 131.8 (14.3) 144.2 (24.6) 144.1 (28.5) 134.8 (15.5) 142.2 (21.1) 146.6 (32.5) 142.3 (20.0)

Hgb (g/dl) 14.2 (1.3) 11.6 (1.5) 11.5 (1.3) 13.6 (1.7) 11.2 (1.7) 11.9 (1.6) 11.8 (1.1)

K (mmol/l) 4.1 (0.3) 4.5 (0.6) 4.6 (0.6) 4.2 (0.4) 4.6 (0.6) 4.7 (0.5) 4.2 (0.7)

Ca (mmol/l) 2.3 (0.1) 2.3 (0.1) 2.3 (0.2) 2.3 (0.1) 2.3 (0.2) 2.3 (0.1) 2.2 (0.02)

P (mmol/l) 1.1 (0.1) 1.4 (0.5) 1.5 (0.5) 1.1 (0.2) 1.6 (0.7) 1.3 (0.4) 1.4 (0.3)

Urea (mmol/l) 6.1 (1.1) 23.5 (8.5) 24.1 (8.3) 10.0 (8.2) 26.0 (10.7) 22.9 (5.8) 21.3 (10.3)

PTH (pmol/l) 3.5 (0.7) 28.2 (23.4) 30.5 (27.0) 7.2 (10.3) 25.3 (17.4) 29.3 (36.0) 30.0 (15.1)

Bicarbonate (mmol/l) 24.9 (2.4) 20.8 (2.3) 21.0 (2.4) 24.0 (3.0) 20.7 (2.9) 21.0 (2.2) 20.5 (1.9)
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high probability for CKD [10]. The mean score in CKD 
patients and controls were 0.71 and −0.31, respectively 
(p  <  0.001), indicating excellent overall discrimination. 
The box-and-whisker plots in Fig.  1 show the distribu-
tion of the proteomics scores by CKD diagnosis. Clas-
sification scores were higher than the cut-off value in all 
CKD patients, except for one patient with hypertensive 
nephropathy. The proteomics score had a sensitivity of 
95% and a specificity of 100% using the standard cut-off 
of 0.343, and the overall diagnostic accuracy was also 
excellent [area under ROC curve 0.977 (95% confidence 
interval (CI) 0.930–1.000)] (Fig.  2). ROC analysis of the 
urine dipstick test for albuminuria gave an AUC of 0.850 
(95% CI 0.730–0.970), which is a significantly lower diag-
nostic accuracy (p = 0.02).

Figure  3a shows the continuous relationship between 
urine proteomics score and kidney function decline. Kid-
ney function deteriorated substantially in the proteom-
ics scores range 0.0–0.5, while the association was rather 
flat for scores above 0.5 with a decline in eGFR of 7 ml/
min/1.73 m2 per year. The corresponding relationship for 
albuminuria is shown in Fig. 3b. Kidney function decline 
per year increased with higher grades of albuminuria, 
but the figure also demonstrates substantial variation in 
kidney function decline within each level of albuminuria. 
Albuminuria had an area under the ROC curve of 0.762 
for detecting subjects with rapid kidney function decline 
(more than 4  ml/min/1.73  m2 per year). Corresponding 
results for the urine proteomics score was 0.864. Add-
ing proteomic score to an albuminuria model, which is a 
clinically relevant evaluation, significantly increased the 
diagnostic accuracy to AUC 0.909 (p = 0.042 compared 
to albuminuria alone). Furthermore, reclassification 
analysis showed that two out of five rapid progressors 
with intermediate predicted risk were (correctly) reclas-
sified into the high risk group, while one out of five was 
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Fig. 1  Urine proteomics classification score (CKD273) by CKD 
diagnosis. GN/DN: patients with glomerulonephritis or diabetes 
nephropathy; HN: patients with hypertensive nephropathy. Negative 
values indicate normal healthy subjects, and 0.343 have been used as 
cut-off for CKD (dotted line) [10].
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Fig. 2  Receiver Operating Characteristics (ROC) analysis of urine pro-
teomics (CKD273 classifier) and albuminuria (dipstick) for diagnosing 
patients with CKD. AUC area under curve.
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Fig. 3  Association between kidney function decline per year (%) and 
urinary proteomic score (a) and dipstick albuminuria (b).
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(incorrectly) reclassified to the low risk group. For the 
slow progressors, three out of four with intermediate 
risk were (correctly) reclassified into the low risk group 
(Table 2).

Proteomic intensities of the most important urinary 
proteins are given in Table 3 for the different diagnostic 
groups compared to healthy controls. The associations of 
specific urinary proteins to CKD diagnosis and to rapid 
kidney function decline are given in Table  4. Data are 
presented as standardized beta-coefficients, i.e. effect 
on outcome per 1 SD change to facilitate comparisons, 
and as area under ROC curves. Fragments from collagen 

types I, II, and III were strongly reduced and ranked on 
top with typical ORs of 0.01 (i.e. if collagen concentration 
decreases with 1 SD the risk increases 100 times) and 
ROC areas of 0.95 (i.e. the test correctly classifies 95% 
of pairs with and without the outcome). No association 
was found to collagen type IV, which is the dominant glo-
merulus basement membrane type. Urine levels of CD99, 
uromodulin, sodium/potassium-transporting ATPase 
gamma chain, and osteopontin were also reduced in 
CKD patients. Except for osteopontin, these proteins 
were also strongly associated with a rapid decline in kid-
ney function. The systemic blood-derived proteins were 
typically lower ranked with ROC area-under-curves 
below 0.80, and albumin was ranked number 15 for rapid 
kidney decline.

Discussion
We found that a urinary proteomics classification score 
based on 273 different proteins had a significantly better 
diagnostic accuracy for chronic kidney disease than albu-
minuria. Adding the proteomic score to albuminuria, our 
currently best predictor of kidney prognosis, improved 
detection of patients with rapid progression substantially. 
Reduced urinary excretion of collagen fragments types I–
III was among the most important contributors to these 
findings.

More than 150 articles have been published on urinary 
proteomics and the kidney over the last 10 years, a sub-
stantial proportion being review articles. Initial studies 

Table 2  Risk reclassification when adding urine proteomic 
score to  albuminuria for  predicting risk of  rapid kidney 
function decline

Predicted risk for having rapid kidney 
function decline

0–9% 10–49% 50–100% Total (%)

Subjects with rapid kidney function decline

 Model with albuminuria 0.0% 38.5% 61.6% 100.0

 Model with albuminuria +  
proteomics

7.7 15.4 76.9 100.0

Subjects without rapid kidney function decline

 Model with albuminuria 0.0 90.9 9.1 100.0

 Model with albuminuria +  
proteomics

68.2 22.7 9.1 100.0

Table 3  Amplitudes of most important urinary protein by clinical diagnosis

HN Hypertensive nephropathy, GN Glomerulonephritis, DN Diabetic nephropathy.

Peptide information SwissProt name Mean amplitude Fold changes

Peptide name Control HN GN + DN Others Control HN GN + DN Others

Alpha-1-antitrypsin A1AT_HUMAN 39 11,031 21,119 21,236 1 282.5 540.9 543.9

Serum albumin ALBU_HUMAN 0 23,348 78,627 13,663

Apolipoprotein A-I APOA1_HUMAN 47 127,871 110,906 38,500 1 2,713.9 2,353.8 817.1

Na/K-transp. ATPase gamma chain ATNG_HUMAN 1,984 396 322 450 1 0.2 0.2 0.2

Beta-2-microglobulin B2MG_HUMAN 0 239,173 677,860 207,089

CD99 antigen CD99_HUMAN 1,357 0 28 129 1 0.0 0.0 0.1

Collagen alpha-1 (I) chain CO1A1_HUMAN 3,078 1,533 1,123 2,455 1 0.5 0.4 0.8

Collagen alpha-1 (II) chain CO2A1_HUMAN 3,190 1,344 500 1,367 1 0.4 0.2 0.4

Collagen alpha-1 (III) chain CO3A1_HUMAN 2,338 1,064 717 1,246 1 0.5 0.3 0.5

Alpha-2-HS-glycoprotein FETUA_HUMAN 43 12,128 14,441 6,950 1 283.7 337.8 162.5

Fibrinogen alpha chain FIBA_HUMAN 965 14,993 2,308 6,477 1 15.5 2.4 6.7

Osteopontin OSTP_HUMAN 410 0 0 39 1 0.0 0.0 0.1

Membrane associated progesterone 
receptor component 1

PGRC1_HUMAN 536 1,017 8 502 1 1.9 0.0 0.9

Polymeric-immunoglobulin receptor PIGR_HUMAN 1,624 583 584 740 1 0.4 0.4 0.5

Transthyretin (Prealbumin) TTHY_HUMAN 15 22,299 53,034 22,292 1 1,471.6 3,499.9 1,471.2

Uromodulin UROM_HUMAN 2,525 89 136 176 1 0.0 0.1 0.1

Neurosecretory protein VGF VGF_HUMAN 1,770 9,796 6,140 5,644 1 5.5 3.5 3.2
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focused on acute kidney failure [15], transplantation 
rejection [12], renal carcinoma [11], obstructive nephrop-
athy [16], and glomerulonephritis [17, 18]. Different bio-
markers and panels of biomarkers have demonstrated 
sensitivities and specificities ranging 0.45–0.98. How-
ever, many studies have been based on small numbers, 
there has been a lack of relevant clinical information, and 
results have been difficult to reproduce due to difficul-
ties and variations in analytical techniques and sample 
preparation. Furthermore, many studies have so far been 
carried out in settings with little clinical relevance, e.g. 
the patients had already been properly diagnosed with a 
simpler and cheaper test (s-creatinine, u-dipstick, ultra-
sound, etc.). Urinary proteomic tests have therefore not 
come into clinical practice.

However, more recently Good et  al. studied chronic 
kidney disease with capillary electrophoresis coupled to 
mass spectrometry (CE-MS) [10]. They found a very high 
diagnostic accuracy (area-under-ROC-curve 0.955) when 
testing 379 healthy subjects versus 230 CKD patients 
(the majority having glomerulonephritis and diabetes 
nephropathy). CE-MS has emerged as a promising tech-
nique with stable and reproducible results over time and 
in different cohorts [17, 19–21]. Our study also find a 

similarly high diagnostic accuracy (AUC 0.977), and we 
extend the results to patients with hypertensive nephrop-
athy. This is, as far as we know, the first report on urinary 
proteomics for diagnostics in the large and increas-
ing group of patients with CKD caused by hypertensive 
nephropathy.

A central question is whether urinary proteomics can 
improve clinical handling of patients beyond what is pos-
sible with current diagnostic tests. CE-MS based urinary 
proteomics was recently found to have better ability 
to predict which patients with diabetes mellitus would 
progress to diabetes nephropathy over the next 5  years 
compared to microalbuminuria testing (areas under 
ROC curves 0.93 and 0.67, respectively) [22]. Using the 
same analytical methods, we found that urine proteom-
ics testing in combination with albuminuria was able to 
classify rapid progressors versus slow progressors sig-
nificantly better than albuminuria alone. We found that 
urine proteomics contributed important additional 
information, i.e. it increased the area under ROC curve 
at the magnitude of 0.15 beyond what was achieved with 
albuminuria. Typically even major risk factors like HDL 
cholesterol provide only marginal additional value when 
evaluated with ROC (delta AUC 0.01) [23]. Furthermore, 

Table 4  Specific urinary proteins listed by association and diagnostic accuracy for CKD and rapid kidney function decline

Protein names and number of specific peptides detected from this protein are given. Data are given only for the best peptide per protein. Odds ratios are based on 
unadjusted logistic regression analysis. Peptides with p values <0.10 or with special interest (albumin) were included. Data show p value and odds ratio for outcome 
associated with one standard deviation change of protein to improve comparability (logistic regression analysis; OR StdX could not be calculated for all associations). 
Area under the ROC curve is also given. The separate rankings for CKD diagnosis and rapid kidney function decline (>4 ml/min/1.73 m2 per year) represent the mean 
ranks for p values, standardized OR and ROC.

n.s. not significant.

Protein Detected 
peptides

CKD diagnosis Rapid kidney function decline

P value OR (StdX) ROC Rank P value OR (StdX) ROC Rank

Collagen alpha-1 (I) chain 33 0.002 0.03 0.941 1 0.004 0.101 0.853 3

CD99 antigen 1 0.004 0.001 0.918 2 0.028 0.008 0.832 5

Uromodulin 3 0.007 0.001 0.98 3 0.019 0.025 0.846 4

Sodium/potassium-transporting ATPase gamma chain 1 0.002 0.032 0.954 4 0.016 0.002 0.93 2

Collagen alpha-1 (II) chain 1 0.002 0.04 0.948 5 0.001 0.063 0.93 1

Collagen alpha-1 (III) chain 15 0.002 0.112 0.882 6 0.013 0.195 0.837 6

Neurosecretory protein VGF 1 0.008 37 0.876 7 0.017 4.58 0.825 7

Osteopontin 2 0.016 0.018 0.863 8 0.99 0.5 18

Collagen alpha-2 (I) chain 4 0.012 0.172 0.848 9 0.069 0.35 0.724 13

Transthyretin (Prealbumin) 2 0.086 n.s. 0.892 10 0.062 5.51 0.82 11

Beta-2-microglobulin 1 0.065 n.s. 0.859 11 0.358 1.39 0.811 17

Alpha-2-HS-glycoprotein 2 0.05 n.s. 0.84 12 0.07 2.33 0.86 12

Alpha-1-antitrypsin 3 0.168 n.s. 0.871 13 0.047 11.11 0.811 10

Polymeric-immunoglobulin receptor 1 0.02 0.337 0.77 14 0.097 0.48 0.706 16

Apolipoprotein A-I 1 0.172 n.s. 0.85 15 0.047 9.45 0.822 9

Membrane associated progesterone receptor  
component 1

1 0.056 0.441 0.801 16 0.103 0.429 0.731 14

Albumin 1 0.397 n.s. 0.845 17 0.17 1.77 0.745 15

Fibrinogen alpha chain 2 0.156 n.s. 0.722 18 0.03 9 0.822 8
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a large proportion of the big group of slowly progress-
ing patients having been assigned an intermediate risk of 
progression were reclassified to the low risk group. Such 
reduction of the number of false positive cases is impor-
tant in a potential CKD screening setting. Although we 
had a few more false negative cases, a stronger increase 
of true positive cases was seen, and the reclassification 
lead to an overall improvement of benefit versus risk. 
Finally, previous studies have used a proteomics score of 
0.323 as cut-off for diagnosing CKD [10], but our study 
showed that the risk for accelerated kidney function loss 
starts with scores above 0.0.

Excessive accumulation of extracellular matrix and 
subsequent fibrosis is a general pathophysiological mech-
anism involved in many if not all types of progressive 
kidney disease. If the triggering event is not cleared, epi-
thelial tubular cells will transition to a more mesenchy-
mal like cell type starting a chronic interstitial process 
with increased production of collagen type 1 and type 
III [24]. Both experimental and human studies have sug-
gested an initial phase with increased extracellular matrix 
production followed by an imbalance between colla-
gen degradation enzymes (matrix-metallo-proteinases, 
MMPs) and their tissue inhibitors (tissue inhibitors of 
metalloproteinases, TIMPs) leading to reduced degra-
dation, favoring the development of tubulointerstitial 
fibrosis [24, 25]. Previous studies have found correlations 
between increased urine levels of procollagen III, which 
probably is a marker of increased production of collagen, 
and the extent of interstitial fibrosis [26]. This is not nec-
essarily in opposition to our findings in the urine from 
rapid CKD progressors of reduced amounts of collagen 
types I–III fragments, which more likely is a marker of 
reduced collagen breakdown, rather than of increased 
collagen production. Reduced urinary collagen has 
been found consistently in CKD patients using the same 
CE-MS technology as in our study [10, 19–21]. Lower 
levels of urinary MMP activity has also been found in 
progressive compared to stable patients with diabetes 
nephropathy [27]. Potentially this could be useful for the 
development of future CKD biomarkers of rapid progres-
sion, and our data indicate that this could hold for hyper-
tensive nephropathy patients as well. However, there has 
been conflicting reports on this complex topic [28], and 
influence of CKD-bone-mineral-disorder has also been 
proposed.

Several other urinary protein findings in our study also 
support on-going interstitial inflammation, fibrosis and 
tubular damage with similar results across CKD diag-
nosis, including hypertensive nephropathy. Uromodu-
lin is exclusively produced in tubular cells in the thick 
ascending limb of Henle’s loop and increasingly found to 
be associated with kidney disease [29]. Low urine levels 

are associated with rapid progression of CKD and have 
been found in cases with tubular atrophy and fibrosis [30, 
31] CD99 antigen is expressed in most tissues, includ-
ing the kidney, and it is important for the ability of leu-
cocytes to extravasate into the interstitium as part of the 
inflammatory process [32]. Low urine levels have been 
associated with kidney disease in other cohorts also, but 
the pathophysiological reason for this is unclear. Osteo-
pontin, which is excreted when cells in the distal tubules 
are stressed [33], was also reduced in urine from CKD 
patients. Osteopontin is involved in remodelling of the 
extracellular matrix and inhibition of apoptosis [34]. Sim-
ilar findings have been reported from IgA patients, while 
patients with membranous glomerulonephritis and mini-
mal change nephropathy who typically have minor tubu-
lar and interstitial damage were reported to have normal 
urine levels [35]. Several of the proteins found in excess 
in our CKD urine samples are normally reabsorbed in 
the proximal tubules. Our findings are therefore in line 
with previous reports and strongly indicate the presence 
of interstitial and tubular damage in most types of CKD, 
including non-biopsy verified hypertensive nephropathy. 
Such patients have often been claimed to only have nor-
mal age related reduction of GFR, but at least when eGFR 
is below 30  ml/min/1.73  m2 they seem to be suffering 
from the common pathophysiological pathway found in 
most types of progressing CKD.

The current study has some limitations. First, the 
number of participants was rather low, which could 
lead to loss of precision and risk of type 2 errors. Sec-
ond, we compared patients with rather advanced CKD 
stages with healthy subjects, so the differences between 
the groups were presumably large. Also, we measured 
albuminuria by dipstick, which is less precise than uri-
nary albumin/creatinine ratio. However, the association 
of the dipstick test with both mortality, cardiovascular 
morbidity and CKD progression has been well validated 
in large international studies [36]. Also, modern dip-
sticks have a very high diagnostic accuracy for macroal-
buminuria (area-under-ROC-curve 0.99) [37], which 
is often the range of interest for predicting progression 
rate in clinical practice. Also, the ideal measure of GFR 
decline would be strictly prospective, i.e. after inclu-
sion. However, long observation time with several cre-
atinine measurements provides a more robust measure 
of GFR decline, and additional sensitivity analysis based 
on GFR decline after baseline, albeit with fewer sub-
jects and measurements due to deaths and start of renal 
replacement therapy, gave similar results (adding the 
urine proteomics score to dipstick testing increased the 
area under the ROC curve from 0.91 to 0.97). One of the 
strengths of this study is that it was based on a clinically 
relevant and well described patient cohort. The CE-MS 
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method for urine proteomic analysis has high sensitivity 
and reproducibility [38]. It is also insensitive to interfer-
ing compounds and enables measurement of the relative 
abundance of the peptides using internal standards (i.e. 
semi-quantitative measurements with very low coeffi-
cients of variation combined with a large human urinary 
peptidome database enabling identification of significant 
changes in biomarkers).

In conclusion, a panel of urinary proteins was able to 
accurately diagnose CKD, and in combination with albu-
minuria was significantly better to detect patients with 
rapid kidney function decline than albuminuria alone. 
Reduced urine levels of collagen types I and III, uro-
modulin, CD99 antigen and osteopontin, all implicated 
in fibrosis-promoting processes such as extracellular 
matrix deposition, inflammation and reduced collagen 
breakdown, were found in our CKD patients. Urine prot-
eomics performed equally well in patients with hyperten-
sive nephropathy as in patients with other CKD causes. 
Further studies with prospective designs using this new 
potentially useful tool are highly required.

Methods
We included consecutive CKD patients with eGFR below 
30 ml/min/1.73 m2 not yet on renal replacement therapy 
(RRT), from the outpatient clinic at St Olav’s Hospi-
tal, Trondheim, Norway, in December 2009–February 
2010. A convenient sample of healthy persons working 
in our department not taking any medication and with 
no history of CKD, cardiovascular disease or diabetes, 
was included as controls. Age, sex, CKD diagnosis, and 
blood pressure were recorded in all participants. Blood 
was drawn for standard evaluation of kidney function. 
A second morning urine sample was tested with a dip-
stick, and then immediately frozen to −20 and thereafter 
to −80°C within 24 h. Creatinine measurements available 
prior to inclusion and over a 2.5 years follow-up period 
were recorded in order to calculate eGFR decline per 
year using the CKD-EPI equation [39]. Individual linear 
regression analyses of eGFR decline were performed to 
compare kidney function decline before and after inclu-
sion. Blood pressure was measured as the average of the 
last two out of three measurements at inclusion.

Urine samples were prepared as previously discussed 
[10]. Briefly, after dilution with urea, ammoniumhy-
droxyde, and sodium dodecyl sulfate, the 0.7-ml aliquots 
of urine were ultrafiltered in order to remove proteins of 
higher molecular mass (>20  kDa), desalted, lyophilized, 
and stored at −20°C. The samples were resuspended in 
HPLC grade water shortly before capillary electropho-
resis/mass spectrometry analysis. CE-MS analysis was 
performed with a P/ACE MDQ capillary electrophoresis 
system (Beckman Coulter, Brea, CA, USA) coupled on 

line to a micro-TOF–MS instrument (Bruker Daltonics, 
Bremen, Germany) [40].

For data processing, mass spectral ion peaks represent-
ing identical molecules at different charge states were 
deconvoluted into single masses using Mosaiques Visu 
software [41]. For normalization of analytical and urine 
dilution variances, MS signal intensities were normalized 
relative to 29 internal standard peptides generally pre-
sent in at least 90% of all urine samples with small rela-
tive standard deviation. For calibration, linear regression 
was performed. All detected peptides were deposited, 
matched, and annotated in a Microsoft SQL database 
(Microsoft, California).

Previous CE-MS measurements of urine samples have 
resulted in a maximum of 5,010 distinct peptides, which 
describes the human urinary low molecular-weight 
proteome [42]. The CKD273-classifier is a support vec-
tor machine (SVM)-based classification model [43–45], 
which allows the classification of samples in the high 
dimensional parameter space using MosaCluster soft-
ware (version 1.7.0) [46]. Applying the CKD273-classifier 
to CE-MS data of unknown samples, MosaCluster cal-
culated classification scores, based on the amplitudes of 
the 273 CKD biomarker peptides. Classification was per-
formed by determining the Euclidian distance (defined 
as the SVM classification score) of the 273-dimensional 
vector to a 272-dimensional maximal margin hyper-
plane, which was defined previously [10]. The cut-off of 
the classification score was previously determined from 
the result of the biomarker discovery cohort in Good 
et al. [10]. Patients with urine samples who had classifi-
cation scores exceeding 0.343 were classified as CKD273 
classifier positive cases and patients with urine samples 
scoring below 0.343 were classified as CKD273-classi-
fier controls [10]. Quantitative differences of individual 
proteins between cases (glomerulonephritis/diabetes 
nephropathy, hypertensive nephropathy, or other CKD 
diagnosis) and control subjects were calculated. Statisti-
cal significance was assumed at unadjusted p < 0.05 with 
the Wilcox test. All data were calibrated and annotated to 
the Mosaiques human urinary database [47].

Statistical analysis were done using Stata 13.1 software 
(StataCorp, TX, USA). Decline in kidney function over 
time was compared with linear regression analysis. Mean 
proteomic score in different groups were compared with 
two-sample t test. Stata function “roccomp” was used to 
test for ROC area equality of logistic regression based 
models (e.g. base model including albuminuria versus 
enhanced model including albuminuria plus proteomic 
score). We also used the Stata function “incrisk” from 
Longton and Pepe, which is a collection of performance 
improvement measures comparing a base model versus 
an enhanced model. Significance testing is difficult in 
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risk reclassification, but these are useful for demonstrat-
ing how different risk prediction models changes the risk 
estimates in subjects with and without the outcome [48]. 
Predicted risk for rapid kidney function decline below 
10% were defined as low, risk above 50% as high, and 
10–50% as intermediate.

The study was approved by the Regional Committee 
for Medical and Research Ethics. It was carried out in 
accordance with the Declaration of Helsinki. All partici-
pants gave written consent.
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