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Abstract 

Background:  Renal oncocytomas (ROs) are benign epithelial tumors of the kidney whereas chromophobe renal cell 
carcinoma (chRCCs) are malignant renal tumors. The latter constitute 5–7% of renal neoplasias. ROs and chRCCs show 
pronounced molecular and histological similarities, which renders their differentiation demanding. We aimed for the 
differential proteome profiling of ROs and early-stage chRCCs in order to better understand distinguishing protein 
patterns.

Methods:  We employed formalin-fixed, paraffin-embedded samples (six RO cases, six chRCC cases) together with 
isotopic triplex dimethylation and a pooled reference standard to enable cohort-wide quantitative comparison. For 
lysosomal-associated membrane protein 1 (LAMP1) and integrin alpha-V (ITGAV) we performed corroborative immu-
nohistochemistry (IHC) in an extended cohort of 42 RO cases and 31 chRCC cases.

Results:  At 1% false discovery rate, we identified > 3900 proteins, of which > 2400 proteins were consistently quanti-
fied in at least four RO and four chRCC cases. The proteomic expression profiling discriminated ROs and chRCCs and 
highlighted established features such as accumulation of mitochondrial proteins in ROs together with emphasizing 
the accumulation of endo-lysosomal proteins in chRCCs. In line with the proteomic data, IHC showed enrichment of 
LAMP1 in chRCC and of ITGAV in RO.

Conclusion:  We present one of the first differential proteome profiling studies on ROs and chRCCs and highlight dif-
ferential abundance of LAMP1 and ITGAV in these renal tumors.
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Background
Chromophobe renal cell carcinoma (chRCC) consti-
tute 5–7% of renal neoplasias [1]. ChRCC are thought 
to originate from cell of the distal nephron [2]. Their 

overall prognosis is more favourable than for renal 
clear cell carcinomas with a 5-year survival rate 
of > 75% [1, 3]. However, this is still a malignant tumor 
entity with the potential for recurrence or metastatic 
spread. Renal oncocytomas (ROs) are benign epithelial 
tumors of the kidney. They constitute up to 7% of all 
adult renal tumors [4]. ROs have been first described 
as late as 1942 [5] and clinical reports have remained 
scarce until the 1970s [6]. Differentiation between RO 
and chRCC in pathological routine practice is often 
considered challenging [4, 7]. This is because of strong 
similarities in morphology, growth pattern and locali-
zation of benign ROs and malignant chRCCs. For this 
reason, distinguishing biomarkers are actively being 
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researched. In this context, system-wide, omics-type 
expression profiling studies are emerging as a strong 
and unbiased approach. Several of such expression 
studies aimed at a comprehensive differential profiling 
of various renal cell tumors, also including clear cell 
renal cell carcinoma (ccRCCs) or papillary renal cell 
carcinoma. Often, such studies involved only low num-
bers of RO and chRCC cases and aimed at their col-
lective distinction from other renal cell tumors rather 
than molecularly distinguishing ROs and chRCCs.

Yusenko et  al. probed genome alterations and DNA 
copy number variants to specifically differentiate ROs 
and chRCCs. They identified several genomic altera-
tions that differ between chRCCs and ROs [8]. A sec-
ond genomic study identified differing chromosomal 
abnormalities with regard to chromosome 19 in ROs 
or chRCCs [9]. The resulting gene expression effects 
affected oxygen sensing. This is an intriguing parallel 
to ccRCCs which frequently carry somatic, inactivat-
ing mutations of the Von Hippel-Lindau gene, ulti-
mately leading to the expression of hypoxia-related 
genes and promotion of tumorigenesis [10]. On the 
genomic level, Joshi et  al. [11] distinguish two types 
of ROs and link chromosomal abnormalities involv-
ing chromosome 1, X or Y, and/or 14 and 21 with the 
potential for progression from RO to chRCC. Rohan 
et  al. [12] performed a global transcriptomic profil-
ing of ROs and chRCCs. Major expression differences 
were found with regard to transcript encoding pro-
teins involved in vesicular transport and cell junction. 
On the protein level, multiple protein biomarkers have 
been suggested (reviewed in [4]) but to date there has 
not been an unbiased, differential proteomic profiling 
of ROs and chRCCs. However, proteomic profiling is 
gaining interest for the investigation of malignancies 
due to the limited correlation between mRNA and pro-
tein levels [13, 14]. Formalin-fixed, paraffin-embedded 
(FFPE) samples are a valuable resource for proteomic 
profiling [15–17], enabling retrospective profiling of 
clinic-pathologically annotated specimens [18, 19]. In 
the present study, we employed “FFPE proteomics” for 
the differential proteomic profiling of RO and chRCC 
cases for which we find noticeable differences. In a 
larger cohort comprising > 70 RO and chRCC cases, we 
corroborate elevated presence of lysosomal-associated 
membrane protein 1 in chRCCs and elevated presence 
of integrin alpha-V in ROs.

Methods
Ethics statement
The study was approved by the Ethics Committee of the 
University Medical Center Freiburg (311/12). Before 
study inclusion, all patient data were anonymized.

Histopathological diagnosis for renal oncocytoma 
or chromophobe renal cell carcinoma
The diagnosis for all RO or chRCC cases used in this 
study was based on histopathologic parameters (cyto-
plasm, cell membrane, perinuclear halo, tumor border 
and septae) and corroborated by immunohistochemis-
try (IHC) for CD117, cytokeratin-7, and vimentin. These 
IHC stainings were part of the routine immunohisto-
pathological diagnosis with the corresponding antibod-
ies being supplied by Dako (Hamburg, Germany). We 
focused on chRCC cases that displayed diffuse-membra-
nous expression of cytokeratin-7 whereas its expression 
was largely absent in the RO cases [1, 7]. Moreover, the 
RO and chRCC cases displayed membranous expres-
sion of CD117 [7]. Finally, the RO and chRCC cases were 
vimentin-negative [1].

Tissue collection, sample preparation, liquid 
chromatography‑tandem mass spectrometry (LC–MS/MS), 
and data analysis
FFPE tissue specimens of six ROs and six chRCCs were 
used as described previously [15, 19], including micro-
scopically controlled macrodissection to remove areas 
of necrosis, fibrosis, hemorrhage, and inflammation. For 
quantitative comparison, triplex isotopic dimethylation 
of primary amines was employed [20], distinguishing 
RO, chRCC, and a pooled mix that serves as a standard 
similar to the Super-SILAC approach [21]. Samples were 
further fractionated by strong cation exchange chroma-
tography as described [22]. LC–MS/MS was performed 
using a Q-Exactive plus (Thermo Scientific) mass spec-
trometer coupled to an Easy nanoLC 1000 (Thermo 
Scientific) as described previously [18]. MS data were 
analyzed by MaxQuant version 1.5.28 [23] as described 
previously [19]. Proteins were only further considered 
if they were identified and quantified in at least four 
RO samples and four chRCC samples. Due to this strict 
requirement, we also included proteins that were identi-
fied and quantified by single peptides in individual sam-
ples. Files obtained by MaxQuant were further processed 
using RStudio v.0.99.446 (R Foundation for Statistical 
Computing, Vienna, Austria) as previously described 
[24]. Reverse and potential contaminants entries were 
removed. Ratios were log2 transformed, normalized by 
centering, and a linear model was fitted using the limma 
package [25].

Immunohistochemical analysis
IHC analysis was performed with an extended patient 
cohort, comprising 42 RO cases and 31 chRCC cases. 
IHC was performed for lysosomal-associated membrane 
protein 1 (LAMP1) and integrin alpha-V (ITGAV). Slices 
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of 2  µm thickness from FFPE tissue samples were pre-
pared using a Leica RM2255 microtome. Heat induced 
antigen retrieval was performed at pH 9.0. Primary 
antibodies were rabbit polyclonal to LAMP1 (Abcam, 
ab24170, stock concentration 1.0 mg/ml) or rabbit mon-
oclonal to ITGAV (Abcam, EPR16800, stock concentra-
tion 1.0 mg/ml). For incubation, primary antibodies were 
diluted in Zytomed dilution buffer (ZUC025-500; 1:300 
for the LAMP1 antibody, 1:7000 for the ITGAV anti-
body). Incubation time was 60  min. Visualization was 
performed using DAKO Envision Flex+, Mouse, high 
pH (Link) Detecting System (K800221-2). Sections were 
counterstained with hematoxylin for 1  min, dehydrated 
in an ascending alcohol concentration and covered with 
xylol and coverslipping film (Tissue-TekR 4770). For eval-
uation, two experienced pathologists reviewed LAMP1 
and ITGAV expression in RO or chRCC tumor cells using 
a semi-quantitative scoring system covering absence of 
signal (score 0), weak detection (score 1), medium detec-
tion (score 2), and strong detection (score 3). For every 
sample, the fractional area of the different detection lev-
els (scores 0–3) was determined and reported as percent-
age of the total tumor area under investigation.

Results and discussion
Experimental set‑up
We aimed for a differential, quantitative proteome char-
acterization of RO and chRCC using FFPE samples for 
which we have shown amenability to quantitative prot-
eomic analysis using isotope-coded dimethylation [15]. 
Our cohort for the proteomic analysis comprised 12 
cases; six RO and six chRCC. In order to enable cohort-
wide comparison, we also included a pooled sample 
(comprised of RO and chRCC tissue) as a spike-in refer-
ence standard against which every other sample can be 
compared. This set-up is reminiscent of the Super-SILAC 
technique, in which metabolically labelled proteomes 
serve as spike-in reference standard [21]. A triplex labe-
ling scheme was employed (Fig. 1a, actual labeling setup 
in Additional file 1: Table S1). In a second cohort (42 RO 
cases; 31 chRCC cases) we employed immunohistochem-
istry to probe the expression of LAMP1 and ITGAV. 
Since the benign oncocytomas are very rarely invasive 
(which constitutes their benign nature), we focused on 
chRCC cases for which tumor growth was still confined 

to the kidney (T1 or T2). An overview of the patient 
characteristics is provided in Table 1. 

Proteome profiling of RO and chRCC​
LC–MS/MS analysis enabled the identification (at a false 
discovery rate < 1%) of > 3900 proteins. Of these, > 2400 
proteins were identified and quantified in at least four RO 
and four chRCC cases. Within this “core proteome”, each 
case allowed for the identification and quantification of 
a comparable number of proteins (Fig. 1b). Likewise, the 
protein quantitation profiles (log-transformed sample/
standard ratios) are similar (Fig.  1b). We conclude that 
proteome coverage and—quantitation allows for the 
comparison of the RO and chRCC proteome profiles. 
We employed partial least squares discriminant analy-
sis (PLS-DA) as an initial step to probe whether RO and 
chRCC display distinguishable proteome profiles. Super-
vised PLS-DA of the proteomic dataset (Fig.  1c) clearly 
separates RO and chRCC in an unbiased manner, thus 
corroborating their initial distinction. Noteworthy, RO 
and chRCC were primarily distinguished by histopatho-
logical parameters and cytokeratin-7 IHC as part of rou-
tine diagnosis. Further approaches such as S100A1 IHC 
or Hale colloidal iron staining [7] have not been routinely 
employed, which however is not meant to question their 
discriminatory power.

Quantitative proteome differences and distinct proteome 
motifs of RO and chRCC​
To identify proteins that are significantly enriched in 
either RO or chRCC (as compared to the pooled stand-
ard), we employed a linear model as implemented in 
the limma statistical package [26], which is particularly 
powerful with regard to multiple testing correction and 
prevention of false-positive discoveries in the analysis 
of omics-style data. We consider proteins with a limma 
moderated p value < 0.01 and protein identification 
based on at least three peptide-spectrum-matches to be 
significantly enriched in either RO or chRCC (as com-
pared to the pooled standard). These criteria resulted in 
51 proteins being significantly enriched in RO tissue and 
59 proteins being significantly enriched in chRCC tis-
sue (Tables 2 and 3). The corresponding volcano plot is 
visualized in Fig.  2a; all limma moderated p-values and 
average log2 ratios are listed in Additional file 2: Table S2. 

(See figure on next page.)
Fig. 1  a Samples of chRCC tissue or RO tissue were collected from FFPE specimens and, post-trypsination, differentially labeled by isotopic, 
formaldehyde-based dimethylation. A differentially labeled, pooled reference standard was also included. b > 2400 proteins were identified 
(false-discovery rate < 1%) and quantified in at least four RO and four chRCC samples. Within this core proteome, each chRCC and RO case 
contributed a comparable number of protein identifications and quantitations. Also, the log-transformed sample/standard ratios were comparable 
for all cases. Whiskers extend to data points that are less than 1.5 × IQR away from 1st/3rd quartile. c Supervised partial least squares discriminant 
analysis separates the RO and chRCC proteome profiles
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In line with earlier reports [1, 7] and our IHC-assisted 
confirmation of RO or chRCC diagnosis, there was sig-
nificant enrichment of cytokeratin-7 in the chRCC cases 
(p ≪ 0.01).

In order to classify the differentially regulated proteins 
in RO or chRCC tissue, we performed a gene ontology 
(GO) enrichment analysis, with a focus on the “cellular 
compartment” annotation [27, 28]. We chose the TopGO 
algorithm to minimize GO term redundancy [29–31]. 
For RO tissue, this analysis points towards an enrichment 
of mitochondrial proteins whereas lysosomal proteins 
appear to be enriched in chRCC tissue (Fig.  2b). High 
abundance of—potentially respiration-defective—mito-
chondria has been previously named as a distinguishing 
feature of renal oncocytomas [11, 32, 33]. Likewise lyso-
somal defects have been identified as a hallmark of ROs 
[11]. Likewise, an under-representation of endocytotic 
proteins in ROs has been reported [12] and the presence 
of vesicular proteins of the tetraspanin family has been 
proposed as a chRCC marker [8]. We conclude that our 
proteome profiling reflects hallmark features of ROs and 
chRCCs.

Differential expression of LAMP1 in renal oncocytomas 
and chromophobe renal cell carcinoma
Lysosomal defects have been reported for ROs [34] but 
lysosomal marker proteins have not yet been used to 
distinguish ROs and chRCCs by IHC. In our proteomic 
dataset, we noticed significant enrichment of lysosome-
associated membrane proteins (LAMPs) 1– 3 in chRCC 
(Table  3). Of these, we chose LAMP1 for IHC analy-
sis in an extended cohort comprising 42 RO cases and 
31 chRCC cases. Although LAMP-2 and -3 were even 
stronger enriched in chRCCs, we opted for LAMP-1 
since we had previously probed LAMP-1 as a prototypical 
marker of lysosomal biology [35, 36]. Exemplary stainings 
are shown in Fig. 3a. In the RO cases, we noticed elevated 
levels of tumor cells with a heterogenous distribution of 
LAMP1, comprising single or multiple LAMP-1 clusters 
with focal or apical localization. In contrast, LAMP1 
within chRCC tumor cells was often present in a diffuse 
cytosolic manner (Fig.  3a, b). Similarly different stain-
ing patterns (diffuse in chRCC; apical/polar in RO) have 
been previously reported for the related protein LAMP-3 
(referred to as CD63 in the study) [4, 37]. In addition to 

Table 1  Patient characteristics

a  If simulatenous tumors were present, only one tumor per patient was used for the analyses

Proteomics Immunohistochemistry (no overlap with cases 
used for proteomic analysis)

Renal oncocytomas Chromophobe renal cell 
carcinomas

Renal oncocytomas Chromophobe 
renal cell 
carcinomas

N 6 6 42 31

Tumor size/T classification

 ≤ 4 cm/1a 5 4 25 21

 ≤ 7 cm/1b 1 2 15 6

 ≤ 10 cm/2a 0 0 1 3

 > 10 cm/2b 0 0 1 1

Number of simultaneous tumorsa

 1 6 6 38 31

 2 0 0 3 0

 6 0 0 1 0

Affected kidney

 Left 1 2 21 16

 Right 4 3 19 12

 Not documented 1 1 2 3

Gender

 Male 3 3 24 15

 Female 3 3 18 16

Age

 Average 66 56 64 60

 Range 57–80 42–74 42–88 34–83
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Table 2  Proteins found to be significantly enriched in RO

Average 
log2 (RO/
standard)

Average 
log2 (chRCC/
standard)

p-value 
(limma 
moderated)

Uniprot ID Protein names

1.09 − 0.57 0.00 P06756 Integrin alpha-V (Vitronectin receptor) (Vitronectin receptor subunit alpha) (CD anti-
gen CD51) [Cleaved into: Integrin alpha-V heavy chain; Integrin alpha-V light chain]

0.35 − 1.21 0.00 Q9H9J2 39S ribosomal protein L44, mitochondrial (L44mt) (MRP-L44) (EC 3.1.26.-) (Mitochon-
drial large ribosomal subunit protein mL44)

0.46 − 0.87 0.00 O15382 Branched-chain-amino-acid aminotransferase, mitochondrial (BCAT(m)) (EC 2.6.1.42) 
(Placental protein 18) (PP18)

0.38 − 1.28 0.00 P51398 28S ribosomal protein S29, mitochondrial (MRP-S29) (S29mt) (Death-associated 
protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) (Mitochondrial 
small ribosomal subunit protein mS29)

0.40 − 1.38 0.00 P16219 Short-chain specific acyl-CoA dehydrogenase, mitochondrial (SCAD) (EC 1.3.8.1) 
(Butyryl-CoA dehydrogenase)

0.42 − 1.17 0.00 Q6PI48 Aspartate–tRNA ligase, mitochondrial (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS)

0.50 − 0.66 0.00 Q9BYD6 39S ribosomal protein L1, mitochondrial (L1 mt) (MRP-L1) (Mitochondrial large ribo-
somal subunit protein uL1m)

0.36 − 1.11 0.00 P30048 Thioredoxin-dependent peroxide reductase, mitochondrial (EC 1.11.1.15) (Antioxidant 
protein 1) (AOP-1) (HBC189) (Peroxiredoxin III) (Prx-III) (Peroxiredoxin-3) (Protein 
MER5 homolog)

0.33 − 0.96 0.00 P50897 Palmitoyl-protein thioesterase 1 (PPT-1) (EC 3.1.2.22) (Palmitoyl-protein hydrolase 1)

0.33 − 0.79 0.00 Q96GK7 Fumarylacetoacetate hydrolase domain-containing protein 2A (EC 3.-.-.-)

0.04 − 1.53 0.00 P55084 Trifunctional enzyme subunit beta, mitochondrial (TP-beta) [Includes: 3-ketoacyl-CoA 
thiolase (EC 2.3.1.16) (Acetyl-CoA acyltransferase) (Beta-ketothiolase)]

0.40 − 1.02 0.00 Q96EL3 39S ribosomal protein L53, mitochondrial (L53mt) (MRP-L53) (Mitochondrial large 
ribosomal subunit protein mL53)

0.47 − 1.06 0.00 Q96PE7 Methylmalonyl-CoA epimerase, mitochondrial (EC 5.1.99.1) (DL-methylmalonyl-CoA 
racemase)

0.04 − 1.79 0.00 Q8TCS8 Polyribonucleotide nucleotidyltransferase 1, mitochondrial (EC 2.7.7.8) (3′–5′ RNA 
exonuclease OLD35) (PNPase old-35) (Polynucleotide phosphorylase 1) (PNPase 1) 
(Polynucleotide phosphorylase-like protein)

0.97 − 0.93 0.00 Q96P44 Collagen alpha-1(XXI) chain

0.33 − 0.61 0.00 P08559 Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial 
(EC 1.2.4.1) (PDHE1-A type I)

0.47 − 0.83 0.00 Q8N5M1 ATP synthase mitochondrial F1 complex assembly factor 2 (ATP12 homolog)

0.23 − 1.01 0.00 Q8N0X4 Citramalyl-CoA lyase, mitochondrial (EC 4.1.3.25) (Beta-methylmalate synthase) (EC 
2.3.3.-) (Citrate lyase subunit beta-like protein) (Citrate lyase beta-like) (Malate 
synthase) (EC 2.3.3.9)

0.41 − 1.00 0.00 Q9HD33 39S ribosomal protein L47, mitochondrial (L47mt) (MRP-L47) (Mitochondrial large 
ribosomal subunit protein uL29 m) (Nasopharyngeal carcinoma metastasis-related 
protein 1)

0.47 − 1.00 0.00 Q16822 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial (PEPCK-M) (EC 4.1.1.32)

1.01 − 1.26 0.00 P02792 Ferritin light chain (Ferritin L subunit)

0.27 − 0.77 0.00 Q9UIJ7 GTP:AMP phosphotransferase AK3, mitochondrial (EC 2.7.4.10) (Adenylate kinase 3) 
(AK 3) (Adenylate kinase 3 alpha-like 1)

0.46 − 0.73 0.00 Q9NYK5 39S ribosomal protein L39, mitochondrial (L39mt) (MRP-L39) (39S ribosomal protein 
L5, mitochondrial) (L5mt) (MRP-L5) (Mitochondrial large ribosomal subunit protein 
mL39)

0.37 − 0.58 0.00 P11177 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial (PDHE1-B) (EC 
1.2.4.1)

0.18 − 1.13 0.00 Q9UFN0 Protein NipSnap homolog 3A (NipSnap3A) (Protein NipSnap homolog 4) (NipSnap4) 
(Target for Salmonella secreted protein C) (TassC)

0.36 − 0.89 0.00 P12694 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (EC 1.2.4.4) (Branched-
chain alpha-keto acid dehydrogenase E1 component alpha chain) (BCKDE1A) 
(BCKDH E1-alpha)

0.52 − 0.75 0.01 Q9Y3B7 39S ribosomal protein L11, mitochondrial (L11 mt) (MRP-L11) (Mitochondrial large 
ribosomal subunit protein uL11m)



Page 7 of 15Drendel et al. Clin Proteom  (2018) 15:25 

Table 2  (continued)

Average 
log2 (RO/
standard)

Average 
log2 (chRCC/
standard)

p-value 
(limma 
moderated)

Uniprot ID Protein names

0.33 − 0.72 0.01 Q8N490 Probable hydrolase PNKD (EC 3.-.-.-) (Myofibrillogenesis regulator 1) (MR-1) (Paroxys-
mal nonkinesiogenic dyskinesia protein) (Trans-activated by hepatitis C virus core 
protein 2)

0.54 − 1.05 0.01 P52815 39S ribosomal protein L12, mitochondrial (L12 mt) (MRP-L12) (5c5-2) (Mitochondrial 
large ribosomal subunit protein bL12m)

0.40 − 0.53 0.01 P26038 Moesin (Membrane-organizing extension spike protein)

0.67 − 0.64 0.01 Q9Y619 Mitochondrial ornithine transporter 1 (Solute carrier family 25 member 15)

0.22 − 1.21 0.01 P22033 Methylmalonyl-CoA mutase, mitochondrial (MCM) (EC 5.4.99.2) (Methylmalonyl-CoA 
isomerase)

0.60 − 0.76 0.01 P20674 Cytochrome c oxidase subunit 5A, mitochondrial (Cytochrome c oxidase polypeptide 
Va)

0.80 − 0.77 0.01 Q15111 Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung 
carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP)

0.40 − 0.40 0.01 P27348 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1)

0.29 − 0.76 0.01 Q5TEU4 Arginine-hydroxylase NDUFAF5, mitochondrial (EC 1.-.-.-) (NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex assembly factor 5) (Putative methyltransferase 
NDUFAF5) (EC 2.1.1.-)

0.01 − 1.47 0.01 P10809 60 kDa heat shock protein, mitochondrial (EC 3.6.4.9) (60 kDa chaperonin) (Chaper-
onin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (HuCHA60) (Mitochon-
drial matrix protein P1) (P60 lymphocyte protein)

0.62 − 1.18 0.01 Q96CU9 FAD-dependent oxidoreductase domain-containing protein 1 (EC 1.-.-.-)

0.46 − 1.01 0.01 P10606 Cytochrome c oxidase subunit 5B, mitochondrial (Cytochrome c oxidase polypeptide 
Vb)

0.33 − 0.77 0.01 P04179 Superoxide dismutase [Mn], mitochondrial (EC 1.15.1.1)

1.09 − 0.85 0.01 O14773 Tripeptidyl-peptidase 1 (TPP-1) (EC 3.4.14.9) (Cell growth-inhibiting gene 1 protein) 
(Lysosomal pepstatin-insensitive protease) (LPIC) (Tripeptidyl aminopeptidase) 
(Tripeptidyl-peptidase I) (TPP-I)

0.34 − 0.63 0.01 P21953 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial (EC 1.2.4.4) (Branched-
chain alpha-keto acid dehydrogenase E1 component beta chain) (BCKDE1B) 
(BCKDH E1-beta)

0.25 − 0.85 0.01 P03928 ATP synthase protein 8 (A6L) (F-ATPase subunit 8)

0.18 − 1.17 0.01 P30042 ES1 protein homolog, mitochondrial (Protein GT335) (Protein KNP-I)

0.44 − 0.90 0.01 P09001 39S ribosomal protein L3, mitochondrial (L3 mt) (MRP-L3) (Mitochondrial large ribo-
somal subunit protein uL3m)

0.80 − 0.55 0.01 Q15067 Peroxisomal acyl-coenzyme A oxidase 1 (AOX) (EC 1.3.3.6) (Palmitoyl-CoA oxidase) 
(Straight-chain acyl-CoA oxidase) (SCOX)

0.37 − 1.01 0.01 O75947 ATP synthase subunit d, mitochondrial (ATPase subunit d)

0.29 − 0.97 0.01 P82933 28S ribosomal protein S9, mitochondrial (MRP-S9) (S9 mt) (Mitochondrial small ribo-
somal subunit protein uS9m)

0.38 − 1.11 0.01 P09669 Cytochrome c oxidase subunit 6C (Cytochrome c oxidase polypeptide VIc)

0.38 − 1.11 0.01 Q3ZCW2 Galectin-related protein (Lectin galactoside-binding-like protein)

0.37 − 0.90 0.01 Q9Y3D9 28S ribosomal protein S23, mitochondrial (MRP-S23) (S23mt) (Mitochondrial small 
ribosomal subunit protein mS23)

1.09 − 0.57 0.00 P06756 Integrin alpha-V (Vitronectin receptor) (Vitronectin receptor subunit alpha) (CD anti-
gen CD51) [Cleaved into: Integrin alpha-V heavy chain; Integrin alpha-V light chain]

0.35 − 1.21 0.00 Q9H9J2 39S ribosomal protein L44, mitochondrial (L44mt) (MRP-L44) (EC 3.1.26.-) (Mitochon-
drial large ribosomal subunit protein mL44)

0.46 − 0.87 0.00 O15382 Branched-chain-amino-acid aminotransferase, mitochondrial (BCAT(m)) (EC 2.6.1.42) 
(Placental protein 18) (PP18)

0.38 − 1.28 0.00 P51398 28S ribosomal protein S29, mitochondrial (MRP-S29) (S29mt) (Death-associated 
protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) (Mitochondrial 
small ribosomal subunit protein mS29)

0.40 − 1.38 0.00 P16219 Short-chain specific acyl-CoA dehydrogenase, mitochondrial (SCAD) (EC 1.3.8.1) 
(Butyryl-CoA dehydrogenase)
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Table 2  (continued)

Average 
log2 (RO/
standard)

Average 
log2 (chRCC/
standard)

p-value 
(limma 
moderated)

Uniprot ID Protein names

0.42 − 1.17 0.00 Q6PI48 Aspartate–tRNA ligase, mitochondrial (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS)

0.50 − 0.66 0.00 Q9BYD6 39S ribosomal protein L1, mitochondrial (L1 mt) (MRP-L1) (Mitochondrial large ribo-
somal subunit protein uL1m)

Table 3  Proteins found to be significantly enriched in chRCC​

Average 
log2 (RO/
standard)

Average 
log2 (chRCC/
standard)

p-value 
(limma 
moderated)

Uniprot ID Protein names

− 0.83 0.59 0.01 P11117 Lysosomal acid phosphatase (LAP) (EC 3.1.3.2)

− 0.66 0.21 0.01 P04075 Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) 
(Muscle-type aldolase)

− 0.81 0.27 0.01 P09972 Fructose-bisphosphate aldolase C (EC 4.1.2.13) (Brain-type aldolase)

− 0.82 0.38 0.00 P07355 Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy 
chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) 
(Protein I) (p36)

− 1.06 0.52 0.00 Q96BM9 ADP-ribosylation factor-like protein 8A (ADP-ribosylation factor-like protein 10B) 
(Novel small G protein indispensable for equal chromosome segregation 2)

− 0.73 0.83 0.01 P15289 Arylsulfatase A (ASA) (EC 3.1.6.8) (Cerebroside-sulfatase) [Cleaved into: Arylsulfatase A 
component B; Arylsulfatase A component C]

− 0.99 0.24 0.01 P61421 V-type proton ATPase subunit d 1 (V-ATPase subunit d 1) (32 kDa accessory protein) 
(V-ATPase 40 kDa accessory protein) (V-ATPase AC39 subunit) (p39) (Vacuolar 
proton pump subunit d 1)

− 0.56 0.70 0.00 P16070 CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 
lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteogly-
can) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) 
(Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44)

− 1.21 0.63 0.00 P08962 CD63 antigen (Granulophysin) (Lysosomal-associated membrane protein 3) (LAMP-3) 
(Melanoma-associated antigen ME491) (OMA81H) (Ocular melanoma-associated 
antigen) (Tetraspanin-30) (Tspan-30) (CD antigen CD63)

− 0.87 0.42 0.01 P12532 Creatine kinase U-type, mitochondrial (EC 2.7.3.2) (Acidic-type mitochondrial creatine 
kinase) (Mia-CK) (Ubiquitous mitochondrial creatine kinase) (U-MtCK)

− 0.95 0.81 0.00 P53634 Dipeptidyl peptidase 1 (EC 3.4.14.1) (Cathepsin C) (Cathepsin J) (Dipeptidyl peptidase 
I) (DPP-I) (DPPI) (Dipeptidyl transferase) [Cleaved into: Dipeptidyl peptidase 1 exclu-
sion domain chain (Dipeptidyl peptidase I exclusion domain chain); Dipeptidyl 
peptidase 1 heavy chain (Dipeptidyl peptidase I heavy chain); Dipeptidyl peptidase 
1 light chain (Dipeptidyl peptidase I light chain)]

− 1.00 0.50 0.01 P00167 Cytochrome b5 (Microsomal cytochrome b5 type A) (MCB5)

− 1.20 0.55 0.01 O75911 Short-chain dehydrogenase/reductase 3 (EC 1.1.1.300) (DD83.1) (Retinal short-chain 
dehydrogenase/reductase 1) (retSDR1) (Retinol dehydrogenase 17) (Short chain 
dehydrogenase/reductase family 16C member 1)

− 0.64 0.55 0.01 O60884 DnaJ homolog subfamily A member 2 (Cell cycle progression restoration gene 3 pro-
tein) (Dnj3) (Dj3) (HIRA-interacting protein 4) (Renal carcinoma antigen NY-REN-14)

− 1.04 0.74 0.00 Q9UK22 F-box only protein 2

− 1.57 0.84 0.00 P04066 Tissue alpha-L-fucosidase (EC 3.2.1.51) (Alpha-L-fucosidase I) (Alpha-L-fucoside fuco-
hydrolase 1) (Alpha-L-fucosidase 1)

− 0.88 0.52 0.00 Q96C23 Aldose 1-epimerase (EC 5.1.3.3) (Galactose mutarotase)

− 0.84 0.67 0.00 Q9P2T1 GMP reductase 2 (GMPR 2) (EC 1.7.1.7) (Guanosine 5′-monophosphate oxidoreduc-
tase 2) (Guanosine monophosphate reductase 2)

− 0.82 0.86 0.00 P63096 Guanine nucleotide-binding protein G(i) subunit alpha-1 (Adenylate cyclase-inhibit-
ing G alpha protein)

− 1.37 0.81 0.00 P15586 N-acetylglucosamine-6-sulfatase (EC 3.1.6.14) (Glucosamine-6-sulfatase) (G6S)

− 1.00 0.64 0.00 Q9NRV9 Heme-binding protein 1 (p22HBP)
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Table 3  (continued)

Average 
log2 (RO/
standard)

Average 
log2 (chRCC/
standard)

p-value 
(limma 
moderated)

Uniprot ID Protein names

− 2.02 0.21 0.00 P16401 Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1 s-3)

− 1.70 0.35 0.01 P80365 Corticosteroid 11-beta-dehydrogenase isozyme 2 (EC 1.1.1.-) (11-beta-hydroxysteroid 
dehydrogenase type 2) (11-DH2) (11-beta-HSD2) (11-beta-hydroxysteroid dehydro-
genase type II) (11-HSD type II) (11-beta-HSD type II) (NAD-dependent 11-beta-
hydroxysteroid dehydrogenase) (11-beta-HSD) (Short chain dehydrogenase/reduc-
tase family 9C member 3)

− 3.15 0.32 0.00 P08729 Keratin, type II cytoskeletal 7 (Cytokeratin-7) (CK-7) (Keratin-7) (K7) (Sarcolectin) (Type-
II keratin Kb7)

− 1.64 0.41 0.00 P11279 Lysosome-associated membrane glycoprotein 1 (LAMP-1) (Lysosome-associated 
membrane protein 1) (CD107 antigen-like family member A) (CD antigen CD107a)

− 1.56 0.61 0.00 P13473 Lysosome-associated membrane glycoprotein 2 (LAMP-2) (Lysosome-associated 
membrane protein 2) (CD107 antigen-like family member B) (LGP-96) (CD antigen 
CD107b)

− 1.43 1.04 0.00 O00462 Beta-mannosidase (EC 3.2.1.25) (Lysosomal beta A mannosidase) (Mannanase) (Man-
nase)

− 0.99 0.53 0.00 Q9H8H3 Methyltransferase-like protein 7A (EC 2.1.1.-) (Protein AAM-B)

− 1.45 0.34 0.01 Q92597 Protein NDRG1 (Differentiation-related gene 1 protein) (DRG-1) (N-myc downstream-
regulated gene 1 protein) (Nickel-specific induction protein Cap43) (Reducing 
agents and tunicamycin-responsive protein) (RTP) (Rit42)

− 1.66 0.44 0.00 Q5TFE4 5′-nucleotidase domain-containing protein 1 (EC 3.1.3.-)

− 0.91 0.63 0.00 Q92882 Osteoclast-stimulating factor 1

− 1.21 1.36 0.00 Q15124 Phosphoglucomutase-like protein 5 (Aciculin) (Phosphoglucomutase-related protein) 
(PGM-RP)

− 0.29 0.49 0.01 A6NDG6 Glycerol-3-phosphate phosphatase (G3PP) (EC 3.1.3.21) (Aspartate-based ubiquitous 
Mg(2 +)-dependent phosphatase) (AUM) (EC 3.1.3.48) (Phosphoglycolate phos-
phatase) (PGP)

− 1.15 1.04 0.00 Q86T03 Type 1 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Type 1 PtdIns-4,5-P2 
4-Ptase) (EC 3.1.3.78) (PtdIns-4,5-P2 4-Ptase I) (Transmembrane protein 55B)

− 0.95 0.44 0.01 Q8NHP8 Putative phospholipase B-like 2 (EC 3.1.1.-) (76 kDa protein) (p76) (LAMA-like protein 
2) (Lamina ancestor homolog 2) (Phospholipase B domain-containing protein 2) 
[Cleaved into: Putative phospholipase B-like 2 32 kDa form; Putative phospholipase 
B-like 2 45 kDa form]

− 0.74 0.55 0.00 O15162 Phospholipid scramblase 1 (PL scramblase 1) (Ca(2 +)-dependent phospholipid 
scramblase 1) (Erythrocyte phospholipid scramblase) (MmTRA1b)

− 0.72 0.56 0.00 O15305 Phosphomannomutase 2 (PMM 2) (EC 5.4.2.8)

− 0.53 0.47 0.01 P35813 Protein phosphatase 1A (EC 3.1.3.16) (Protein phosphatase 2C isoform alpha) (PP2C-
alpha) (Protein phosphatase IA)

− 1.20 0.63 0.00 P42785 Lysosomal Pro-X carboxypeptidase (EC 3.4.16.2) (Angiotensinase C) (Lysosomal car-
boxypeptidase C) (Proline carboxypeptidase) (Prolylcarboxypeptidase) (PRCP)

− 1.03 0.26 0.01 P11216 Glycogen phosphorylase, brain form (EC 2.4.1.1)

− 0.69 0.48 0.00 P61106 Ras-related protein Rab-14

− 0.68 0.78 0.00 Q9H0U4 Ras-related protein Rab-1B

− 0.58 0.51 0.00 Q9UL25 Ras-related protein Rab-21

− 0.80 0.44 0.01 P51149 Ras-related protein Rab-7a

− 1.64 0.18 0.00 P51151 Ras-related protein Rab-9A

− 0.69 0.31 0.01 P61224 Ras-related protein Rap-1b (GTP-binding protein smg p21B)

− 1.03 0.63 0.01 P61225 Ras-related protein Rap-2b

− 1.04 0.30 0.00 Q8TC12 Retinol dehydrogenase 11 (EC 1.1.1.300) (Androgen-regulated short-chain dehy-
drogenase/reductase 1) (HCV core-binding protein HCBP12) (Prostate short-chain 
dehydrogenase/reductase 1) (Retinal reductase 1) (RalR1) (Short chain dehydroge-
nase/reductase family 7C member 1)

− 0.69 0.61 0.01 Q14108 Lysosome membrane protein 2 (85 kDa lysosomal membrane sialoglycoprotein) 
(LGP85) (CD36 antigen-like 2) (Lysosome membrane protein II) (LIMP II) (Scavenger 
receptor class B member 2) (CD antigen CD36)
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the different localization, we used a semi-quantitative 
scoring system to evaluate the LAMP1 presence, cover-
ing absence of signal (score 0), weak detection (score 1), 
medium detection (score 2), and strong detection (score 
3). For cells displaying heterogenous LAMP1 staining, 
the predominant staining intensity was considered; this 
typically being the weaker signal. Our analysis high-
lighted that ROs are characterized by weaker LAMP1 
presence in contrast to the elevated LAMP1 presence in 
chRCCs (Fig. 3c). The IHC analysis thus corroborates the 
proteomic result.

To assess a possible correlation of LAMP1 staining with 
clinical-pathological parameters of chRCC such as over-
all survival and T1–T4 staging, we are referring to data 
of the The Human Protein Atlas/Pathology Atlas [38, 39] 
since our cohort focuses on T1 and T2 stages. LAMP1 
showed a tendency for shortened overall survival upon 
elevated expression but no correlation with tumor stage.

Differential expression of ITGAV in renal oncocytomas 
and chromophobe renal cell carcinomas
Integrin biology has been rarely reported as a differenti-
ating feature that discriminates RO and chRCC. In our 
proteomic data, we noticed significant enrichment of 

ITGAV in the RO cases, which we further investigated 
by IHC in the extended IHC cohort (see above). In good 
agreement with the proteomic data, there was compa-
rably strong presence of ITGAV in the RO cases while 
ITGAV presence in chRCC was sparse (Fig.  4a). This 
was further corroborated by a semi-quantitative analysis 
(see above for details) of different staining ITGAV stain-
ing intensities and their fraction of the tumor area under 
investigation (Fig. 4b).

Several transcriptome studies found comparable 
transcript levels of ITGAV, both when comparing RO 
and chRCC as well as when extending the compari-
son to other renal neoplasms [8, 12, 40, 41]. However, 
as previously outlined, there is increasing evidence 
that mRNA abundance and protein levels only display 
a limited correlation [13, 14], e.g. due to differential 
synthesis and degradation rates, thus emphasizing the 
importance of direct protein analysis by means of mass 
spectrometry or immuno-detection.

To assess a possible correlation of ITGAV staining 
with clinical-pathological parameters of chRCC such 
as overall survival and T1–T4 staging, we are refer-
ring to data of the The Human Protein Atlas/Pathology 
Atlas [38, 39] since our cohort focuses on T1 and T2 
stages. ITGAV showed a tendency for shortened overall 

Table 3  (continued)

Average 
log2 (RO/
standard)

Average 
log2 (chRCC/
standard)

p-value 
(limma 
moderated)

Uniprot ID Protein names

− 1.01 0.36 0.01 P01011 Alpha-1-antichymotrypsin (ACT) (Cell growth-inhibiting gene 24/25 protein) (Serpin 
A3) [Cleaved into: Alpha-1-antichymotrypsin His-Pro-less]

− 0.82 0.80 0.00 Q9HAT2 Sialate O-acetylesterase (EC 3.1.1.53) (H-Lse) (Sialic acid-specific 9-O-acetylesterase)

− 1.69 0.49 0.01 Q6IA17 Single Ig IL-1-related receptor (Single Ig IL-1R-related molecule) (Single immunoglob-
ulin domain-containing IL1R-related protein) (Toll/interleukin-1 receptor 8) (TIR8)

− 0.78 0.77 0.00 Q00796 Sorbitol dehydrogenase (EC 1.1.1.14) (L-iditol 2-dehydrogenase)

− 1.60 0.50 0.00 Q13488 V-type proton ATPase 116 kDa subunit a isoform 3 (V-ATPase 116 kDa isoform a3) 
(Osteoclastic proton pump 116 kDa subunit) (OC-116 kDa) (OC116) (T-cell immune 
regulator 1) (T-cell immune response cDNA7 protein) (TIRC7) (Vacuolar proton 
translocating ATPase 116 kDa subunit a isoform 3)

− 0.29 1.17 0.01 Q9UGI8 Testin (TESS)

− 0.58 0.62 0.01 O76062 Delta(14)-sterol reductase (Delta-14-SR) (EC 1.3.1.70) (Another new gene 1 protein) 
(C-14 sterol reductase) (Putative sterol reductase SR-1) (Sterol C14-reductase) 
(Transmembrane 7 superfamily member 2)

− 1.92 0.05 0.01 Q9NUM4 Transmembrane protein 106B

− 0.71 0.38 0.00 Q12792 Twinfilin-1 (Protein A6) (Protein tyrosine kinase 9)

− 0.40 1.13 0.00 O15498 Synaptobrevin homolog YKT6 (EC 2.3.1.-)

Fig. 2  a Statistical analysis using linear models as implemented in Limma distinguishes significantly (p < 0.01) affected proteins. b Gene ontology 
(confined to “cellular compartment”) analysis of proteins that were found to be significantly increased in either RO or chRCC​

(See figure on next page.)
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(See figure on previous page.)
Fig. 3  a Exemplary immunohistochemistry (IHC) of LAMP1 in RO and chRCC. b Fraction of RO or chRCC cells displaying a heterogenous staining 
pattern for LAMP1 (statistical significance determined using the two-way Student t-test; values are mean ± standard deviation). b Overview 
of LAMP1 IHC in the extended cohort using a semi-quantitative scoring system covering absence of intensity (score 0), weak detection (score 
1), medium detection (score 2), and strong detection (score 3). Statistical significance determined using the two-way Student t-test; values are 
mean ± standard deviation; scale bar is 100 μm

a

b

Fig. 4  a Exemplary immunohistochemistry (IHC) of ITGAV in RO and chRCC. b Overview of ITGAV IHC in the extended cohort using a 
semi-quantitative scoring system covering absence of intensity (score 0), weak detection (score 1), medium detection (score 2), and strong 
detection (score 3). Statistical significance determined using the two-way Student t-test; values are mean ± standard deviation, scale bar is 100 μm
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survival upon elevated expression but no correlation 
with tumor stage.

Conclusion
We present one of the first proteomic profiling studies to 
differentiate renal oncocytomas and chromophobe renal 
cell carcinomas. We found distinguishable proteome pro-
files, which reflect previously annotated, discriminating 
features of ROs and chRCCs. Moreover, we identified 
novel protein candidates for which differential expression 
between ROs and chRCCs has not yet been described. 
Using an extended cohort of > 70 RO and chRCC cases, 
we corroborate strong presence of ITGAV in RO and of 
LAMP1 in chRCC. Methodologically, our work further 
validates the robustness of using FFPE material for retro-
spective quantitative proteomics as a first step for differ-
ential marker identification. Extension to further variants 
of renal cell neoplasms [32] is an intriguing outlook.

Additional files

Additional file 1: Table S1. Labeling scheme setup.

Additional file 2: Table S2. Overview of the > 2400 proteins were identi-
fied (false-discovery rate < 1%) and quantified in at least four RO and four 
chRCC samples.
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